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Wakeup scheduling has been widely used in wireless sensor networks (WSNs), for it can reduce the energy wastage caused by the
idle listening state. In a traditional wakeup scheduling, sensor nodes start up numerous times in a period, thus consuming extra
energy due to state transitions (e.g., from the sleep state to the active state). In this paper, we address a novel interference-free
wakeup scheduling problem called compact wakeup scheduling, in which a node needs to wake up only once to communicate
bidirectionally with all its neighbors. However, not all communication graphs have valid compact wakeup schedulings, and it
is NP-complete to decide whether a valid compact wakeup scheduling exists for an arbitrary graph. In particular, tree and grid
topologies, which are commonly used in WSNs, have valid compact wakeup schedulings. We propose polynomial-time algorithms
using the optimum number of time slots in a period for trees and grid graphs. Simulations further validate our theoretical results.

1. Introduction

Wireless sensor networks (WSNs) consist of hundreds to
thousands of tiny, inexpensive, and battery-powered wireless
sensing devices which organize themselves into multihop
radio networks. As the batteries of most sensor nodes are
nonrechargeable, one key challenging issue is to schedule
the activities of nodes to minimize the energy consumption.
The major source of energy wastage [1–3] in WSNs is the
idle listening state in the radio modules, which in fact
consumes almost as much energy as receiving. Therefore,
nodes are generally scheduled to sleep when the radio is not
in use [4, 5] and wake up when necessary. By using wakeup
scheduling, nodes could operate in a low-duty-cycle mode,
and periodically start up to check the channel for activity.

In wireless networks, the packets transmitted by a node
may be received by all the nodes within its transmission
range due to the broadcast nature of the wireless medium.
Therefore, the transmission of one link may interfere with
the reception of another link. To avoid the interferences
among the communication links, we adopt the time division
multiple access (TDMA) MAC protocols, such as TRAMA
[6], DCQS [7], and DRAND [8]. TDMA protocols have
the natural advantages of having no contention-introduced

overhead or collisions [1]. In such protocols, the time
is divided into equal intervals referred to as time slots.
Correspondingly, nodes turn on the radio during the
assigned time slots and turn off the radio when they are
not transmitting or receiving in the wakeup scheduling. For
multiple transmission links can communicate at the same
time in wireless networks, several nodes can wake up to
transmit their packets simultaneously when they do not
interfere with each other. Therefore, we attempt to minimize
the number of time slots assigned to each node while
guaranteeing interference-free among the communication
links.

The previous studies [9, 10] in the wakeup scheduling
did not, however, consider all possible energy consumption,
especially the energy consumed in the state transitions,
for example, from the sleep state to the listening state or
transmitting state. After such a scheduling, a node may start
up numerous times in a period to communicate with its
neighbors. Note that the typical startup time is on the order
of milliseconds, while the transmission time may be less than
the startup time if the packets are small [11]. Take Tmote
Sky [12] as an example, the time and energy consumption
to activate a node is about 1.4 ms and 17 μJ, respectively,
whereas the time and energy consumption to transmit 1 byte
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is about 0.032 ms and 1.7 μJ, respectively. If a sensor node
starts up too frequently, it not only needs extra time, but
also consumes extra energy for state transitions. Moreover,
it reduces the battery capacity due to the current surges in
the state transitions.

Figure 1 shows the battery voltage of Tmote Sky sensors
with different startup frequencies but with the same duty
cycle (50%): one starts up every 20 ms, stays in the receive
state for 10 ms, and turns to the sleep state for the rest
period; the other one starts up every 100 ms, stays in the
receive state for 50 ms, and turns to the sleep state for the
rest period. We can see that about 8% battery voltage can be
saved by reducing the startup frequency from five times to
once in every 100 ms. To minimize the energy cost, the state
transitions should be considered in the wakeup scheduling
design. Unlike the previous work, we are interested in the
scheduling with consecutive constraints, where all the links
incident to a node are assigned consecutive time slots so
that each node needs to wake up only once to communicate
bidirectionally with its neighbors.

In [13], energy-efficient centralized and distributed algo-
rithms are proposed to reduce the frequency of state
transitions of each node to twice in a data-gathering tree:
once for receiving data from its children, and once for
sending data to its parent. If the network topology is a
directed acyclic graph (DAG) where each node vi has ki
parents, the scheduling in [13] would require vi to wake up
ki + 1 times as the parent nodes are not scheduled together.
Moreover, the two-way (or bidirectional) communication
is not taken into consideration. An interesting problem is
to design an efficient scheduling where a node could wake
up only once and finish all communication tasks with its
neighbors consecutively and bidirectionally.

In this paper, we propose compact wakeup scheduling, a
novel time division multiple access (TDMA) approach to
the wakeup scheduling problem, to minimize the frequency
of state transitions. Compact wakeup scheduling assigns
consecutive time slots to all the links incident to a node vi so
that vi can start up only once to communicate bidirectionally
with all its neighbors in one scheduling period T .

Apart from reducing the transient time and energy cost
in the state transitions, compact wakeup scheduling also has
other benefits. The network delay, which is a major concern
in time-critical monitoring systems like that in [14], can be
reduced. For instance, a sensor may need to wait until all its
neighbors wake up so that it can collect the real-time data
from these neighbors to make the local computation on these
data. Note that compact wakeup scheduling cannot only
reduce the state transitions of transceivers, but also reduce
the state transitions of other components in the nodes, such
as external memory and sensing devices.

The main contributions of this paper are summarized as
follows.

(i) We formulate the compact wakeup scheduling prob-
lem in WSNs to minimize the frequency of state
transitions, and prove it to be NP-complete.

(ii) We present polynomial-time algorithms using the
optimum number of time slots in a period for trees
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Figure 1: (a) Tmote Sky sensor. (b) The battery voltage of Tmotes
with different startup frequency. AA Carbon-Zinc batteries are used
in the experiment. 10 ms and 50 ms are active time in each period.

and grid graphs. In grid graphs, we point out all the
possible coloring patterns and give the lower bound
as well as the upper bound of the compact wakeup
scheduling.

(iii) We develop simulations to show the efficiency of
compact wakeup scheduling.

The rest of this paper is organized as follows. Section 2
reviews the related work. Section 3 describes the system
model and formulates the compact wakeup scheduling
problem. Section 4 presents polynomial-time algorithms for
trees and grid graphs. Section 5 shows the performance
evaluation. Section 6 concludes the paper and provides
directions for future research.

2. Related Work

Wakeup scheduling has attracted a lot of interest in WSNs
in virtue of its energy efficiency. S-MAC [1] is a contention-
based MAC scheme. In S-MAC, nodes periodically sleep
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and wake up, and each active period is of a fixed size
with a variable sleep time. T-MAC [2] improves S-MAC
by adopting a dynamic duty cycle, that is, transmitting all
messages in bursts and ending the listening period when
nothing is heard within a limited time. DW-MAC [4] allows
nodes to wake up on demand during the sleep period
and ensures that data transmissions do not collide at their
intended receivers. TreeMAC [15] is a localized TDMA MAC
protocol, which is designed to achieve high throughput and
low congestion with low overhead. PW-MAC [16] minimizes
the energy consumption by enabling senders to predict
the wakeup times of receivers based on asynchronous duty
cycling.

Link scheduling is time slot assignments to communi-
cation links in TDMA MAC protocols. Ramanathan and
Lloyd [17] consider both the tree networks and arbitrary
networks, and the performance of the proposed algorithms
is bounded by the thickness of a network. In [18], Gandham
et al. propose a link scheduling algorithm involving two
phases. In the first phase, a valid edge coloring is obtained
in a distributed fashion. In the second phase, each color
is mapped to a unique time slot, and the hidden terminal
problem as well as the exposed terminal problem is avoided
by assigning each edge a direction of transmission. The
overall scheduling requires at most 2(Δ + 1) time slots when
the topologies are acyclic, where Δ is the maximum degree
of a graph. In [10], Wang et al. propose a degree-based
heuristic algorithm with performance guarantee to obtain
a good interference-free link scheduling to maximize the
throughput of the network. In the algorithm, the sensors are
scheduled individually in a predefined order without consec-
utive assignment of time slots, and each node is assigned the
best possible time slot to transmit or receive without causing
interferences to the already-scheduled sensors. In [19], Wu
et al. propose efficient centralized and distributed scheduling
algorithms that reduce the energy cost of state transitions
and also propose an efficient method to construct an energy-
efficient data-gathering tree. In [13], Ma et al. address the
contiguous link scheduling problem by applying the interval
vertex coloring in a merged conflict graph and assigning
consecutive time slots to the links incident to one node to
achieve better energy efficiency.

Instead of applying the interval vertex coloring, we apply
the interval edge coloring in the compact wakeup scheduling.
Interval edge coloring, introduced by Asratian and Kamalian
[20] (available in English as [21]), is a special edge coloring
in which the colors of edges incident to the same vertex
must be contiguous, that is, the colors must be composed
of an integer interval. Not every graph has an interval edge
coloring, since a graph G with an interval edge coloring
belongs to Class 1 graphs where the chromatic number
of edge coloring is equal to the maximum degree Δ [21].
Sevastjanov [22] proves that the problem of determining
the existence of an interval edge coloring is NP-complete,
even for bipartite graphs, and Kubale [23] proves that the
interval edge coloring problem with forbidden colors is
also NP-complete. Experiments [24] with small and sparse
graphs show that the existence of an interval edge-coloring
is with high probability. Some examples of graphs with

interval edge-colorings are trees, complete bipartite graphs,
and grid graphs [20, 21, 25]. Giaro and Kubale give several
polynomially solvable graphs in [26].

Compared to the former studies on wakeup scheduling,
the compact wakeup scheduling could minimize the energy
cost of state transitions, and sensors can start up only once
in a period T . Furthermore, the compact wakeup scheduling
considers two-way (or bidirectional) communication while
our early work [13, 19] only considers one-way communica-
tion.

3. Problem Formulation

In this section, we first present the system model then formu-
late the compact wakeup scheduling problem.

3.1. System Model. We assume that a WSN has n static sensor
nodes equipped with single omnidirectional antennas, and
all the nodes have the same communication range. The
network is represented as a communication graph G =
(V ,E), where V = {v1, v2, . . . , vn} denotes the set of nodes
and E = {e1, e2, . . . , em} denotes the set of edges referred
to all the communication links. If {vi, vj} ⊆ V , the edge
e = (vi, vj) ∈ E if and only if vj is located within the
communication range of vi. We assume that nodes have the
ability of data aggregation and can use one time slot to
transmit data in one link.

Each node operates in three states: active state (transmit,
receive, and listen), sleep state, and transient state (state
transition). The transient state comprises two processes:
startup (from the sleep state to the active state) and
turndown (from the active state to the sleep state). The
startup process from the sleep state to the active state includes
radio initialization, radio and its oscillator startup, and the
switch of radio to active [27]. The startup process is slow due
to the feedback loop in the phase-locked loop (PLL) [28], and
a typical setting time of the PLL-based frequency synthesizer
is on the order of milliseconds.

We assume that the interference range is equal to the
communication range. Two types of interferences, primary
interference and secondary interference [17], exist in the
network. The primary interference occurs when a node has
more than one communication task in a single time slot.
Typical examples are sending and receiving at the same time
and receiving from two different transmitters. The secondary
interference (or called the hidden terminal problem [29])
occurs when a node vi receives packets from a transmitter
vj and vi is also within the communication range of another
transmitter vk which is intended for other nodes.

3.2. Problem Formulation. In TDMA wakeup schedulings,
each bidirectional communication link li j is assigned two
time slots: one time slot is that vi is a transmitter and vj
is a receiver, while the other one is that vj is a transmitter
and vi is a receiver. In the two time slots, nodes vi and vj
start up and switch from the sleep state to the active state.
After that, nodes vi and vj switch to the sleep state again. We
can see that node vi may start up 2wi times to communicate
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Figure 2: Wakeup scheduling and compact wakeup scheduling: (a) network topology, (b) wakeup scheduling, (c) compact wakeup sched-
uling.

bidirectionally with its neighbors in a scheduling period T
in the worst case, where wi is the number of neighbors
of vi. To minimize the frequency of state transitions, we
propose a new scheduling approach called compact wakeup
scheduling.

Definition 1. Compact wakeup scheduling is an interference-
free wakeup scheduling aiming to assign consecutive time
slots to all the links incident to a node vi, and then vi needs
to start up only once to communicate bidirectionally with all
its neighbors.

Compact wakeup scheduling attempts to assign consecu-
tive time slots to all the links incident to a node, but it may
fail to find such a scheduling. If it succeeds, the scheduling is
said to be a valid scheduling. If not, the scheduling is said to
be not a valid scheduling.

In the compact wakeup scheduling, the two time slots
assigned to each bidirectional link li j are adjacent, and node
vi can finish its bidirectional communication with vj in
consecutive time slots. Figure 2(a) shows the given network
topology. Figure 2(b) shows a wakeup scheduling, in which
a node starts up numerous times in a period. Figure 2(c)
shows a compact wakeup scheduling, in which a node could
start up only once to communicate bidirectionally with its
neighbors. Compact wakeup scheduling can reduce the time
for a node to collect the data from its neighbors. As shown
in Figures 2(b) and 2(c), node c needs 5 more time slots
to communicate with all its neighbors without the compact
wakeup scheduling.

An edge coloring of graph G is called a valid coloring if
any two adjacent edges of G are assigned different colors. A
valid coloring of G is called an interval (or consecutive) edge
coloring if, for each vertex v, the colors of edges incident to v
form an integer interval.

Theorem 2. The problem of deciding whether a valid compact
wakeup scheduling exists for an arbitrary graph G is NP-
complete.

Proof. The compact wakeup scheduling problem is in NP.
To verify whether a scheduling is a solution to the compact

wakeup scheduling problem, we need to check (i) all the
links incident to a node are assigned consecutive time slots;
(ii) the scheduling is interference-free. Verifying (i) and (ii)
requires O(n) and O(n2) operations, respectively, where n is
the number of nodes. It is clearly that this verification can be
done in polynomial time.

To prove that the compact wakeup scheduling problem is
NP-hard, we first restate the interval edge-coloring problem
with forbidden colors which is NP-complete [21, 23]. “Given
a graph G, a forbidding function F which represents the
colors that cannot be assigned to each edge e, and an integer
k, does there exist an interval edge coloring of G using k
colors and avoiding F?” The interference, such as the hidden
terminal problem, in the compact wakeup scheduling is a
special case of the forbidding function in the interval edge-
coloring. Thus, the compact wakeup scheduling is equivalent
to the interval edge-coloring with forbidden colors, which is
NP-hard. Therefore, the problem is NP-complete.

Theorem 3. A communication graph G with a valid compact
wakeup scheduling has an interval edge coloring and belongs to
Class 1 graphs.

Proof. If graph G has a valid compact wakeup scheduling,
any node vi in G can wake up once to communicate with
all its neighbors. Each two-way communication link can be
colored with one color, and then the links incident to one
node are assigned consecutive colors. Thus, graph G has
an interval edge coloring. According to [21], graph with an
interval edge coloring belongs to Class 1 graphs where the
edge chromatic number is equal to the maximum degree Δ of
graph G. Therefore, graph G is a Class 1 graph.

Unfortunately, the converse proposition is not true. The
graph in Figure 3(a) belongs to Class 1 graphs, but has no
valid interval edge coloring, and thus it has no valid compact
wakeup schedulings. The Class 1 graphs even with valid
interval edge colorings may not have valid compact wakeup
schedulings. For example, the graph in Figure 3(b) has an
interval edge-coloring, but all valid interval edge colorings
could not avoid the hidden terminal problem. Thus, graphs
with valid compact wakeup schedulings are a proper subset
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of graphs with valid interval edge colorings, and also a proper
subset of Class 1 graphs, as shown in Figure 4.

Since not all communication graphs have valid compact
wakeup schedulings and the problem of deciding whether a
valid scheduling exists for an arbitrary graph is NP-complete,
we will focus on particular graphs, such as tree and grid
topologies. Interestingly and surprisingly, we can obtain
polynomial-time algorithms using the optimum number of
time slots in a period. By minimizing the number of time
slots, the overall network throughput can be maximized.

3.3. Direction of Transmission Assignment in WSNs. In the
link scheduling in WSNs, each edge in the communication
graph has two transmission links: one is upload link, and
the other one is downlowd link. We can easily find an edge
coloring of a communication graph using Δ + 1 colors [30],
but how can this coloring be used to assign time slots to
each transmission link? In [18], each color is mapped to
two unique time slots and each transmission link is assigned
a time slot according to the direction of transmission
assignment (i.e., which end node of edge e will transmit or
receive). Both the hidden terminal problem and the exposed
terminal problem can be avoided. When the topologies are
acyclic, the overall scheduling requires at most 2(Δ + 1) time
slots, where Δ is the maximum degree of a graph. When the
topologies have cycles, additional time slots may be needed.

In this paper, the transmitter is marked with a sign “+”
and the receiver is marked with a sign “−”. Given a coloring

+ +

++

− − −

−k

k

kk

Interference

Figure 5: Cycle that has odd number of edges with color k cannot
be assigned a valid direction of transmission.

of graph G and a color k, a subgraph Gk = (Vk,Ek) is
defined as follows. (a) Vk is the set of vertices incident to
the edges colored with k. (b) Ek is the set of edges with
both end vertices in Vk. When a node is assigned a sign
“−”, the only neighbor assigned a sign “+” in Gk is the
neighbor incident to the edge colored with k, and the other
neighbors in Gk are individually assigned a sign “−”. Then,
nodes incident to an edge colored with k always have an
opposite sign, and nodes incident to an edge colored with
other colors have the same sign. Algorithm 1, based on
Depth First Search (DFS), can provide a valid direction of
transmission assignment to each edge in Gk after a valid
edge coloring is obtained in acyclic topologies. Such an
assignment enables one-way communication. We can reverse
the direction of transmission assignment along each edge to
support bidirectional communication, and then each edge is
assigned two time slots.

Gandham et al. [18] prove that a valid direction of
transmission assignment exists in acyclic topologies (e.g.,
tree graphs). If a valid edge coloring is obtained in the
topologies which are not acyclic (e.g., grid graphs), a valid
direction of transmission assignment may not exist due
to the hidden terminal problem, as shown in Figure 5.
Interestingly, Gandham et al. [18] also prove that all the
nodes in a cycle of Gk can be given a valid sign “+” or “−”
if and only if there are an even number of edges with color k
in the cycle.

4. Compact Wakeup Scheduling Algorithms

In this section, we propose polynomial-time algorithms to
produce valid compact wakeup schedulings for tree and grid
topologies, which are commonly used in WSNs [31–35].

4.1. Trees. To obtain a valid compact wakeup scheduling of
a tree, we first obtain an interval edge coloring of a tree then
try to assign time slots to each edge and make it interference-
free.

If graph G is a tree of degree Δ, we could get an interval
edge coloring with Δ colors for G using Algorithm 2 [26]:
we first color any edge with 1, then find an uncolored
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Input: A subgraph Gk = (Vk ,Ek).
Output: A valid direction of transmission assignment.

(1) Start by visiting any node in Vk , and assign a sign “+” to it.
(2) Initiate a Depth First Search (DFS) procedure.
(3) while there are unvisited nodes do
(4) Let edge e be traversed from a visited node vi to an

unvisited node vj using the DFS procedure.
(5) if e is colored with k then
(6) Assign vj the sign opposite to vi.
(7) else
(8) Assign vj the sign same to vi.
(9) end if
(10) end while

Algorithm 1: DFS-based sign assignment algorithm [18].

Input: A tree G = (V ,E).
Output: A valid interval edge-coloring with Δ colors.

(1) Color any edge with 1.
(2) while there are uncolored edges do
(3) Find a uncolored edge e whose end vertex v is adjacent

to an already colored edge. Let {a, . . . , b} be the interval
of colors assigned to v.

(4) if a > 1 then
(5) Color edge e with a− 1.
(6) else
(7) Color edge e with b + 1.
(8) end if
(9) end while

Algorithm 2: Interval edge coloring of a tree [26].

Input: A tree G = (V ,E).
Output: A valid compact wakeup scheduling.

(1) Use Algorithm 2 to obtain a valid interval edge-coloring
with Δ colors for G.

(2) for k = 1 to Δ do
(3) Map color k to two consecutive time slots {2k − 1, 2k}.
(4) Use Algorithm 1 to determine a valid direction of

transmission assignment for time slot 2k − 1.
(5) Reverse the direction of transmission along each edge

to obtain the other assignment for time slot 2k.
(6) end for

Algorithm 3: Compact wakeup scheduling of a tree.

edge e adjacent to an already colored edge, and assign e with
a consecutive color until all the edges are colored. In the
coloring process, when coloring a new uncolored edge, the
consecutiveness of edge coloring remains invariant, and the
edges already colored form a consecutively colored subgraph.
After all edges are colored, we could get an interval edge
coloring and the total number of colors assigned is Δ.

We now describe how the interval edge coloring is used
to assign time slots to each edge in Algorithm 3. The idea

is to map color k to two consecutive time slots {2k −
1, 2k}, and use Algorithm 1 to determine a valid direction of
transmission assignment for time slot 2k−1, and then reverse
the direction of transmission along each edge to obtain the
other assignment for time slot 2k.

In Figure 6, links lab and lce are assigned the same color
“1” in the interval edge coloring, while time slot ts1 and
ts2 are allocated for color “1”. If time slot ts1 is assigned
in the directions of transmission as shown in Figure 6(a),
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Figure 6: Compact wakeup scheduling of a tree: (a) hidden terminal problem, (b) avoid the hidden terminal problem, (c) avoid the exposed
terminal problem.

the hidden terminal problem would happen because the
reception at node vb is garbled due to the collision of
transmission from nodes va and vc. Alternatively, if time slot
ts1 is assigned in the directions of transmission as shown in
Figure 6(b), the hidden terminal problem could be avoided.
Similarly, time slot ts2 is assigned in the reverse directions
of transmission as shown in Figure 6(c). Inspired by this, we
should determine the directions of transmission along each
link carefully to avoid the hidden terminal problem, that is,
determine a node when to transmit and when to receive.

A tree does not have any cycles, and thus it is always
possible to obtain a valid compact wakeup scheduling.
Algorithm 1, based on Depth First Search (DFS), can provide
a valid direction of transmission assignment to Gk. Note that
the time slot assignment also avoids the exposed terminal
problem [29], as shown in Figure 6(c).

Definition 4. The span of a valid compact wakeup scheduling
of graph G is the number of colors assigned. The minimum
and maximum span over all valid compact wakeup schedul-
ings of G are denoted by χcw(G) and ζcw(G), respectively.

As any valid coloring in a tree requires at least Δ colors
and an interval edge coloring can be obtained using Δ
colors, χcw(G) is equal to Δ. Then, the number of time slots
assigned in the compact wakeup scheduling is 2Δ, which is
the optimum number of time slots. Algorithm 3 describes
the compact wakeup scheduling for trees. Both the interval
edge coloring of a tree and the time slot assignments can be
obtained using O(n), where n is the number of vertices in a
tree. Thus, the algorithm to produce a valid compact wakeup
scheduling for trees is polynomial time.

4.2. Grid Graphs. A V × H grid graph (3 ≤ V ≤ H) is
a square lattice graph composed of VH vertices. The grid
graph has H vertical paths and V horizontal paths, where
each vertical path consists of V vertices and each horizontal
path consists of H vertices.

Definition 5. In a V×H grid graph, Vij (1 ≤ i ≤ V−1, 1 ≤
j ≤ H) denotes the ith vertical edge in the jth vertical path,
and Hij (1 ≤ i ≤ V, 1 ≤ j ≤ H − 1) denotes the jth
horizontal edge in the ith horizontal path.

V11 V12 V13 V14

V21 V22 V23 V24

(a) Vertical edges

H11 H12 H13

H21 H22 H23

H31 H32 H33

(b) Horizontal edges

Figure 7: Vertical and horizontal edges in grid graphs.

Sample grids with labeled vertical and horizontal edges
are illustrated in Figures 7(a) and 7(b). Vij is called parallel
to Vmn if i = m, and Hij is called parallel to Hmn if j = n. For
example, H11, H21, and H31 are parallel in Figure 7(b).

Grid graphs can be consecutively colored with Δ colors,
and one interval edge-coloring approach is given as follows.
for a V×H grid graph, let c be a consecutive coloring of each
horizontal path with colors 2 and 3. For each i = 1, 2, . . . , V,
we color the edges of ith horizontal path according to c. Let
{a, . . . , b} be an interval of colors assigned at each vertex in
the corresponding horizontal path, then edge V 1 j is colored
with a−1, V 2 j with b+ 1, V 3 j with a−1, and so forth, where
1 ≤ j ≤H . By repeating this for all edges, we could obtain an
interval edge coloring of G, and a sample of the edge coloring
is shown in Figure 8(a).

A valid direction of transmission assignment can be
obtained to avoid the hidden terminal problem using
Algorithm 1 in acyclic subgraphs Gk. But grid graphs contain
cycles, and a valid assignment does not exist if we use the
interval edge coloring approach above. For example, this
edge coloring cannot avoid the hidden terminal problem
as shown in Figure 8(b). Interestingly, Gandham et al. [18]
prove that all the nodes in a cycle of Gk can be given a valid
sign “+” or “−” if and only if there are an even number of
edges with color k in the cycle.

If the edges colored with “3” in the cycle of Figure 8(b)
are assigned with other colors, the consecutiveness of the
colors assigned to the edges incident to one node cannot
be held. Our solution for a grid graph first considers the
property of the hidden terminal problem in the grid graph,
and then deals with the consecutiveness of the edge-coloring.
Our key results for grid graphs are summarized below.
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Figure 9: Invalid colorings in the compact wakeup scheduling.

(1) We obtain an interval edge coloring according to the
parity of V and H .

(i) If both V and H are even, χcw(G) = 4.
(ii) If one of V and H is even and the other is odd,

χcw(G) = 5.
(iii) If both V and H are odd, χcw(G) = 6.

(2) We point out all the possible coloring patterns.

(3) We give the upper bound of the compact wakeup
scheduling.

Definition 6. In a grid graph, the maximum degree of vertices
is Δ = 4. The vertices of degree 4 are inner vertices, the
vertices of degree 2 or 3 are boundary vertices, the edges
incident to at least one inner vertex are inner edges, and the
edges incident to two boundary vertices are boundary edges.

Definition 7. In the compact wakeup scheduling of a grid
graph, the colors assigned to the inner edges incident to an
inner vertex form an interval of 4 integers. When the total
number of colors assigned is less than 8, certain color must
appear in one of the inner edges and this color is referred to
as a critical color.

In grid graphs, if the total number of colors assigned is
M (4 ≤ M ≤ 7), then the number of critical colors is 8−M.
For example, if M = 4, the set of critical colors is {1, 2, 3, 4};
if M = 5, the set of critical colors is {2, 3, 4}; if M = 6, the set
of critical colors is {3, 4}.

Lemma 8. If K is a critical color assigned to an inner edge e
incident to two inner vertices in the compact wakeup scheduling
of a grid graph, the inner edges parallel to e are all colored with
K .

Proof. Without loss of generality, we assume that an inner
horizontal edgeHij (2 ≤ i ≤ V−1, 2 ≤ j ≤H−2) is colored
with K in a V ×H grid graph. The cases of colorings shown
in Figure 9 would lead to odd number of edges with color
K in subgraph GK (see the thick lines in Figure 9), and no
feasible direction of transmission can be obtained. Since K is
a critical color, H(i+1) j (i+1 ≤ V−1) must be colored with K .
By applying recursion, the horizontal edges Hmj (2 ≤ m ≤
V−1) are in a parallel pattern, as shown in Figure 10(a).

Lemma 9. If K is a critical color, the inner edges colored with
K are in an interlined pattern.

Proof. Without loss of generality, we assume an inner
horizontal edgeHij (2 ≤ i ≤ V−1, 2 ≤ j ≤H−2) is colored
with K in a V ×H grid graph. According to Lemma 8, the
horizontal edges Hmj (2 ≤ m ≤ V − 1) are colored with
K . Let k = j + 2 (k ≤ H − 2), H3k must be colored with
K , since K is a critical color and H3(k−1), V 2k as well as
V 3k cannot be colored with K . According to Lemma 8, the
horizontal edges Hmk (2 ≤ m ≤ V − 1) are colored with K ,
and the result still holds when k = j−2 (k ≥ 2). By applying
recursion, the horizontal edges Hmk (k = j±2n, n ∈ N , 2 ≤
m ≤ V − 1, 2 ≤ k ≤ H − 2) are colored with K . If
k = 1 (orH−1) and k = j±2n, n ∈ N , the horizontal edges
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Figure 10: Coloring pattern in the compact wakeup scheduling.
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Figure 11: The coloring patterns in the compact wakeup scheduling (both V and H are even).

Hmk (3 ≤ m ≤ V−2) are colored with K , since K is a critical
color. Hence, the inner edges colored with a critical color are
in an interlined pattern, as shown in Figure 10(b).

Theorem 10. A V ×H grid graph (3 ≤ V ≤ H , both V and
H are even) can be consecutively colored with 4 colors in the
compact wakeup scheduling, and the possible colorings must be
the patterns as shown in Figure 11, and χcw(G) = 4.

Proof. Figures 11(a) and 11(b) show two possible colorings
in the compact wakeup scheduling, if both V and H are
even. Since the edges with the same color are in a parallel
and interlined pattern, there are an even number of edges
with color k (1 ≤ k ≤ 4) in a cycle in the subgraph Gk

and then the scheduling could avoid the hidden terminal
problem. Therefore, χcw(G) = 4.

As χcw(G) is equal to 4, we assume the four critical colors
are A, B, C and D. According to Lemmas 8 and 9, A, B, C, and
D are all in a parallel and interlined pattern shown as status 1
in Figure 12(a). To avoid the hidden terminal problem, H13

cannot be colored with D or C and can only be colored with
A. Then H12 must be colored with D. Similarly, V 21 and V 31

are colored with C and B, respectively. Then H11, V 11, H21,
and V 12 are colored with A, B, A, and B, respectively. We
can color other edges in a similar way. In status 2 shown in

Figure 12(b), we can see the color sets {A,B}, {A,B,D}, and
{A,B,C} must consist of consecutive numbers since these
colors assigned to the edges incident to the vertices in the
dashed circles must be consecutive. Therefore, {A,B,C} and
{A,B,D} belong to {1, 2, 3} and {2, 3, 4}, and {A,B} belongs
to {2, 3}. For C and D are symmetrical, we can get C = 4
and D = 1. For the case that A = 2 and B = 3, the coloring
pattern is Figure 11(a). For the case that A = 3 and B = 2,
the coloring pattern is Figure 11(b).

Lemma 11. A V ×H grid graph (3 ≤ V ≤ H , both V and
H are odd) cannot be consecutively colored with 4 or 5 colors
in the compact wakeup scheduling.

Proof. (1) If the grid could be consecutively colored with 4
colors A, B, C, and D, the four colors belonging to {1, 2, 3, 4}
are all critical colors. For an inner vertex has 4 incident
inner edges, the inner edges are colored with A, B, C, and
D, respectively. According to Lemmas 8 and 9, A, B, C
and D are all in a parallel and interlined pattern, and the
coloring is shown in Figure 13(a). As the colors assigned to
the edges incident to the vertices in the dashed circles must
be consecutive, the color sets {A,B,C}, {B,C,D}, {A,C,D},
and {A,B,D} must consist of three consecutive numbers.
However, {1, 2, 3} and {2, 3, 4} are the only two possible
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Figure 12: The coloring in the compact wakeup scheduling (both V and H are even).
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Figure 13: The colorings in the compact wakeup scheduling using 4 and 5 colors (both V and H are odd).

cases with three consecutive numbers, which leads to a
contradiction.

(2) If the grid could be consecutively colored with 5
colors, B, C and D belonging to {2, 3, 4} are critical colors
and the noncritical color 1 or 5 is denoted by X . For an
inner vertex has 3 incident critical inner edges, the inner
edges are colored with B, C, and D, respectively. According
to Lemmas 8 and 9, B, C, and D are all in a parallel and
interlined pattern, and the coloring is shown in Figure 13(b).
Since the colors assigned to the edges incident to the vertices
in the dashed circles must be consecutive, the color sets
{B,C,X}, {B,C,D}, {C,D,X}, and {B,D,X} must consist
of three consecutive numbers. However, {1, 2, 3}, {2, 3, 4},
and {3, 4, 5} are the only three possible cases with three
consecutive numbers, which leads to a contradiction.

Similarly, we could get the following lemma.

Lemma 12. A V ×H grid graph (3 ≤ V ≤ H , one of V and
H is even and the other is odd) cannot be consecutively colored
with 4 colors in the compact wakeup scheduling.

Theorem 13. A V × H grid graph (3 ≤ V ≤ H , one of
V and H is even and the other is odd) can be consecutively
colored with 5 colors in the compact wakeup scheduling, and the
possible coloring must be the pattern as shown in Figure 14(a),
and χcw(G) = 5.

Proof. Figure 14(b) shows a possible coloring in the compact
wakeup scheduling by determining the colors for the rest
uncolored edges in Figure 14(a), if one of V and H is even
and the other is odd. Since the edges with the same color are
in a parallel and interlined pattern, there are an even number
of edges with color k (1 ≤ k ≤ 5) in a cycle in the subgraph
Gk and then the scheduling could avoid the hidden terminal
problem. By combining with Lemma 12, χcw(G) = 5.

Since χcw(G) is equal to 5, we assume B, C, and D
belonging to {2, 3, 4} are critical colors and the noncritical
color 1 or 5 is denoted by X . As an inner vertex has 3 incident
critical inner edges, Figures 15(a), 15(c), and 15(d) are the
possible coloring patterns.

Case 1. In status 1 shown in Figure 15(a), H14 cannot be
colored with B, C, or D and can only be colored with X .
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Figure 14: The general coloring pattern and coloring pattern in the compact wakeup scheduling (one of V and H is even and the other is
odd. The uncolored edges depend on the edges colored with X , and X = 1 or 5).
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Figure 15: The colorings in the compact wakeup scheduling (one of V and H is even and the other is odd).

Then H13 must be colored with B. Similarly, V 21, V 31, V 27,
V 37 are colored with D, C, D, and C, respectively. We can see
that the color sets {B,C,X}, {B,C,D}, and {C,D,X} must
consist of consecutive numbers since these colors assigned
to the edges incident to the vertices in the dashed circles
must be consecutive. Then, {B,C,X} and {C,D,X} belong
to {1, 2, 3} and {3, 4, 5}. Then, we can get C = 3. If B = 2 and
D = 4, H15, V 16, H26, and V 17 are colored with 2, 3, 5, and 3,
respectively, shown as the status 2 in Figure 15(b). Then H16

can only be colored with 4, which leads to interferences in the
dashed circle. Similarly, if B = 4 and D = 2, we cannot get

an interference-free scheduling either. Hence, the coloring
pattern in Figure 15(a) is not valid.

Case 2. In Figure 15(c), H14 cannot be colored with B, C,
or X and can only be colored with D. Then H13 must
be colored with B. Similarly, V 21, V 31, V 27, and V 37 are
colored with C, X , C, and X , respectively. We can see that the
color sets {B,D,X}, {B,C,X}, and {C,D,X} must consist
of consecutive numbers since these colors assigned to the
edges incident to the vertices in the dashed circles must be
consecutive. Moreover, B,C,D ∈ {2, 3, 4} are consecutive.
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Figure 16: The general coloring patterns in the compact wakeup
scheduling (both V and H are odd. The uncolored edges have
various alternatives).

However, {1, 2, 3}, {2, 3, 4}, and {3, 4, 5} are the only three
possible cases with three consecutive numbers. Hence, the
coloring pattern in Figure 15(c) is not valid.

Case 3. In Figure 15(d), V 21 cannot be colored with B, C, or
D and can only be colored with X . Then V 31 must be colored
with C. Similarly, V 27 and V 37 are colored with X and C,
respectively. We can see that the color sets {B,C,X} and
{C,D,X} must consist of consecutive numbers since these
colors assigned to the edges incident to the vertices in the
dashed circles must be consecutive. Then C = 3. For B and D
are symmetrical, we can get B = 2 and D = 4. By assigning
the possible colors in other edges, the coloring pattern in
Figure 14(a) is obtained.

Theorem 14. A V ×H grid graph (3 ≤ V ≤ H , both V and
H are odd) can be consecutively colored with 6 colors in the
compact wakeup scheduling, and the possible colorings must be
the patterns as shown in Figure 16, and χcw(G) = 6.

Proof. Figures 18(a) and 18(b) show two possible colorings
in the compact wakeup scheduling by determining the colors
for the rest uncolored edges in Figures 16(a) and 16(b), if
both V and H are odd. Particularly, if V = 3, the possible
colorings are shown in Figures 17(a) and 17(b). Since there
are even number of edges with color k (1 ≤ k ≤ 6)
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Figure 17: The coloring patterns in the compact wakeup scheduling
(V = 3 and H is odd).
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Figure 18: The coloring patterns in the compact wakeup scheduling
(both V and H are odd).

in a circle in the subgraph Gk, then the scheduling could
avoid the hidden terminal problem. According to Lemma 11,
χ′(G) = 6.

Since the grid graph can be consecutively colored with 6
colors, 3 and 4 are critical colors. For an inner vertex has two
incident critical inner edges, Figures 19(a) and 19(c) are the
possible coloring patterns.

Case 1. In Figure 19(a), V 21, V 31, and H31 cannot be colored
with 3, but can only be colored with {4, 5, 6}. For V 31 and
H31 cannot be colored with 4, V 21 must be colored with 4.
Similarly, H12 must be colored with 3. Then V 11, V 21, and
H21 must be colored with {4, 5, 6}, and H11, H12, and V 12

must be colored with {1, 2, 3}. For V 12, V 22, H21, and H22

are consecutively colored, V 12 is colored with 2 and H21 is
colored with 5. Then, V 11 is colored with 6 and H11 is colored
with 1, which leads to an inconsecutive coloring, as shown in
Figure 19(b). Hence, Figure 19(a) is not a possible coloring.
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Figure 19: The colorings in the compact wakeup scheduling (both V and H are odd).

Case 2. In Figure 19(c), V 21, V 23, and H31 cannot be colored
with 4, but can only be colored with {1, 2, 3}; V 27, V 37,
and H36 cannot be colored with 3, but can only be {4, 5, 6}.
According to the symmetrical property, we suppose V 27 and
V 37 are colored with 6 and 5, respectively. If V 21 is colored
with 2 and V 31 is colored with 1, we can get Figure 19(d).
By assigning the possible colors in other edges, the coloring
pattern in Figure 16(a) is obtained. If V 21 is colored with 1
and V 31 is colored with 2, we can get the coloring pattern in
Figure 16(b).

Hence, the possible colorings must be the patterns as
shown in Figures 16(a) and 16(b), and χ′(G) = 6.

Theorem 15. In the compact wakeup scheduling of a V ×H
grid graph (3 ≤ V ≤ H), 2V + 2H − 6 ≤ ζcw(G) ≤
(1/6)(13V + 13H − 8).

Proof. Lower bound: we can get a valid consecutive edge
coloring with a valid direction of transmission assignment
in the compact wakeup scheduling using 2V +2H−6 colors.
For example, the number of colors assigned is 22 = 2 × 7 +
2 × 7− 6 in a 7 × 7 grid as shown in Figure 20(a).

Upper bound: for a consecutive edge coloring in the
compact wakeup scheduling of a grid graph G, the difference
in colors of edges incident to a node v cannot exceed
deg(vi)− 1. Suppose that v1, v2, . . . , vm is the vertex sequence
of a path connecting edges with extremal colors, we could

get ζcw(G) ≤ 1 +
∑m

i=1(deg(vi) − 1). We suppose vertices
A and B are on the path connecting edges with minimum
and maximum colors, respectively, as shown in Figure 20(b).
We assume vertex A is on the common point of H(b+1)(a+1)

and V (b+1)(a+1), and vertex B is on the common point of
H(V−m)(H−1−n) and V (V−1−m)(H−n). We can get ζcw(G) ≤
1 + 3(H − 1 − a − n + 1) + 3(V − 1 − b − m) = 3(V +
H − a − b −m − n) − 2 using route 1. We have also known
ζcw(G) ≥ 2V + 2H − 6. 3(V + H − a − b − m − n) − 2
should be no less than 2V + 2H −6. Otherwise, 2V + 2H −6
should also be the upper bound. Then we get V + H + 4 ≥
3(a + b + m + n). Without loss of generality, we assume
a + m ≥ b + n. Then, b + n ≤ (1/6)(V + H + 4). We can
also get ζcw(G) ≤ 1 + 3b + 2(H − a − 1) + 1 + 2(V − m −
1) + 3n = 2(V + H − a − m) + 3b + 3n − 2 using route 2.
Then, ζcw(G) = 2(V + H) + 3(b + n) − 2(a + m) − 2 ≤
2(V + H) + b + n− 2 ≤ (1/6)(13V + 13H − 8).

Thus, ζcw(G) is bounded by 2V+2H−6 and (1/6)(13V+
13H − 8).

According to Theorems 10, 13, and 14, the number of
time slots assigned is optimum. If both V and H are even,
the number of time slots assigned in a period is 4 × 2 = 8
in a V ×H grid graph. If one of V and H is even and the
other is odd, the number of time slots is 5 × 2 = 10. If both
V and H are odd, the number of time slots is 6 × 2 = 12.
Algorithms 4 and 5 describe the interval edge coloring and
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Figure 20: ζcw(G) in the compact wakeup scheduling: (a) lower bound of ζcw(G), (b) upper bound of ζcw(G).

Input: A V ×H grid graph G (3 ≤ V ≤H).
Output: A valid interval edge-coloring with χcw(G) colors.

(1) Decide the parity of V and H (even or odd).
(2) if both V and H are even then
(3) Color G using the pattern in Figure 11.
(4) else if one of V and H is even and one is odd then
(5) Color G using the pattern in Figure 14(b).
(6) else
(7) Color G using the pattern in Figure 18.
(8) end if

Algorithm 4: Interval edge coloring of a grid graph.

compact wakeup scheduling of a grid graph, respectively.
The complexity of the compact wakeup scheduling of a grid
graph is O(n).

5. Performance Evaluation

In this section, we study the performance of the compact
wakeup scheduling of trees and grid graphs, and we also
compare our algorithms with the degree-based heuristic
in [10] and the contiguous link scheduling in [13]. The
performance metrics used in the evaluation are the transient
energy consumption and the waiting period. The total energy
consumption is an important metric in WSNs, but the energy
consumption except the transient energy consumption is
the same among the three schemes under identical traffic
conditions, so we will only focus on the transient energy
consumption. The waiting period is defined as the total time
a node stays in the waiting status from the first neighbor
waking up to the last neighbor waking up as the node waits
for gathering the information from all its neighbors. The
waiting period reflects the extra delay caused by the node if it
stays in the sleep state for the wakeup of neighbors.

We adopt the following parameters in our simulation:
the transient energy to activate a sensor is 17 μJ [12], a time
slot is 0.1 second, a scheduling period T is 10 seconds (=100
time slots), and the network operating time is 1 day. In

the tree construction of n nodes, the number of children
nodes of each sensor is randomly set from 1 to 4. The root
node first determines its children nodes, and then each child
node determines its children nodes, and so on until the
total number of nodes in the tree reaches n. In the tree
construction, we vary n from 20 to 120 in steps of 20, 10
trees are generated, and the average performance over all
these trees is reported. For the grid graph, we use square grid
graphs, where V = H . In the grid graph construction, we
vary V from 2 to 12 in steps of 2.

Figure 21 shows the total transient energy consumption
of the following schemes: degree-based heuristic (degree-
based), contiguous link scheduling (contiguous), and com-
pact wakeup scheduling (compact). In both the tree and
grid topologies, the transient energy consumption increases
as the number of nodes increases. The energy consumption
in the compact wakeup scheduling is the smallest among
the three schemes, for the frequency of state transitions is
minimized in the scheduling. As shown in Figure 21(a), com-
pact wakeup scheduling reduces the energy consumption
significantly by approximately 50% as compared to that in
the degree-based heuristic and about 35% as compared to
that in the contiguous link scheduling.

Figure 22 shows the total waiting period increases as the
number of nodes increases in the degree-based heuristic
and contiguous link scheduling, while the waiting period
is zero in the compact wakeup scheduling. With smaller
waiting periods, it would be faster for nodes to gather the
information from their neighbors, thus reducing network
delay.

We summarize observations from the simulation results
as follows. (1) The waiting period of trees and grid graphs
with valid compact wakeup scheduling is zero. (2) Compact
wakeup scheduling can significantly reduce network delay
and energy consumption.

6. Conclusion and Future Work

In this paper, we address a new interference-free TDMA
wakeup scheduling problem in WSNs, called compact
wakeup scheduling. In the scheduling, a node needs to
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Input: A V ×H grid graph G (3 ≤ V ≤H).
Output: A valid compact wakeup scheduling.

(1) Use Algorithm 4 to obtain a valid interval edge-coloring
with χcw(G) colors for G.

(2) for k = 1 to χcw(G) do
(3) Map color k to two consecutive time slots {2k − 1, 2k}.
(4) Use Algorithm 1 to determine a valid direction of

transmission assignment for time slot 2k − 1.
(5) Reverse the direction of transmission along each edge

to obtain the other assignment for time slot 2k.
(6) end for

Algorithm 5: Compact wakeup scheduling of a grid graph.
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Figure 21: Transient energy consumption.
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wake up only once to communicate bidirectionally with all
its neighbors, thus reducing the time overhead and energy
cost in the state transitions. We propose polynomial-time
algorithms to achieve the optimum number of time slots
assigned in a period for trees and grid graphs. In grid
graphs, we point out all the possible coloring patterns and
give the lower bound as well as the upper bound of the
compact wakeup scheduling. In the process of time slot
assignments, both the hidden terminal and exposed terminal
problems can be avoided. The simulation results corroborate
the theoretical analysis and show the efficiency of compact
wakeup scheduling.

In our future work, we will consider the heterogeneous
network model and try to obtain efficient algorithms for
other kinds of network topologies with valid compact
wakeup schedulings. Another challenging topic is to find
the scheduling with the minimum waiting period if a valid
compact wakeup scheduling does not exist for a given
topology.
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