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Free vibrations of two side-by-side cylinders with fixed support (no rotation and
displacement) at both ends placed in a cross-flow were experimentally investigated.
Two fibre-optic Bragg grating sensors were used to measure the dynamic strain, while
a hot wire and flow visualization were employed to examine the flow field around
the cylinders. Three T/d ratios, 3.00, 1.70 and 1.13, were investigated, where T is
the centre-to-centre cylinder spacing and d is the diameter; they give rise to three
different flow regimes. The investigation throws new light on the shed vortices and
their evolution. A new interpretation is proposed for the two different dominant
frequencies, which are associated with the narrow and the wide wake when the gap
between the cylinders is between 1.5 and 2.0 as reported in the literature. The structural
vibration behaviour is closely linked to the flow characteristics. At T/d = 3.00, the
cross-flow root-mean-square strain distribution shows a very prominent peak at
the reduced velocity Ur ≈ 26 when the vortex shedding frequency fs, coincides
with the third-mode natural frequency of the combined fluid–cylinder system. When
T/d < 3.00, this peak is not evident and the vibration is suppressed because of the
weakening strength of the vortices. The characteristics of the system modal damping
ratios, including both structural and fluid damping, and natural frequencies are also
investigated. It is found that both parameters depend on T/d. Furthermore, they
vary slowly with Ur , except near resonance where a sharp variation occurs. The
sharp variation in the natural frequencies of the combined system is dictated by the
vortex shedding frequency, in contrast with the lock-in phenomenon, where the forced
vibration of a structure modifies the vortex shedding frequency. This behaviour of
the system natural frequencies persists even in the case of the single cylinder and
does not seem to depend on the interference between cylinders. A linear analysis of
an isolated cylinder in a cross-flow has been carried out. The linear model prediction
is qualitatively consistent with the experimental observation of the system damping
ratios and natural frequencies, thus providing valuable insight into the physics of
fluid–structure interactions.

1. Introduction
When a two-dimensional bluff body/cylinder is subject to a cross-flow, vortex

shedding from the structure creates fluid excitation forces which, in turn, cause the
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structure to vibrate. The resultant structural motions influence the flow field, giving
rise to fluid–structure coupling and modifying the frequency and magnitude of the
induced forces. The coupling is in general a highly nonlinear function of the structural
motion and flow velocity and is not well understood. Since flow-induced vibrations
have significant impact on the fatigue life of structures and could have disastrous
consequences, interest in understanding the associated physics and predicting the
structural motions is rapidly growing (Blevins 1994; Ziada & Staubli 2000).

Flow-induced vibration is governed by a number of major parameters. Among
these are the reduced velocity, Ur , the damping ratio and the mass ratio (Chen
1987). Each of these parameters plays a different role in the dynamic response of the
cylinder. The damping ratio is the ratio of the energy dissipated by the system to the
total system energy. The mass ratio, which is the ratio of the cylinder mass to the
displaced fluid mass, provides a measure of the relative importance of the different
fluid force components. The reduced velocity Ur , defined by U∞/f(1)

0 d, where U∞ is
the free-stream velocity, d is the cylinder diameter and f

(1)
0 is the first-mode natural

frequency of a stationary cylinder, is linked to the ratio of the vortex shedding
frequency fs to the structural natural frequency. Here, the term structural natural
frequency is used loosely to mean the structural natural frequency of any one of the
vibration modes, but is usually taken to imply the first mode. The natural frequency is
the vibration frequency with which a structure or system, after an initial disturbance,
oscillates without external forces. In a vortex-induced free vibration problem, fs is
responsible for the creation of the unsteady forces. Therefore, the interplay between
the two frequencies determines the resultant behaviour of the cylinder dynamics and
the wake structure. This is especially true when resonance (or synchronization) occurs,
which can be loosely defined as the situation where fs is approximately equal to the
structural natural frequency. Strictly speaking, resonance occurs when the natural
frequency of the combined fluid–structure system is equal to fs. However, the natural
frequency of the system and, to a certain extent, fs are not known a priori. Therefore,
the fluid–structure interaction problem is very complicated and its behaviour at or
near resonance is of great interest to engineers.

The free vibration problem is further complicated by the presence of an identical
neighbouring cylinder, such as in the case of two side-by-side cylinders. Here, besides
the parameters mentioned above, the problem is also governed by the ratio of the
centre-to-centre cylinder spacing T to diameter d. Varying this ratio could lead to the
formation of a single or multiple wakes (Landweber 1942; Spivac 1946; Ishigai et al.
1972; Bearman & Wadcock 1973; Zdravkovich 1985; Zhou et al. 2000a) and this, in
turn, could affect the dynamic response and the resonance behaviour of the cylinders.
Furthermore, the nonlinear interplay between the simultaneous vibrations of the two
cylinders and the fluid as a result of flow-induced forces is a far more complicated
process than the fluid–cylinder interaction in the single cylinder case.

Interference between circular cylinders placed side-by-side in a cross-flow has
been investigated extensively (Zdravkovich 1977) because of its inherent importance
and practical significance in many branches of engineering. The interference drag
measurements of two side-by-side cylinders facing a uniform flow can be traced back
to Biermann & Herrnstein (1933). Zdravkovich & Pridden (1977) measured the lift
and drag coefficients and noted that the sum of the low and high drag generated by
the two cylinders was always less than twice the drag of a single cylinder. Using a
photographic method, Landweber (1942) observed a single vortex street for T/d 6 1.5
and two distinct vortex streets for T/d > 2. Spivac (1946) measured two different
frequencies in the two-cylinder wake for T/d < 2 but a single frequency for T/d > 2.
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In the latter case, the frequency was further found to be the same as that measured in
the single cylinder wake. A Schlieren optical method was used by Ishigai et al. (1972)
to visualize the flow behind two side-by-side cylinders. They observed a remarkably
symmetric vortex formation and shedding for T/d = 2.5 and 3.0, but a biased gap
flow for 1.5 < T/d < 2.0. The biased flow was bi-stable and intermittently changed
over from one side to another, forming two asymmetric vortex streets of different
frequencies. Bearman & Wadcock (1973) have made a similar observation in their
experiments. Based on flow visualization at a low Re (6 200), Williamson (1985)
suggested that the two different frequencies, observed in the asymmetric flow regime
(1.5 6 T/d 6 2.0), were due to the existence of harmonic vortex-shedding modes. On
the other hand, the measurements of Kim & Durbin (1988) at Re = 3300 did not
support this conjecture. Therefore, the mechanism for the two distinct frequencies in
the asymmetric flow regime has yet to be properly understood.

Previous studies were mostly concerned with the behaviour of the wake flow and
the flow-induced vibrations on rigid cylinders. Even in the free vibration case, the
cylinders, flexibly mounted at both ends, were relatively rigid. Here, a rigid cylinder
is defined as one having infinite structural stiffness. The dynamic characteristics of
an elastic cylinder, defined as one with finite structural stiffness, fix-supported at
both ends (no deflection), can be quite different from a rigid one. For example,
there is only one natural frequency for a rigid cylinder system but more than one
associated with an elastic cylinder system (Zhou et al. 1999; So, Zhou & Liu 2000).
There have been relatively few studies on two side-by-side elastic cylinders in a
cross-flow. Consequently, many issues remain to be resolved. For example, how is
the free vibration of an elastic cylinder in a cross-flow affected by the presence
of a neighbouring cylinder? In a forced vibration situation, the imposed vibration
modifies the vortex shedding frequency. However, in the free vibration case, the
vortex shedding generates the excitation forces. Could the vortex shedding modify the
natural frequencies of the fluid–cylinder system? Are these frequencies dependent on
T/d and Ur?

Damping is another important issue. It models the energy dissipation of the system
during vibration and plays an important role in the stability of a structure and its
vibration amplitude. Knowledge of damping is essential if the dynamic behaviour of
the structures in a cross-flow is to be understood thoroughly. Damping arises from
the fluid surrounding the structure as well as from the structure itself. While structural
damping is related to the properties of the structure alone, fluid damping originates
from viscous dissipation and fluid drag. In other words, fluid damping is the result of
viscous shearing of the fluid at the surface of the structure and the behaviour of flow
separation. Therefore, it is motion dependent and is much more difficult to estimate.
Using an auto-regressive moving average (ARMA) analysis technique, Zhou, So &
Mignolet (2000b) and So et al. (2001) deduced the effective and fluid damping ratios
from the calculated lift and displacement signals of a single cylinder in a cross-flow
over a range of Re. In these studies, the cylinder motion was modelled by a two-
degree-of-freedom system. Later, Wang, So & Liu (2000) used the same technique
to analyse similar signals derived by employing the Euler–Bernoulli beam theory to
model the free vibration of a single cylinder. All these studies yield reasonable results
compared to measured fluid damping ratios. In particular, Wang et al. (2000) were
able to deduce the fluid damping ratios for the first and third mode of vibration.
However, the issue of how interference between cylinders affects the damping ratios
has yet to be addressed. It is not clear whether damping behaviour is, if at all, related
to the system natural frequencies.
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Figure 1. Schematic diagram of the test wind tunnel.

The present work aims to investigate experimentally the free vibration of two side-
by-side cylinders placed in a cross-flow and the associated nonlinear fluid–cylinder
interactions. The first objective is to improve the understanding of the flow structure
around the cylinders, including the mean pressure distribution, the induced lift and
drag, and the vortex formation and its evolution at different T/d ratios. In particular,
the two distinct frequencies in the asymmetric flow regime are examined based
on flow visualization and hot-wire signals. The second objective is to study fluid–
structure interactions. The free vibration of the two cylinders due to flow excitation
is characterized in detail. The dependence on T/d and Ur of the natural frequency
of the combined fluid–structure system is investigated thoroughly, in particular at
and near resonance. The effective and fluid damping ratios are evaluated from the
measured strain signals using an ARMA technique (Mignolet & Red-Horse 1994).
The observations from measurements are further discussed in conjunction with a
linear analysis of the fluid–cylinder system in order to gain a better understanding of
the physics associated with fluid–structure interactions.

2. Experimental details
2.1. Experimental setup

Experiments were carried out in a suction-type wind tunnel with a 0.35 m × 0.35 m
square cross-section that is 0.5 m long (figure 1). The wind speed of the working
section can be adjusted from 1.5 to 28 m s−1. The streamwise velocity is uniform to
within 0.05% and the free-stream turbulence intensity is 0.2%. In order to minimize
tunnel vibrations, the working section is isolated from the motor and fan through
vibration absorbers. More details of the tunnel are given in Zhou et al. (1999) and
So et al. (2000).

Two identical acrylic tubes with a diameter of d ≈ 0.006 m were mounted vertically
in a side-by-side arrangement and placed symmetrically to the mid-plane of the
working section at 0.20 m downstream of the exit plane of the tunnel contraction
(figures 1 and 2). The coordinate system is attached to Cylinder 1 with y equal to
zero at the centre of this cylinder (figure 2), and the other is labelled Cylinder 2.
The two cylinders were built into the walls of the working section, with fix-supported
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f
(1)
0 (Hz)

T/d (cross-flow direction) T/d (inline direction)

Cylinder EI(N m2) M∗ ζ
(1)
0 1.13 1.70 3.00 1.13 1.70 3.00

1 0.224 565 0.026 104.00 104.00 104.00 98.60 98.60 98.60
2 0.224 565 0.026 94.00 95.00 101.00 95.83 101.50 101.53

Table 1. Structural characteristic properties of the cylinders.
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Figure 2. Experimental arrangement.

boundary conditions at both ends (no rotation and displacement). The structural
characteristic properties of the cylinders are summarized in table 1. Here, E is the
Young’s modulus of the cylinder, I is the area moment of inertia, ζ(1)

0 is the first-mode
structural damping ratio and M∗ is the mass ratio defined by M/ρd2, where ρ is

the fluid density and M is the cylinder mass, and f
(1)
0 is the first-mode structural

natural frequency. The blockage due to the installation of the cylinders was about
3.4%. The Reynolds number, Re = U∞d/ν, where ν is the fluid kinematic viscosity,
varied from 800 to 10 000. This gives rise to a Ur range of 3–43. In the present Re
range, the blockage effect on the mean drag is insignificant. Three transverse spacing
ratios were investigated, T/d = 1.13, 1.70 and 3.00. Great care was taken to maintain
these ratios along the cylinder span. Furthermore, they were chosen because the flow
regimes thus resulting were representative of the different proximity effects for two
side-by-side cylinders (Zdravkovich 1985).
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2.2. Mean drag and lift measurements

The experimental arrangement is shown schematically in figures 1 and 2. Each of the
cylinders was instrumented with a single wall-pressure tap at the mid-span position. A
pressure transducer was connected to the tab to measure the wall static pressure. The
cylinder was rotated in intervals of 5◦ to give the angular distribution of wall static
pressure around the cylinder surface and the mean lift and drag on the cylinder were
evaluated by integrating the wall static pressure around the cylinder. Measurements
of the mean lift and drag were carried out on a single cylinder and on the two
side-by-side cylinders at the same Re, thus providing a baseline for the evaluation of
the interference effects.

2.3. Fluctuating velocity measurements

The streamwise fluctuating velocity u was measured by positioning a single hot wire
at x/d = 2 and y/d = 1.5, where x is the streamwise distance measured from the
centre of Cylinder 1 (figure 2). The hot wire was operated at an overheat ratio of 1.8
with a constant temperature anemometer (DISA Type 55M10).

2.4. Dynamic strain measurements

Zhou et al. (1999) and Jin et al. (2000) used a fibre-optic Bragg grating (FBG) sensor,
built in-house, to measure the dynamic strain due to lift on a cylinder in a cross-flow.
The strain thus measured was compared with the transverse displacements obtained
from a laser vibrometer. They found that the spectra deduced from the two signals
were in excellent agreement with each other in terms of their salient features, such as
the vortex shedding frequency and the natural frequency of the fluid–cylinder system,
and the two signals showed a complete coherence at these frequencies. They further
found that, for small displacements, the root-mean-square (r.m.s.) values of the strain
and displacement signals were linearly correlated. A linear correlation is also expected
between strain and displacement due to the fluctuating drag and in the presence of
another cylinder.

Two FBG sensors were used to simultaneously measure the dynamic strains of the
two cylinders along the x- or y-direction. For measurement along the y-direction, an
optical silica fibre of diameter 125 µm built with an FBG sensor was buried in a groove
along the span of each cylinder at 90◦ from the leading stagnation line and flushed
with the surface using nail polish. The FBG sensor was located at mid-span of the
cylinder. Since the sensor grating has a finite length of about 10 mm, the measurement
represents the average strain over this length. The strain thus measured is designated
as εy . In principle, εy is independent of the streamwise vibration of the structure. If
the cylinder is rotated clockwise (or anti-clockwise) by 90◦, the FBG sensor will be
located at the rear stagnation line (or the leading stagnation line). At this location, it
measures the strain εx, due to the drag, which should not depend on the cross-flow
vibration of the cylinder. A major source of error comes from the nonlinearity effect
when calibrating the relation between the output voltage and strain (Zhou et al. 1999;
Jin et al. 2000). The experimental uncertainty in strain measurements is estimated to
be ±8%.

In view of the fact that mounting and remounting a cylinder might change the
natural frequency of the structure, the mounting of Cylinder 1 was not changed
during the entire experiment where the dynamic strain for either the cross-flow or
inline direction was measured. Therefore, f(1)

0 of Cylinder 1 was constant. Its value
is 104 Hz for the cross-flow direction and 98.60 Hz for the inline direction (table 1).
This arrangement is important if the interference effect on the natural frequencies
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of the fluid–cylinder system is to be investigated with confidence. The adjustment of
T/d was achieved by remounting Cylinder 2 only. Great care was taken to minimize
the variation of f(1)

0 associated with remounting. The f(1)
0 values of Cylinder 2 in both

cross-flow and inline directions are given in table 1. Measurements of the bending
displacement Y and u in the wake of a single cylinder carried out by Zhou et al.
(1999) indicated a negligible effect on flow separation around the cylinder and on Y
due to the attachment of the optical fibre.

The signals u, εy1 and εy2 or u, εx1 and εx2, where the subscripts 1 and 2 represent
the cylinder number, were simultaneously measured. They were offset, amplified and
digitized using a 12 bit A/D board and a personal computer at a sampling frequency
of 6.0 kHz per channel. The record length was about 20 s. This record length was
sufficiently long for the r.m.s. values εx,rms of εx and εy,rms of εy to reach their stationary
state, with a variation smaller than 1.0%.

2.5. Effect of tunnel vibrations

It is important to minimize tunnel vibrations in the present investigation. As pointed
out earlier, tunnel vibrations were mainly derived from the fan and motor. Great
care has been taken to isolate the working section from the vibration sources through
the use of vibration absorber (figure 1). This vibration isolation is not a sufficient
remedy for the laser vibrometer measurement of displacement because the motion
of the working section, which can be transmitted through the floor, also affects the
measurements (Zhou et al. 1999). The FBG sensor, on the other hand, measures the
cylinder deformation. Therefore, it is insensitive to any translational motion of the
cylinder, which is associated with the working section vibration. Tunnel vibrations only
indirectly affect the FBG sensor measurements through the inertia force. However, this
is a secondary effect and is unlikely to have a significant impact on the measurements
as demonstrated below.

The effect of tunnel vibrations could be estimated by calculating the variation in
energy corresponding to the first-mode natural frequency, with and without tunnel
vibrations. The power spectra Eεy of εy from Cylinder 1 for T/d = 1.13, 1.70 and 3.00
at Ur = 11.0 is shown in figure 3. Here, Eεy is normalized so that

∫ ∞
0
Eεy(f) df = 1.

In figure 3(a), Eεy calculated from the original strain signal is shown. The half-power-
bandwidth (HPB) integral at the first-mode natural frequency of the fluid–structure
system is 40.77%, 4.17% and 10.07% for T/d = 1.13, 1.70 and 3.00, respectively.
The natural frequency of the working section was measured in the range of 20–
30 Hz (Zhou et al. 1999). Therefore, the measured εy was high-pass filtered at 60 Hz
to eliminate the noise associated with tunnel vibrations. The Eεy calculated from
the filtered signal is plotted in figure 3(b) and the HPB integral at the first-mode
natural frequency is 41.68%, 5.06% and 11.19% for T/d = 1.13, 1.70 and 3.00,
respectively. The maximum difference between the Eεy calculated with and without
filtering is about 1.1%, indicating a negligible tunnel vibration effect on the FBG
sensor measurements.

2.6. Flow visualization

Flow visualization was carried out in a water tunnel with a 0.15 m × 0.15 m square
working section 0.5 m long. The water tunnel is a recirculating single-reservoir system.
From the reservoir, a centrifugal pump delivers water to the tunnel contraction. A
honeycomb is used to remove any large-scale irregularities prior to the contraction.
The flow speed is controlled by a regulator valve up to a maximum velocity of about
0.32 m s−1 in the working section. The working section is made up of four 20 mm thick
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Figure 3. Power spectra Eεy of εy: (a) calculated from the measured signal; (b) from the signal
filtered with a high pass of 60 Hz. Cylinder 1; Ur = 11.0.

Perspex panels. Two side-by-side acrylic circular tubes with an identical diameter of
10 mm were horizontally mounted 0.20 m downstream of the exit plane of the tunnel
contraction and placed symmetrically to the mid-plane of the working section. They
spanned the full width of the tunnel. The resulting blockage was 13.3%. For the
purpose of comparison with the FBG sensor measurements, the same transverse
spacing ratios as those used in the wind tunnel were investigated, i.e. T/d = 1.13,
1.70 and 3.00. For each cylinder, dye (Rhodamine 6G 99% which has a faint red
colour and will become metallic green when excited by laser) was introduced through
injection pinholes located at the mid-span of the cylinder at 90◦, clockwise and anti-
clockwise, respectively, from the forward stagnation point. A thin laser sheet, which
was generated by laser beam sweeping, provided illumination vertically at the mid-
plane of the working section. A Spectra-Physics Stabilite 2017 Argon Ion laser with
a maximum power output of 4 W was used to generate the laser beam and a digital
video camera recorder (Sony DCR-PC100E), set perpendicular to the laser sheet, was
used to record the dye-marked vortex streets. Investigations of flow visualization were
carried out in the Re range of 120 to 1650 over 0 6 x/d 6 10. At large Re and x/d,
the dye diffused too rapidly to be an effective marker of vortices.

3. Fluid dynamics around cylinders
3.1. Mean pressure, lift and drag

The polar plots of pressure coefficient, Cp = 2∆p/(ρU2∞), around the cylinder for a
single as well as two side-by-side arrangements at Re = 6000 are shown in figure 4.
Here, ∆p is the mean pressure difference between the cylinder wall and a reference
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Figure 4. Polar plot of the circumferential distribution of pressure coefficient. (a) Single cylinder;
(b) two cylinders at three different T/d values. Re = 6000.

point upstream. The resultant force R is calculated from
√
D2 + L2 and its direction

is given by the angle θR = tan−1(L/D), where L and D are the mean lift and drag,
respectively. Mean lift and drag of the two cylinders are calculated by integrating
the pressure around the cylinders. The respective force coefficients are defined by
CL = 2L/(ρU2∞d) and CD = 2D/(ρU2∞d). Their values thus deduced for Re = 3500,
6000 and 10 400 are shown in figures 5(a) and 5(b).

The pressure distributions of the two cylinders at T/d = 3.0 exhibit similarity to
that for a single cylinder. But the resultant force on each cylinder deviates from the
flow direction, probably as a result of flow retardation upstream of the gap between
the cylinders, which could give rise to a higher pressure between the cylinders. The θR
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Figure 5. Dependence of (a) lift and (b) drag coefficients on the spacing ratio T/d.

is 3◦ for Cylinder 1 and −4◦ for Cylinder 2. The difference in magnitude is probably
caused by experimental uncertainty, which is estimated to be about 2.5◦. Therefore,
the pressure distribution around one cylinder is essentially a mirror image of the
other. For T/d < 3.0, the pressure distributions around the two cylinders are no
longer mirror images of each other, as evidenced by the difference in θR and the base
pressure coefficient Cpb (θ = 180◦) between the cylinders. However, in each case, R is
directed approximately through the forward stagnation point, where the pressure is
the maximum, and the cylinder centre. The observation is essentially the same as that
reported in Bearman & Wadcock (1973).
CL is positive for Cylinder 1 and negative for Cylinder 2 (figure 5a), showing a

repulsive force between the cylinders. Since flow upstream of the gap between the
cylinders is further retarded as T/d reduces, the pressure rises between θ ≈ 0◦ and
90◦ for Cylinder 1 and between θ ≈ 270◦ and 360◦ for Cylinder 2 (figure 4b). As a
result, the repulsive force between the cylinders increases with decreasing T/d.

At T/d = 3.0, CD is approximately the same for the two cylinders (figure 5b),
ranging from 1.08 to 1.27 when Re varies from 3500 to 10 400, comparable to that,
0.93, of a single cylinder. At T/d = 1.70, the drag coefficients of the two cylinders
become different. This can be inferred from the base pressure coefficient Cpb at
θ = 180◦. The value is about −1.01 for Cylinder 1 (figure 4b). The lower value of
Cpb gives rise to a higher CD . On the other hand, Cpb of Cylinder 2 is about −0.68
(figure 4b), resulting in a lower CD . It is well known that, for this T/d, narrow and
wide wakes are formed behind two identical cylinders, respectively, and the gap flow
deflects towards the narrow wake (Zdravkovich 1987). Bearman & Wadcock (1973)
and Quadflieg (1977) observed that the narrow wake has a lower base pressure and a
higher CD , whereas the wide wake has a higher base pressure and a lower CD . Thus,
it may be inferred that Cylinders 1 and 2 are mostly associated with a narrow and
a wide wake, respectively. At T/d = 1.13, Cpb shows an increase for both cylinders.
However, Cp between 0◦ and 90◦ for Cylinder 1 and 270◦ and 360◦ for Cylinder 2
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also increases significantly, due to more severe flow retardation upstream of the gap
between the cylinders. Consequently, CD is higher for both cylinders. There is still
a difference in the measured CD between the two cylinders, though less pronounced
than that obtained at T/d = 1.70. At such a small T/d, a single vortex street is
expected behind the cylinders (Landweber 1942). Photographs from laser-illuminated
flow visualization shown in § 3.2 indicate a biased bleeding between the cylinders. The
biased bleeding probably accounts for the difference in the Cp distribution between
the cylinders (figure 4b), and hence unequal CD for the two cylinders.

The mean of the low and high CD values at T/d = 3.00 is 1.2, appreciably higher
than that (0.93) of a single cylinder at Re = 6000. The difference cannot be attributed
to the experimental uncertainty, which is estimated to be 2%. Further investigation
is needed to understand this observation. For T/d < 3.00, this mean is generally less
than that determined at T/d = 3.00, consistent with that reported in Zdravkovich
& Pridden (1977). In the near wake of an isolated cylinder, about 50% of the
shed circulation was cancelled as fluid bearing vorticity was drawn across the wake
centreline into the growing vortex with opposite vorticity (Gerrard 1966; Cantwell &
Coles 1983). One would expect that the interference between the narrow and wide
wakes might cause additional cancellation of vorticity as well as absorb some flow
energy, thus resulting in reduced vortex strength. This, in turn, causes a higher base
pressure as exhibited in figure 4, hence a reduced total drag.

3.2. Flow patterns

The above interpretation is further verified by the observations from the flow visu-
alization experiment. In this section, flow visualization results for the three cases,
T/d = 1.13, 1.70 and 3.00, are examined with the aim to gain an understanding of
the flow physics. The characteristics of the spectral characteristics are discussed later.
T/d = 3.0: Figure 6(a) shows typical photos in the laminar (Re = 150) and

turbulent (Re = 450) flow regime, respectively, both exhibiting two anti-phase vortex
streets. The pattern is consistent with that reported in the literature. Flow visualization
conducted at Re = 500 by Bearman & Wadcock (1973) showed that two pairs of
vortices, when shed from the two cylinders at T/d = 3.00, were in an anti-phase mode.
In their experiments, Ishigai et al. (1972) observed a remarkably symmetric vortex
formation and shedding for T/d = 2.5 and 3.0, but a biased gap flow when T/d was
in the range, 1.25 < T/d < 2.0. The present data suggest that the phenomenon is
independent of Re in the range investigated.

The mechanism behind the symmetric vortex shedding behaviour is not clear.
Weaver & Abd-Rabbo (1984) and Granger, Campistron & Lebret (1993) observed a
symmetric vortex shedding resonance in a square array of tubes in a cross-flow. Weaver
& Abd-Rabbo proposed that a symmetric-mode jet instability mechanism might have
caused or at least triggered this phenomenon. Noting that during resonance the
vibration amplitude was predominant in the streamwise direction, Granger et al.
(1993) suggested that the inline cylinder motion caused a symmetric oscillation of
separation points at the surface of the moving cylinder and could be responsible
for the symmetric vortex shedding. This cannot explain the present symmetric vortex
shedding at T/d = 3.00. It will be seen in the next section that the cross-flow vibration
of the cylinders overwhelms the streamwise vibration when resonance occurs. The
inline cylinder motion is unlikely to be, at least not solely, responsible for the
present symmetric vortex shedding. When flow separation occurs, the flow outside the
boundary layer is retarded (Prandtl 1935), implying a higher pressure. The pressure
upstream of the gap between the cylinders is probably even higher than that close to
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Re =150 Re = 450
(a)

(b)

(c)

Figure 6. Laser-illuminated flow visualization in the water tunnel behind two side-by-side
cylinders. Flow is from left to right. (a) T/d = 300, (b) 1.70, (c) 1.13.

the free stream, as suggested in figure 4, thus forming a pressure differential on the
two sides of each cylinder in the cross-flow direction. This pressure differential could
be symmetrical with respect to the mid-point of the gap and could tend to suppress
the anti-symmetrical vortex shedding and induce the symmetric behaviour.
T/d = 1.7: Typical photographs of the near-wake flow (figure 6b) from flow

visualization in the laminar and turbulent flow regimes indicate a deflected gap flow
between the two cylinders, thus forming one narrow and one wide wake. The results
are consistent with those for T/d = 1.5 ∼ 2.0 previously reported (Spivack 1946;
Ishigai et al. 1972; Bearman & Wadcock 1973; Kamemoto 1976; Kiya et al. 1980;
Kim & Durbin 1988; Sumner et al. 1999).
T/d = 1.13: The gap vortices were not observed and most vortices were shed alter-

nately from the free-stream side of the two cylinders, as evidenced in the photographs
(figure 6c). The photograph at Re = 450 further displays a gap flow or bleeding
deflected towards the upper cylinder. The deflected bleeding is likely to cause a differ-
ence in pb between cylinders, and thus be responsible for the different CD (figure 5b).
It is worth mentioning that flow visualization data did show the symmetric vortex
shedding from time to time when the gap flow was not deflected.
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3.3. Spectral characteristics

T/d = 3.0: The spectra Eεy of εy from Cylinder 1 and 2 at Ur ≈ 19 for different T/d
values are presented in figure 7 along with the spectrum Eu of the simultaneously
measured streamwise velocity u. No resonance occurs at this reduced velocity. Here,
the focus is on flow-related spectral characteristics, while vibration-related behaviour,
such as the prominent peaks in the εy-spectrum, is discussed in § 4. At T/d = 3.00,
the u-spectrum (figure 7a) yields one major peak at f∗s = fsd/U∞ = 0.20 which is
the same as the normalized vortex shedding frequency (or Strouhal number) of a
single cylinder. This peak is also evident in the strain spectra and it occurs at the
same frequency for the two strain spectra presented, thus indicating that the shedding
frequency for the two cylinders is identical. The spectral phase shift Φ12 at fs between
the εy signals is generally near +π or −π (figure 8a), implying that the two cylinders
move in opposite directions. These results conform to the observation from flow
visualization that the vortices are predominantly shed in symmetric pairs or in an
anti-phase mode for the two cylinders.
T/d = 1.7: The u-spectrum exhibits a broad peak, ranging from 0.08 to 0.20

and centred at f∗s = 0.105 (figure 7b). This result seems to indicate a frequency
range of vortex shedding. It has been reported previously that the narrow and wide
wakes observed in flow visualization were associated with the high and low vortex
frequencies, respectively (Spivack 1946; Ishigai et al. 1972; Bearman & Wadcock
1973; Kamemoto 1976; Kiya et al. 1980; Kim & Durbin 1988; Sumner et al. 1999).
The ratio of the two frequencies was close to but less than 3 (Kim & Durbin 1988).
This is also observed in the present case. The u-spectra for different Re are shown in
figure 9. These spectra show a peak at f∗ ≈ 0.1 or 0.31, or peaks at both frequencies.
The physics behind the appearance of two different frequencies is not clear; some
researchers (Sumner et al. 1999; Kim & Durbin 1988) suggested two vortex shedding
processes or frequencies. Based on flow visualization at a low Re (6 200), Williamson
(1985) proposed that the two frequencies resulted from the existence of harmonic
vortex-shedding modes. The present flow visualization in the laminar and turbulent
flow regimes suggests another interpretation.

In order to understand the two dominant frequencies observed in the velocity
spectra, the flow visualization data were examined in detail. It was noted that vortices
were generally shed alternately from both sides of each cylinder, though the gap
vortices appeared to be weaker than the outer vortices, which were shed on the
free-stream side. Playing back the tape and counting consecutive vortices (about 15
pairs) at x/d ≈ 2 for a certain period, it was noted that the vortices were formed
at about the same frequency from the two cylinders. For example, at Re = 450, f∗s
was about 0.11 for the lower cylinder and 0.126 for the upper. Similar results were
obtained for other Re. This raises the question of why the hot wire measured two
frequencies and the ratio of the two frequencies was about 3. Sequential photographs
at Re = 450 are shown in figure 10. The two rows of vortices in the narrow wake
appear squeezed by the wide wake so that their lateral spacing is very small. Initially
(figure 10a–c), the longitudinal spacing between two vortices in the narrow wake, as
marked by arrows, is large. However, figures 10(c) and 10(d) show a reduced spacing
between the vortices, suggesting that the convection velocity of the outer vortex was
smaller than that of the gap vortex, which was possibly carried by the gap flow jet
with a higher mean velocity (Sumner et al. 1999). As a result, the two opposite-sign
vortices were engaged in a pairing process (figure 10d–f). On the other hand, the gap
vortex shed from the lower cylinder, also marked by an arrow, appears pushed into
close contact with the pairing vortices by the widening wake. Note that the pairing
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Figure 7. Power spectra fEεy (top: Cylinder 1; middle: Cylinder 2) of the strain εy , and fEu
(bottom) of the streamwise velocity u at the off-resonance condition (Ur ≈ 19, Re = 4900). The hot
wire was located at x/d = 2 and y/d = 1.5. (a) T/d = 3.00, (b) 1.70, (c) 1.13.
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measured from the two cylinders. (a) T/d = 3.00, (b) 1.70, (c) 1.13.

vortices rotated in opposite directions, acting to ‘suck’ in the approaching gap vortex
(figure 10d–f). Because of the small lateral spacing between the three vortices, the
hot wire could measure a frequency triple that in the wide wake.

The peak in the u-spectrum for T/d = 1.70 is considerably less pronounced than
that at T/d = 3.0. The vortex shedding component is substantially weakened, thus
corroborating the earlier suggestion that the vortex strength is reduced at T/d = 1.70.
This reduction is partly attributable to the interference between cylinders, which
could be responsible for a decrease in the drag coefficient (figure 5b). However, the
εy-spectra, quite similar for the two cylinders, fail to show a strong presence of the
vortex excitation at either f∗s or 3f∗s . The spectral phase shift Φ12 between the εy
signals is near zero at f∗s = 0.105 (figure 8b) but +π or −π at 3f∗s (not shown).
Therefore, it seems that vortices shed from the two cylinders tend to be in-phase at
f∗s = 0.105 for T/d < 2.0.
T/d = 1.13: When T/d reduces to 1.13, the u-spectrum (figure 7c) indicates that

the vortex shedding frequency is halved, occurring at f∗s ≈ 0.09. For such a small
transverse spacing, the two cylinders tend to act like a single body and the effective
Strouhal number should be fs(2.13d)/U∞ ≈ 0.2, or fsd/U∞ ≈ 0.09. The phase shift
Φ12 at f∗s (figure 8c) is generally close to zero, indicating that the two cylinders
are vibrating in phase in the cross-flow direction. It can be inferred that most of
the vortices were shed alternately from the free-stream side of the two cylinders,
in conformity to the observation from flow visualization (figure 6c). Note that at
Ur = 11, Φ12 drifts away from zero, displaying a valley. Since f∗s ≈ 0.09 (figure 7c),
then the first-mode resonance where f(1)

0 ≈ fs occurs at Ur ≈ 1/f∗s ≈ 11. The natural
frequencies of the two cylinders are slightly different (table 1). As a result, while the
vibration of one cylinder synchronizes with vortex shedding, the other does not. This
implies that the two cylinders could respond very differently to the vortex excitation
force, thus leading to a phase shift between their vibrations (figure 8c).
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4. Fluid–structure interactions
4.1. Spectral behaviour and root-mean-square strain

The spectrum Eεy (figure 7) of Cylinder 1 exhibits one peak at f∗ ≈ 0.049, irrespective
of the transverse spacing. The peak can be identified with the first-mode natural
frequency f(1)∗

y of the combined fluid–cylinder system for a single cylinder placed in
a cross-flow, as verified by the numerical calculation of So et al. (2001). Another
peak occurs at f∗ ≈ 0.264. The third-mode natural frequency can be estimated from
f(3)∗
y = (121/22.4) f(1)∗

y = 0.265 (Chen 1987). Therefore, this peak corresponds to the
third-mode natural frequency f(3)∗

y of the combined fluid–cylinder system. Similarly,
the peak at f∗ = 0.135 is identified with the second-mode natural frequency of the
system. The εy-spectrum from Cylinder 2 closely resembles that from Cylinder 1.

The dependence of εy,rms and εx,rms on Ur from the two cylinders is shown in
figures 11 and 12, respectively. The r.m.s. values of the measured strain from the two
cylinders collapse quite well and generally increase with Ur . At T/d = 3.00, εy,rms
displays three peaks at Ur ≈ 4.2, 12.0 and 26.0, respectively, while εx,rms shows only
one tiny peak at Ur ≈ 26.0. Note that when Ur > 33, εx,rms increases faster and
becomes larger than εy,rms.

The peaks in εy,rms at Ur ≈ 4.2, 12.0 and 26.0 (figure 11a) can be identified from
the spectral analysis with resonance occurring when the vortex shedding frequency
is equal to the system natural frequencies f(1)

y , f(2)
y and f(3)

y , respectively. While the
peak at Ur ≈ 12 is barely identifiable, the one at Ur ≈ 26 is most prominent. The
simultaneously measured Eεy from the two cylinders at Ur ≈ 26 along with Eu are
presented in figure 13. The most prominent peak in Eεy occurs at f(3)∗

y ≈ 0.2, which
coincides with f∗s , as evidenced in Eu (figure 13c). The occurrence of resonance is
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Figure 10. Sequential photographs from laser-illuminated flow visualization
(T/d = 1.70, Re = 450).

responsible for this prominent peak in Eεy and hence that at Ur ≈ 26 in εy,rms.
Similarly, the peaks at Ur ≈ 4.2 and 12 in εy,rms could be identified with the resonance
corresponding to the first- and second-mode natural frequencies of the fluid–cylinder
system, respectively.

The observation that the peak at Ur ≈ 26 is far more pronounced than the others
may not be surprising. First, resonance corresponding to f(3)

y occurs at a higher
Ur . Flow excitation energy, which is proportional to U2

r , is therefore much higher.
Secondly, it will be seen later in § 4.3 that the deduced effective damping ratio, the
sum of the structural and fluid damping ratio, corresponding to f(3)

y is appreciably
smaller than that corresponding to f(1)

y or f(2)
y . This implies that the energy dissipation,

when resonance occurs at fs = f(3)
y , is smallest. Thirdly, the fifth harmonic of f(1)∗

y

(≈ 0.0394) is 0.197 and is very close to f∗s = 0.2. This could feed additional energy
to the resonance phenomenon. These three effects combined could lead to a violent
vibration or instability at f(3)

y (figure 11a). This observation suggests that structural
flexibility plays a significant role in the dynamic analysis. In practice, all structures are
flexible; however, structural flexibility has so far been ignored in most previous studies.
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Consequently, resonance occurring at Ur ≈ 5 has been extensively investigated, while
instability corresponding to f(3)

y has been largely overlooked.
As T/d reduces to 1.70, the εy,rms values decrease considerably for both cylinders;

resonance does not appear to occur at all. In this case, vortices shed from both
cylinders are very weak, as seen earlier from the u-spectrum. Accordingly, structural
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vibrations are impeded, even at the occurrence of resonance. This observation is
in marked contrast with that at T/d = 3.00. The difference is consistent with the
observation from the measured spectra, which exhibited a weakening vortex shedding
component at T/d = 1.70 (figure 7b), compared with that at T/d = 3.00 (figure 7a).
At T/d = 1.13, only one peak in εy,rms and εx,rms is observed at Ur ≈ 11 because
of the first-mode resonance. The third-mode resonance is expected to occur near
Ur ≈ (121/22.4)11 = 59.4, which is beyond the present measurement range, and
therefore cannot be observed in figure 11(c).

4.2. Natural frequencies of the fluid–cylinder system

The natural frequency f(1)
y , identified in figure 7(a), of the fluid–cylinder system

associated with Cylinder 1 is 101 Hz at T/d = 3.00. This frequency changes to
103.3 Hz at T/d = 1.70 (figure 7b) and 104.7 Hz at T/d = 1.13 (figure 7c). Note that
the mounting of Cylinder 1 was unchanged throughout the experiments. Therefore,
f(1)
y should remain fairly constant. Furthermore, the spectra were deduced using a

conventional FFT program; the frequency resolution is fixed by the sampling rate
and the record length used in the FFT calculation. It is estimated to be 0.35 Hz.
In view of these factors, the variation of f(1)

y noted above cannot be attributed to
experimental or calculation errors.

The dependence of f(1)
y /f

(1)
o in the cross-flow direction on T/d and Ur is shown

in figure 14. The linear model in the figure refers to the prediction based on a set
of linear partial differentiation equations, as detailed in § 5. Generally, f(1)

y /f
(1)
0 rises
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with decreasing T/d. This is more appreciable when Ur > 14. A number of factors
could alter the natural frequency of the system other than the repulsive force between
the cylinders. As a first-order approximation, a spring–damper–mass model can be
used to model the fluid–cylinder system. Both fluid and structure contribute to the
system mass, stiffness and the damping ratio. A rise (figure 5a) in the repulsive force
as the cylinders approach each other is equivalent to an increase in fluid rigidity.
Alternatively, from a different perspective, an increasing repulsive force between two
cylinders could be associated with a tensile axial loading on the cylinder, which
was fix-supported at both ends, and subsequently increased the structural rigidity
(Weaver, Timoshenko & Young 1989). As a result, the system natural frequency
might increase. This has been qualitatively verified based on the measured lift data.
Added mass is another factor that may change the natural frequency of the system.
Chen (1987) calculated the added mass on two side-by-side cylinders in a cross-flow
and found that, in the range of 1.13 < T/d < 4, the added mass increases as T/d
decreases, thus contributing to a decrease in the system natural frequency. The system
natural frequency may also be affected by the non-linear fluid damping. This effect is
however not well understood and so makes it difficult to estimate quantitatively the
contribution from each factor to the variation in f(1)

y /f
(1)
0 . On the other hand, f(1)

x /f
(1)
0

in the inline direction appears to decrease for Ur > 12 (the corresponding Re is 2900)
as T/d reduces (figure 15). Again, this could be the combined effect of varying system
mass, stiffness and damping ratios with T/d.

The values of f(1)
y /f

(1)
0 and f(1)

x /f
(1)
0 appear to slowly decrease as Ur increases. For

the purpose of comparison, the fluctuating displacement data of an isolated elastic
cylinder in a cross-flow (Zhou et al. 1999) were also analysed. The deduced f(1)

y /f
(1)
0 is

included in figure 14, which exhibits a behaviour similar to the two-cylinder case. It
is therefore conjectured that the observation is not directly related to the interference
between cylinders but rather to the fluid–cylinder interaction. A linear analysis of the
combined fluid–cylinder system in § 5 indicates that a varying fluid damping, as Ur ,
increases, could be responsible for the slowly evolving system natural frequency.

It is interesting to note that, when resonance occurs near Ur ≈ 4.2 for T/d = 3.00
and Ur ≈ 11.0 for T/d = 1.13, f(1)

y /f
(1)
0 falls off sharply and then rises rapidly away

from resonance. The variation ranges between 6% and 10% of f(1)
0 . For Cylinder

2, the dependence of f(1)
y /f

(1)
0 on Ur (not shown) is quite similar to that presented
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for Cylinder 1. Price & Paidoussis (1989) measured the free vibration of a cylinder
located in a tube bundle in a water cross-flow. Their test cylinder was rigid but
flexibly mounted at both ends and Ur < 10. They observed that near resonance the
system natural frequency (or fluid-elastic natural frequency) decreased initially and
then increased rapidly as Ur increases. The mechanism behind the observation was
not discussed.

There is no drastic change in f(1)
y /f

(1)
0 near Ur = 26.0 where εy,rms is largest. As

postulated previously, resonance nearUr = 26.0 occurs as a result of the coincidence of
the vortex shedding frequency with f(3)

y . A 10% variation in f(3)
y /f

(1)
0 between Ur = 21

and 31 is clearly shown in figure 16. The observation further corroborates the earlier
conjecture that the major mechanism behind the instability, i.e. the prominent peak at
Ur ≈ 26.0, is the resonance of the vortex shedding frequency with f(3)

y . The variation

of f(3)
y /f

(1)
0 is similar to that of f(1)

y /f
(1)
0 near Ur = 4.2 for T/d = 3.00 or Ur = 11 for

T/d = 1.13.
It is known that when a structure is forced to vibrate in a cross-flow, a lock-in

phenomenon occurs when the vortex shedding frequency coincides with the frequency
of the imposed excitation force. In free vibration, however, it is the vortex shedding
that excites the structure. Therefore, the vortex-induced force dominates. This force
has a dominant frequency equal to that of vortex shedding. In the T/d = 3.0 case,
the εy-spectra for Ur = 17–35 indicate that the third-mode natural frequency varies
near resonance; the variation appears to be dictated by the vortex shedding frequency
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(figure 17). To highlight this point, figure 18 compares the variation of fs/f
(1)
0 with that

of f(3)
y /f

(1)
0 (figure 18a) and f(1)

y /f
(1)
0 (figure 18b) near resonance. At Ur = 20.4, fs/f

(1)
0

and f(3)
y /f

(1)
0 are close enough to interact with each other and resonance starts to occur.

Influenced by the relatively small value of fs/f
(1)
0 = 4.2, f(3)

y /f
(1)
0 drops from 4.98 to

approach fs/f
(1)
0 . Note that fs/f

(1)
0 remains linear with respect to Ur , implying that f(3)

y

has little influence on fs. Such interplay between fs and f(3)
y continues until they are

identical or synchronize at Ur = 24.6. The system tends to maintain synchronization.
As fs/f

(1)
0 increases with increasing Ur , f

(3)
y /f

(1)
0 follows fs/f

(1)
0 until eventually fs/f

(1)
0

and f(3)
y /f

(1)
0 are de-coupled from each other at Ur ≈ 26.2. The interaction between

fs and f(1)
y is quite similar near Ur = 4.2 (figure 18b) or Ur = 11 at T/d = 1.13

(not shown). Clearly, vortex shedding dominates the nonlinear interaction between
the fluid excitation force and the structural vibration in the free vibration case,
thus tuning the natural frequency of the system to the vortex shedding frequency.
This observation contrasts with the lock-in phenomenon where the vortex shedding
frequency is dictated by the forced vibration frequency of a cylinder.

It is worth pointing out that f(3)
y varies over Ur ≈ 20–28, whereas f(1)

y varies over
Ur ≈ 3.5–5 only. The difference in the Ur range is probably because the fluid excitation
force at Ur ≈ 26 is far greater than that near Ur ≈ 4.2. It is foreseeable that the
Ur range over which the system natural frequency varies will be even greater in the
context of a water flow where the excitation force is much greater.
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Figure 18. Variation of the system’s natural frequency (©) and the vortex shedding frequency (4)
with Ur around resonance: (a) f(3)

y and fs; (b) f(1)
y and fs. Cylinder 1, T/d = 3.00. The solid line

indicates the trend.

4.3. Effective damping ratios

The effective damping ratio of a fluid–cylinder system is made up of fluid and
structural damping. The free vibration of an elastic structure has multiple modes with
different natural frequencies and effective damping ratios. This section discusses the
behaviour of these modal damping ratios and their dependence on Ur and T/d. The
modal damping ratios were calculated from the εy and εx signals using the ARMA
technique. Interested readers may refer to Mignolet & Red-Horse (1994) for more
details.

Figure 19 presents the cross-flow modal damping ratios, ζ(1)
y,e , ζ

(2)
y,e and ζ(3)

y,e , corre-

sponding to the system natural frequencies f(1)
y , f(2)

y and f(3)
y , respectively. The ratios

are calculated from the εy signals of Cylinder 1. The inline ratios ζ(1)
x,e , ζ

(2)
x,e and ζ(3)

x,e are
given in figure 20. In these figures, the solid line represents the first-mode structural
damping ratio.

The values of ζ(2)
y,e and ζ(2)

x,e exhibit relatively large scattering. As shown in figure 11,
the resonance corresponding to the second-mode natural frequency of the system
is the least violent at T/d = 3.00 and fails to occur when T/d < 3.00. The εy-
spectrum (not shown) indicates that even when fs coincides approximately with f(2)

y

at T/d = 1.13, the peak at f(2)
y does not appear to be more pronounced than that at

f(1)
y and f(3)

y . It is evident that the excitation for the second mode of vibration is weak,
as compared with that for the first or third mode of vibration. This is reasonable. The
assumption of two-dimensional flow and a uniform excitation force along the cylinder
span leads to symmetry about the mid-span. As a result, the numerical solution cannot
admit a second-mode vibration (Wang et al. 2000). In a real fluid–cylinder system,
however, the vortices shed from the cylinder are not two-dimensional when Re > 400
(Bloor 1964; Evangelinos & Karniadakis 1999); their spanwise extent is also limited,
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Figure 19. Cross-flow effective damping ratios of the fluid–cylinder system: (a) ζ(1)
y,e; (b) ζ(2)

y,e;

(c) ζ(3)
y,e . Cylinder 1. 4, T/d = 1.13; N, 1.70; ©, 3.00; –·–, linear model.

typically 1d to 3d (Zhou & Antonia 1994). This implies a non-uniform excitation force
along the cylinder span, thus exciting even-mode vibrations (figures 7 and 13). It is
possible that excitation due to the three-dimensionality of the shed vortices is small
compared with the two-dimensional excitation due to periodic shedding. Therefore,
the even-mode resonance could be much weaker in strength than the odd-mode
resonance. Consequently, uncertainty in the estimation of even-mode damping ratios
will increase, resulting in much more scattering in the deduced ζ(2)

y,e and ζ(2)
x,e .

A few observations can be made based on the results presented in figures 19 and
20. First, the effective damping ratio approaches zero when resonance occurs. Both
ζ(1)
x,e and ζ(1)

y,e decrease sharply near Ur ≈ 11 for T/d = 1.13 and near Ur ≈ 4.2 for
T/d = 3.00 to a level well below the structural damping ratio. This suggests that the
fluid damping ratio is negative at resonance. Note that near Ur ≈ 26, ζ(3)

y,e instead of

ζ(1)
y,e or ζ(2)

y,e dips, in further support of the earlier conjecture that the strongest peak in

εy,rms is mainly due to resonance occurring where fs coincides with f(3)
y .

Secondly, for T/d = 3.00, ζ(1)
x,e is generally larger than ζ(1)

y,e in the range Ur < 8,
implying larger fluid damping. This observation agrees with the finding of Granger et
al. (1993) for a small flow velocity. Based on a linear assumption that the structural
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Figure 20. Inline effective damping ratios of the fluid–cylinder system: (a) ζ(1)
x,e; (b) ζ(2)

x,e; (c) ζ(3)
x,e .

Cylinder 1. 4, T/d = 1.13; N, 1.70; ©, 3.00; –·–, linear model.

vibration velocity is small relative to the free-stream velocity, Blevins (1994) showed
that, for a fluid–cylinder dynamic system, the inline fluid damping is twice that in
the cross-flow direction. The analysis is expected to be valid for small Ur only. When
8 < Ur < 15, the trend is reversed; ζ(1)

x,e becomes smaller than ζ(1)
y,e . As Ur further

increases, ζ(1)
y,e and ζ(1)

x,e are nearly the same, approximately given by the structural
damping ratio. On the other hand, ζ(2)

x,e and ζ(3)
x,e are quite comparable in magnitude

with their counterparts in the lift direction, probably due to the relatively small
contribution from fluid damping. The behaviour of the damping ratios for T/d = 1.70
is quite similar to that for T/d = 3.00. However, at T/d = 1.13, the fluid damping

ratio ζ
(1)
y,f(= ζ(1)

y,e − ζ(1)
s ) increases significantly, accounting for about one half of the

effective damping ratio.
Thirdly, ζ(3)

y,e appears to be the smallest, ranging between 0.01 and 0.03. Blevins
(1975) measured the structural damping ratio of a tube and found that the third-mode
structural damping ratio was appreciably smaller than the first- and second-mode
damping ratios. This may largely account for the relatively small value of ζ(3)

y,e since

the fluid damping ratio is small in the present situation. The small ζ(3)
y,e may also

contribute to the observation that the third-mode resonance where fs coincides with
f(3)
y is far more violent than the first-mode resonance where fs approaches f(1)

y .



222 Y. Zhou, Z. J. Wang, R. M. C. So, S. J. Xu and W. Jin

Finally, the effective damping ratios rise, though slowly, as Ur increases beyond 15,
apparently resulting from increasing fluid damping.

5. A linear analysis of the fluid–cylinder system
From § 4, it is obvious that variation of the system natural frequencies with Ur exists

for an isolated cylinder as well as for two cylinders. Therefore, it could be conjectured
that the phenomenon is independent of the interference between cylinders. In view
of this and for the sake of theoretical simplicity, an isolated cylinder, fixed at both
ends, in a cross-flow is considered in an attempt to seek a dynamic analysis of the
fluid–cylinder system. This analysis could provide valuable insight into the mechanism
behind the experimental observations.

Let X, Y and Z denote the displacement in the x-, y- and z-directions, respectively.
Based on the Euler–Bernoulli beam theory, the displacement field of the cylinder can
be written as

X = X(z, t),

Y = Y (z, t),

Z = Z1(x
′, z, t) + Z2(y

′, z, t), x′, y′ ∈ [−d/2, d/2],

where Z1 = −x′∂X/∂z, Z2 = −y′∂Y /∂z. Neglecting damping, the governing equations
of the bending vibration, based on Hamilton’s principle (Rao 1992), are

EI
∂4X(z, t)

∂z4
+ ρsA

∂2X(z, t)

∂t2
= qx, (5.1a)

EI
∂4Y (z, t)

∂z4
+ ρsA

∂2Y (z, t)

∂t2
= qy, (5.1b)

where ρs is the density of the structure, A is the cross-sectional area, qx and qy are
the flow excitation forces in the x- and y-direction, respectively. When the effects of
viscous damping and added mass are considered, (5.1) becomes

EI
∂4X(z, t)

∂z4
+ c

∂X(z, t)

∂t
+ (cm + 1)ρsA

∂2X(z, t)

∂t2
= qx, (5.2a)

EI
∂4Y (z, t)

∂z4
+ c

∂Y (z, t)

∂t
+ (cm + 1)ρsA

∂2Y (z, t)

∂t2
= qy, (5.2b)

where c is the structural viscous damping coefficient and cm is the added mass
coefficient. The flow excitation forces qx and qy are largely dependent on the flow
around the cylinder, which is governed by the Navier–Stokes equations,

∇ · V = 0, (5.3)

DV

Dt
= −1

ρ
∇p+ ν∇2V . (5.4)

Here, D/Dt is the material derivative, t is time, V is the instantaneous velocity vector
and p is the static pressure. Equations (5.2)–(5.4) are the governing equations for the
fluid–cylinder system.

In order to solve (5.2), the flow excitation forces need to be specified. The excitation
forces in (5.2) can be decomposed into three components, qβ = q̄β + q̃β + q′β , where the
overbar, tilde and prime denote the time-mean, periodical and random components



Vibrations of two cylinders in a cross-flow 223

of the fluid force, respectively. The subscript β stands for either the x- or y-direction.
Assuming the random fluctuating force q′β to be negligible, in view of the fact that the
vortex shedding excitation is dominant, the other two components can be represented
by

q̄x = 1
2
ρU∞d

[
CD

(
Urel − Urel

U∞ ucyl

)
+ CL

Urel

U∞ vcyl

]
, (5.5a)

q̃x = 1
2
ρU2∞dC ′D sinΩDt, (5.5b)

q̄y = 1
2
ρU∞d

[
CL

(
Urel − Urel

U∞ ucyl

)
− CD Urel

U∞ vcyl

]
, (5.5c)

q̃y = 1
2
ρU2∞dC ′L sinΩLt. (5.5d)

In the above equations, C ′D and C ′L are the fluctuating drag and lift coefficients,
ucyl = ∂X/∂t and Vcyl = ∂Y /∂t are velocities of the cylinder in the x- and y-direction,
respectively, ΩD and ΩL are the fluctuating drag and lift frequency, respectively, and
Urel is the relative velocity between the flow and the cylinder.

The present experimental conditions give rise to the approximation U∞ � ucyl or
vcyl . For example, when the third-mode resonance occurs at U∞ ≈ 16 m s−1, ucyl or
vcyl is estimated to be of the order of 0.2 m s−1, or about 0.012U∞. Consequently,

Urel =
√
v2
cyl + (U∞ − ucyl)2 ≈ U∞ − ucyl , and (Urel/U∞) ≈ 1. For an isolated cylinder,

CL = 0. Therefore, the coupled nonlinear equations (5.2) may be decoupled and lin-
earized. Rearranging (5.2) yields the following linear and decoupled partial differential
equations:

EI
∂4X(z, t)

∂z4
+ (c+ ρU∞dCD)

∂X(z, t)

∂t
+ (cm + 1)ρsA

∂2X(z, t)

∂t2

= 1
2
ρU2
∞d(CD + C ′D sinΩDt), (5.6a)

EI
∂4Y (z, t)

∂z4
+ (c+ 1

2
ρU∞dCD)

∂Y (z, t)

∂t
+ (cm + 1)ρsA

∂2Y (z, t)

∂t2

= 1
2
ρU2
∞dC

′
L sinΩLt. (5.6b)

The system natural frequencies can be obtained by solving the set of homogeneous
equations (5.6). Assuming that the general solution of (5.6a) is given by

X(z, t) = Ax(z)e
st, (5.7)

where Ax(z) is a function of z (Weaver et al. 1989) and s is a complex coefficient,
the shape of the natural mode of vibration in the drag direction can be determined.
Substituting (5.7) into (5.6a), the following characteristic equation can be deduced
from the homogeneous equation:

EI
∂4Ax(z)

∂z4
+ (scx +Ms2)Ax(z) = 0, (5.8)

where M = (cm + 1)ρsA is the sum of the cylinder mass and added mass per unit
length and

cx = c+ ρU∞dCD (5.9)

is the viscous damping coefficient of the fluid–cylinder system in the drag direction.
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The second term on the right-hand side of (5.9) is the drag-induced fluid damping
coefficient.

Noting that the boundary conditions of the cylinder fixed at both ends are given
by

Ax(0) = Ax(l) =
∂Ax

∂z

∣∣∣
z=0

=
∂Ax

∂z

∣∣∣
z=l

= 0,

where l is the length of the cylinder, the eigenvalues of (5.8) can be solved to give the
following frequency equation (James et al. 1994):

cos r1l cosh r1l = 1, (5.10)

where r1 = 4
√−(Ms2 + cxs)/EI . Applying a method similar to that used by Weaver

et al. (1989) to (5.10), its roots can be approximated with satisfactory accuracy by the
following formula;

r1l ≈ 2n+ 1

2
π, n = 1, 2, . . . . (5.11)

Assuming weak damping and substituting the solution of (5.11) in terms of s into
(5.7) yields

X(z, t) = Ax(z)e
−cx/2M(C1 sin (

√
4MEI((2n+ 1)π/2l)4 − c2

x/2M)t

+C2 cos(
√

4MEI((2n+ 1)π/2l)4 − c2
x/2M)t), (5.12)

where C1, and C2 are constants determined from the initial condition. Evidently, the
natural frequencies are given by

f(n)
x =

ω(n)
x

2π
=

√
4MEI((2n+ 1)π/2l)4 − c2

x

4πM
, (5.13)

where n denotes the nth mode of vibration.
Neglecting damping, i.e. setting cx = 0, (5.13) is reduced to

f
(n)
0 =

(
2n+ 1

3

)2

f
(1)
0 , n = 1, 2, . . . , (5.14)

where f(1)
0 = 9

8
π
√
EI/Ml4 is the first-mode natural frequency of the cylinder without

considering damping. After some algebra, (5.13) can be rewritten as

f(n)
x = f

(n)
0

√
1− (ζ(n)

x,e)2, n = 1, 2, . . . , (5.15)

where the viscous damping ratio or damping factor is given by

ζ(n)
x,e =

cx

2Mω
(n)
0

=
cx

4πMf
(n)
0

, n = 1, 2, . . . . (5.16)

Considering (5.9), ζ(n)
x,e may be decomposed as

ζ(n)
x,e = ζ(n)

s + ζ
(n)
x,f , (5.17)

where

ζ(n)
s =

c

4πMf
(n)
0

(5.18)

originates from the structural damping and

ζ
(n)
x,f =

9CD
4π(2n+ 1)2M∗Ur (5.19)
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is the drag-induced inline fluid damping ratio. The mass ratio M∗ in (5.19) is defined
by M/ρd2. Similarly, the cross-flow natural frequencies of the system are given by

f(n)
y = f

(n)
0

√
1− (ζ(n)

y,e)2. (5.20)

The cross-flow viscous damping ratio ζ(n)
y,e is given by

ζ(n)
y,e = ζ(n)

s + ζ
(n)
y,f , (5.21)

where

ζ
(n)
y,f =

9CD
8π(2n+ 1)2M∗Ur (5.22)

is the drag-induced cross-flow fluid damping ratio. The drag-induced fluid damping
ratios (5.19 and 5.22) obtained here are consistent with those given in Chen (1987).

Equations (5.14)–(5.22) describe the behaviour of the system natural frequencies and
viscous damping ratios for a linear fluid–cylinder dynamic system. The two parameters
are related. Evidently, the fluid damping ratios and the system natural frequencies
depend on the dimensionless parameters M∗, CD and Ur . With M∗ fixed and little
variation in CD , the effect of Ur becomes significant. To the lowest order, the model is
qualitatively consistent with experimental observation. First, as the structural mode n
increases, the natural frequencies (5.14) of the cylinder increase and the corresponding
structural damping ratios (5.18) decrease. On the other hand, the fluid damping ratios
are virtually independent of the structural mode because the effects of n and Ur cancel
out each other ((5.19) or (5.22)). For instance, at the first-mode resonance (n = 1),
(2n + 1)2 = 9 and Ur ≈ 5. At the third-mode resonance (n = 3), (2n + 1)2 = 49 and
Ur ≈ 26. The ratio Ur/(2n + 1)2 remains almost unchanged. The resultant effective
damping ratios therefore decrease for a higher vibration mode. The model prediction
(figures 19 and 20) agrees reasonably well with the experimental effective damping
ratios at T/d = 3.00, in particular in the streamwise direction for Ur > 10. Secondly,
as Ur increases, the drag-induced fluid damping ratios ((5.19) and (5.22)) increase.
However, the contribution from fluid damping to the effective damping ratios is small
in the present context. This could explain why the effective damping ratios (figures 19
and 20) increase slowly when Ur > 15, which is consistent with the observation
that the measured effective damping ratios are quite comparable in the inline and
cross-flow directions. Thirdly, since fluid damping is increasing, albeit only slowly,
with increasing Ur , the system natural frequencies ((5.15) and (5.20)) will decrease, as
seen in the measurements. The linear model of the dynamic system cannot predict
the sharp variation in the measured natural frequencies around resonance, because
the nonlinear fluid–cylinder interactions are expected to be strong near resonance.
Furthermore, the model predictions of f(1)

x and f(1)
y , though qualitatively consistent

with measurements, deviate from experimental data at T/d = 3.00 (figures 14 and 15).
The following analysis of the dimensionless governing equations of the fluid–cylinder
system indicates that dimensionless parameters other than Ur , CD and M∗ may also
play a role in the behaviour of f(n)

x and f(n)
y .

The characteristic length and velocity scales are taken to be d and U∞, respectively,
(5.3), (5.4) and the vector form of (5.6) can be made dimensionless by these scales, so
that X∗ = X/d, Y ∗ = Y /d, z∗ = z/d, t∗ = tU∞/d, D/Dt∗ = (U∞/d)D/Dt, ∇∗ = d∇
and p∗ = p/ρU2. The dimensionless equations can be written as

∇∗ · V ∗ = 0, (5.23a)
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DV ∗

Dt∗
= −∇∗p∗ +

1

Re
∇∗2V ∗, (5.23b)

l∗4

U2
r

∂4w∗

∂z∗
+

9π3(2n+ 1)2

16Ur

ζe
∂w∗

∂t∗
+

81π2

64

∂2w∗

∂t∗2
=

81π2

128M∗Cf. (5.23c)

Here, the aspect ratio is l∗ = l/d, the dimensionless displacement vector is w∗ =
{X∗, Y ∗}, the dimensionless force vector is Cf = {Cx,f = CD + C ′D sinΩDt, Cy,f =
C ′L sinΩLt} and the effective damping ratios are ζe = ζ(n)

x,e in the x-direction and ζ(n)
y,e in

the y-direction.
There is a total of eight dimensionless parameters in this set of fluid–cylinder

governing equations: Re, Ur , l
∗, M∗, Cx,f and Cy,f , ζe, including ζ(n)

s and ζ
(n)
x,f or

ζ
(n)
y,f(ζ

(n)
x,f = 2ζ(n)

y,f). In each direction, there are six dimensionless parameters. It is
obvious that if the fluid–cylinder interaction problem is to be understood thoroughly,
all the parameters need to be investigated systematically. In the present investigation,
the cylinder and boundary conditions are fixed. Therefore, l∗, M∗ and ζ(n)

s are constant.
Furthermore, with f

(1)
0 fixed, varying Re is equivalent to changing Ur . The structural

responses are therefore determined by three parameters, i.e. Ur , ζ
(n)
x,f or ζ(n)

y,f and Cx,f
or Cy,f , which is evident from (5.16)–(5.22).

The issue is raised of whether fluid damping has been adequately accounted for.
Fluid damping is very difficult to evaluate accurately. In the present analysis, only a
linear drag-induced fluid damping (5.19) and (5.22) was considered. Most likely, this
is inadequate to model fluid damping, because fluid–structure interaction is by nature
a nonlinear function of fluid velocity and structural motion. Among the available
models, the fluid damping force Ff = hf |ẇ|αw with 0 6 α 6 1, where w is the structural
vibration displacement and hf is a positive constant that is a function of the cylinder
geometry and fluid properties, is most appropriate for moderate Re (Nayfeh & Mook
1995). The equation points to an effect of the force coefficient on fluid damping
due to the fact that the force and vibration amplitude are directly correlated. If
this is incorporated into (5.2), the nonlinear damping implied in the above equation
could significantly increase the difficulty in solving the governing equations for the
system natural frequencies. Evidently, the linear approximation to the nonlinear fluid
damping would affect the correct calculation of the system natural frequencies. The
nonlinear fluid damping effect, which could not be quantified here, is most likely to
contribute to the discrepancy between experimental observation and the linear model
prediction (figures 14 and 15). In the presence of a neighbouring cylinder, another
parameter T/d is also important. This parameter, not considered in the derivation of
(5.7)–(5.11), could also be partially responsible for the discrepancy.

6. Conclusions
Fluid–structure interactions of two freely vibrating elastic cylinders in a cross-flow

have been experimentally investigated. The following conclusions can be drawn.
1. Vortex formation and its evolution around the cylinders have been examined. The

spectral phase shift Φ12 between the vibrations of the two cylinders is ±π at T/d = 3.0.
This observation is consistent with previously reported results (Ishigai et al. 1972;
Bearman & Wadcock 1973) that vortex pairs are symmetrically formed and shed
from the two cylinders for a sufficiently large transverse spacing. Accordingly, the two
vortex streets immediately behind the cylinders are predominantly in the anti-phase
mode. Furthermore, this finding is found to be independent of Re. As T/d reduces to
1.7, one narrow and one wide wake were observed and the corresponding normalized
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dominant frequencies, as seen from velocity spectra, were 0.31 and 0.105, respectively.
Flow visualization results suggest that vortices might be shed from both sides of each
cylinder at the same frequency, i.e. f∗s ≈ 0.1. The two vortices across the narrow wake
displayed different convection velocity and subsequently underwent pairing. The two
counter-rotating pairing vortices further acted to ‘suck’ in the gap vortex in the wide
wake generated by the other cylinder. Consequently, the three vortices merged and
had a small lateral spacing, resulting in a prominent peak in the velocity spectra at
f∗ ≈ 0.3. Further investigation is needed to verify this interpretation. At T/d = 1.13,
Φ12 is generally near zero, indicating a dominance by the alternate vortex shedding,
though symmetric shedding is seen from the flow visualization data from time to time.

2. Vibration characteristics of the elastic cylinders contrast distinctly with those
of rigid ones. The instability of a rigid circular cylinder occurs at the first-mode
resonance only. For the T/d = 3.0 elastic cylinder case, the present measurements
indicate the occurrence of first-, second- and third-mode resonance. The third-mode
resonance is far more violent due to the combined effect of higher flow energy,
smaller effective damping ratio, and synchronization of vortex shedding with the fifth
harmonic of f(1)

y . This finding points to the significant role structural flexibility plays
in structural instability, which has been overlooked in most previous studies. The
inline vibration appears to be far less violent for the third-mode resonance than the
cross-flow one.

3. The natural frequencies of the combined fluid–cylinder system change as a
result of fluid–structure interactions. First, the natural frequencies of the system
experience a rather sudden variation, up to 10%, near resonance. The variation
always displays the pattern of a dip followed by a rise. In the free vibration case,
vortex shedding dominates the nonlinear interaction between the fluid excitation
force and the structural vibration. As a result, when the vortex shedding and system
natural frequency components approach each other, the system natural frequency is
modified so as to adapt to the vortex shedding frequency. The observation contrasts
with the lock-in phenomenon where the vortex shedding frequency is tuned to the
forced vibration frequency of a cylinder. Secondly, the cross-flow natural frequencies
of the system increase when the transverse spacing ratio is decreased. Presumably, the
fluid–cylinder system may be modelled by a mass–spring–damper system; both fluid
and structures contribute to the stiffness and damping. The observed increase in the
repulsive force between the cylinders as they approach each other could be seen as
an increase in fluid stiffness, thus causing a rise in the cross-flow natural frequency
of the system. Thirdly, the natural frequencies of the fluid–cylinder system appear to
decrease, albeit slowly, as Ur increases. The observation, which also persists for the
single-cylinder case, does not seem to depend on the interference between cylinders.
A linear analysis of an isolated cylinder in a cross-flow has been conducted. The
analysis suggests that fluid damping increases with Ur , thus causing a decrease in
the system natural frequencies. Theoretical analysis further indicates that, in addition
to the reduced velocity and fluid damping ratios, force coefficients and the spacing
ratio also affect the natural frequencies. This, along with the nonlinearity of the
fluid–cylinder system, may account for the deviation between the linear analysis and
experimental data.

4. The effective damping ratios of the cylinders with a relatively large mass ratio
have been characterized. The values of ζ(1)

y,e approach zero when resonance occurs near
Ur ≈ 11 for T/d = 1.13 and near Ur ≈ 4.2 for T/d = 3.00, so does ζ(3)

y,e near Ur ≈ 26,
thus indicating negative fluid damping. Off-resonance, the variation of the ratios is
consistent with the linear analysis of the fluid–cylinder system for relatively small
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Ur . When Ur > 15, the ratios are quite comparable in the lift and drag directions,
probably the result of a small fluid damping in the present case. The cross-flow fluid
damping becomes significant at T/d = 1.13, accounting for about one half of the
effective damping. The third-mode effective damping ratio ζ(3)

y,e is appreciably smaller
than that corresponding to the first or second mode. This could be attributed to a
substantial decrease of the structural damping ratios for higher modes of vibrations,
as suggested by the linear analysis of the fluid–cylinder system.
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