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The equilibrium states of homogeneous turbulent buoyant flows are investigated
through a fixed-point analysis of the evolution equations for the Reynolds stress
anisotropy tensor and the scaled heat flux vector. The mean velocity and thermal
fields are assumed to be two-dimensional. Scalar invariants formed from the Reynolds
stress anisotropy tensor, the scaled heat flux vector, and the strain rate and rotation
rate tensors are governed by a closed set of algebraic equations derived for the
stress anisotropy and scaled heat flux under a (weak) equilibrium assumption. Six
equilibrium state variables are identified for the buoyant case and contrasted with
the corresponding two state variables obtained for the non-buoyant homogeneous
turbulence case. These results, while dependent on the functional forms of the
models for the pressure–strain rate correlation tensor and the pressure–scalar-gradient
correlation and viscous dissipation vector, can be used as in the non-buoyant case to
either calibrate new closure models or validate the performance of existing models.
In addition, since the analysis only involves the turbulent time scales (both velocity
and thermal) and their ratio, the results of the analysis are independent of the specific
models for the dissipation rates of the turbulent kinetic energy and the temperature
variance. The analytical results are compared with model predictions as well as recent
direct numerical simulation (DNS) data for buoyant shear flows. Good agreement
with DNS data is obtained.

1. Introduction
Homogeneous turbulent flows play a central role in the modelling and analysis

of complex inhomogeneous flows because they can provide a great deal of insight
into the key parameters characterizing turbulence in a simplified setting. With suitable
assumptions, these simplified cases quite often give rise to closed-form solutions to the
governing equations when commonly used turbulence models are invoked. As a result,
homogeneous turbulent flows have been investigated extensively (see e.g. Rogallo &
Moin 1984; Reynolds 1990; Speziale 1991). These investigations provided much-
needed insight into the understanding of the evolution of homogeneous turbulence
and its approach to equilibrium. In the area of turbulent buoyant shear flows, direct
numerical simulations (DNS) have been performed by Gerz, Schumann & Elghobashi
(1989), Gerz & Schumann (1991), Kaltenbach, Gerz & Schumann (1994), Jacobitz,
Sarkar & Van Atta (1997), Jacobitz & Sarkar (1998) and Shih et al. (2000), whereas
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Sirivat & Warhaft (1983), Stillinger, Helland & Van Atta (1983), Itsweire, Helland
& Van Atta (1986), Rohr et al. (1988) and Piccirillo & Van Atta (1997) carried
out experimental investigations to examine the effect of buoyancy on homogeneous
stratified turbulence. Sommer & So (1995) and Sommer, So & Zhang (1997) have
examined turbulence modelling effects on the prediction of internal gravity waves
and counter-gradient heat flux. According to these investigations, stable stratification
weakens isotropization, implying that an isotropic dissipation rate model (Kolmogorov
1941) is not adequate to describe the evolution of buoyant homogeneous turbulence.
Recently, So, Zhao & Gatski (1999) conducted a numerical study using different
turbulence models and assessed the performance of certain anisotropic dissipation
rate models. This study revealed that difficulties still persisted in the prediction of
counter-gradient heat flux and the onset of internal gravity waves in buoyant shear
flows. While such studies have been useful in identifying inherent weaknesses in
existing buoyancy models, it has not been possible to develop improved alternatives,
partly because these studies were confined to a short time period (or near-field region
for experiments) and were dependent on the initial state.

An important property of homogeneous turbulent flows is the appearance of
dynamic state variables that tend to approach equilibrium values in the long time
limit. The equilibrium states provide an important benchmark in the calibration of
closure models. For homogeneous turbulent flows without buoyancy effects, the fixed
points associated with the equilibrium can be determined (Speziale & Mac Giolla
Mhuiris 1989; Speziale, Sarkar & Gatski 1991). These fixed points can then be used
to assess the suitability of higher-order models and their ability to predict the correct
equilibrium values. For example, Abid & Speziale (1993) calculated the equilibrium
states for homogeneous turbulent shear flow and channel flow using Reynolds stress
closures in order to assess their predictive performance.

Recently, Jongen & Gatski (1998), using projection methodology, derived a general
algebraic relation between the production-to-dissipation rate ratio, P̃ /ε, and the mean-
to-turbulent time-scale ratio, Sk/ε, based solely on the form of the pressure–strain
rate model, and without recourse to a modelled ε-equation. Here, P̃ is the mean shear
production of the turbulent kinetic energy, k, ε its dissipation rate, and S the mean
shear rate. The analysis gave the same equilibrium values as those predicted by an
appropriate Reynolds stress turbulence closure. Furthermore, the authors concluded
that the exact form of the ε-equation was not important for predicting the equilibrium
states of turbulent shear flows since it only entered indirectly through the ratio Sk/ε.

Tavoularis & Corrsin (1981) conjectured that equilibrium states also exist for
buoyant shear flows; however they take a longer time (or distance) to achieve
due to the interaction between shear and buoyancy. The approach to equilibrium
turbulence for buoyant shear flow is much more complicated. Even the parameters
that characterize the equilibrium states are to date not known precisely. Recently,
Zhao, So & Gatski (2001) investigated the effects of turbulence modelling on the
prediction of equilibrium states of buoyant shear flows. They concluded that the
choice of models for ε and the temperature variance dissipation rate εθ was very
important for the prediction of equilibrium states, and not all models could predict
an approach to equilibrium. Unfortunately, it was not possible from the available
data to determine why some of the models tested performed poorly, although, some
inconsistencies may exist between the formulation for the temperature variance θ2

and its dissipation rate equation.
Numerical modelling of buoyant flows, even under the assumption of incompres-

sibility, is much more complicated than the non-buoyant case due to the coupling
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between the velocity and the temperature field. In addition to closure models for the
Reynolds stress equation, models for the Reynolds heat flux, the k and kθ and their
associated ε and εθ equations need to be invoked (Launder 1978, 1989). Furthermore,
buoyancy effects should also be modelled in the pressure–strain rate term based on the
argument that buoyancy forces are present in the Poisson equation for the fluctuating
pressure and hence contribute to the redistribution process governed by the pressure–
strain rate correlation. A modelled buoyancy term is also added to the ε-equation
to account for buoyancy effects in the calculation of ε. It should be noted that this
treatment of buoyancy effects on the turbulence field is rather incomplete, because the
interaction between shear and buoyancy is highly nonlinear. Also the modelling of
εθ may not correctly reflect the modelling of the pressure–scalar-gradient correlation
or pressure–scrambling term, and thus an inconsistency between them may exist as
well. Unfortunately, within the current framework it is only possible to quantify such
inconsistencies when some independent measure of the equilibrium states of these
buoyant homogeneous flows is obtained. If such results could be obtained from
physical and/or numerical experiments, then the analysis outlined here could be used
to optimize the choice of closure coefficients such as those in the modelled εθ -equation.

Indeed, the modelled evolution equations for the Reynolds stress anisotropy and
the scaled heat flux vector can be solved numerically to equilibrium, thus allowing
the equilibrium states of homogeneous buoyant turbulence to be determined (Zhao
et al. 2001). This process does not yield the required relationships between the
equilibrium state variables that are necessary for an optimization of the choice of
closure coefficients of buoyant turbulence. With so many equilibrium state variables
involved, it would be difficult, if not impossible, to determine the relationships among
them. In principle, these relationships could be deduced from an extensive collection
of results from the numerical solution of the relevant modelled equations, but it
would be a tedious process to map out the whole parameter space that involved so
many state variables. The projection methodology employed to analyse the relevant
equations rigorously identifies the state variables that are fixed points of the system
and shows their relationship to one another. This idea of projection was first proposed
in continuum mechanics (Rivlin & Ericksen 1955) and it has been successfully applied
to analyse equilibrium states of incompressible homogeneous turbulence (Jongen &
Gatski 1998).

Therefore, in the current study, the modelled transport equations for buoyant
turbulence, i.e. the Reynolds stress anisotropy and the scaled heat flux vector
equations, are analysed through the projection methodology used previously in Jongen
& Gatski (1998). Once again, corresponding algebraic models are not needed and
are not developed. Instead, the equilibrium state of homogeneous buoyant flows,
as determined from a rather general form of the modelled evolution equations, is
analysed. As is now well-accepted in the turbulence modelling community, calibration
based on equilibrium-state behaviour is an acceptable and desirable means of model
calibration. This too is demonstrated in the current study where some obvious
requirements imposed on the modelling coefficient are identified. The only ‘models’
being validated are the commonly accepted rather general forms of modelled terms
such as the pressure–scrambling vector.

2. Evolution of the Reynolds stress anisotropy
The flow to be considered is a homogeneous, buoyant turbulent flow where the

Boussinesq approximation is assumed to be valid. Invoking this assumption, the
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modelled incompressible Reynolds-stress equation can be written as (So et al. 2002)

duiuj

dt
= Pij + Πij − εij + Gij , (1)

where ui is the ith component of the fluctuating velocity, uiuj is the kinematic
Reynolds stress tensor, Pij = − uiuk(∂Uj/∂xk) − ujuk(∂Ui/∂xk) is the shear stress

production tensor, εij = 2ν(∂ui/∂xk)(∂uj/∂xk) is the dissipation rate tensor, Gij =

−βgiujθ − βgjuiθ is the buoyant production tensor of the Reynolds stresses, uiθ is
the turbulent heat flux vector, β is the coefficient of thermal expansion of the fluid,
gi = (0, 0, g3) = (0, 0, −gc) is the gravitational vector and d/dt is the time derivative.
Only the pressure-strain rate tensor Πij and εij in (1) require modelling.

In order to close (1), a rather general form for the pressure–strain rate correlation
tensor can be assumed and is written for buoyant flows as

Πij = −
(

C0
1 + C1

1

P̃

ε

)
ε bij + C2kSij + C3k

(
bikSkj + Sikbkj − 2

3
bmnSmnδij

)
− C4k(bikWkj − Wikbkj ) + C5ε

(
bikbkj − 1

3
bmnbnmδij

)
− C6

(
Gij − 2

3
Gδij

)
, (2)

where bij = (uiuj/2k − δij /3) is the Reynolds stress anisotropy tensor, P̃ = Pii/2 is
the shear stress production of k, and G = Gii/2 is the buoyant production of k. The
closure constants Ci will be assigned later when the different homogeneous flows are
discussed. Note that the effect of buoyancy on Πij is accounted for by the last term in
(2). The kinematic strain rate tensor Sij and the rotation rate tensor Wij are defined
as Sij = (∂Ui/∂xj + ∂Uj/∂xi)/2 and Wij = (∂Ui/∂xj − ∂Uj/∂xi)/2, respectively.

For buoyant shear flows, an equation for bij can be derived using the following
identity:

dbij

dt
=

1

2k

(
duiuj

dt
− uiuj

k

dk

dt

)
. (3)

Substituting (1) and its trace equation into (3) gives

ḃij =
dbij

dt
=

ε

k

(
1 − P̃

ε
− G

ε

)
bij − 2

3
Sij −

(
bikSkj + Sikbkj − 2

3
bmnSmnδij

)

+ (bikWkj − Wikbkj ) +
1

2k
Πij − ε

k
dij +

1

2k

(
Gij − 2

3
Gδij

)
, (4)

where dij is the dissipation rate anisotropy defined as dij = (εij /2ε − δij /3). Thus,
dij = 0 corresponds to the Kolmogorov (1941) isotropic model for εij . Using the SSG
pressure–strain model given in (2), the general form of the differential equation for
bij becomes

ḃij = − 1

gλ
bij − a1Sij − a3

(
bikSkj + Sikbkj − 2

3
bmnbmnδij

)
+ a2(bikWkj − Wikbkj )

+
1

λ
a4

(
bikbkj − 1

3
bmnbmnδij

)
− 1

λ
dij − a6

2k

(
Gij − 2

3
Gδij

)
, (5)

where λ = k/ε and

1

g
=

(
C1

1

2
+ 1

) (
P̃

ε

)
+

G

ε
+

(
C0

1

2
− 1

)
= a0

0

(
P̃

ε

)
+

G

ε
+ a1

0, (6)
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with a1 = (4/3 − C2)/2, a2 = (2 − C4)/2, a3 = (2 − C3)/2, a4 = C5/2, a6 = C6 − 1.
Under the condition of ḃij = 0 at equilibrium, (5) can be written in matrix notation
as

− 1

gλ
b − a3

(
bS + Sb − 2

3
{bS}I

)
+ a2 (bW − Wb) +

a4

λ

(
b2 − 1

3
{b2}I

)
= a1S + L, (7)

where I is the identity tensor and

L =
1

λ

[
d + a6

(
G

ε

)
F
]
, (8a)

F =
G
2G

− I
3
. (8b)

Equation (7) can be written in a dimensionless form as

−1

g
b − a3

(
bS∗ + S∗b − 2

3
{bS∗} I

)
+ a2(bW ∗ − W ∗b) + a4

(
b2 − 1

3

{
b2

}
I
)
= a1S

∗ + L∗,

(9)
where S∗ = λS, W ∗ = λW and L∗ = λL.

It should be noted that the buoyancy effect not only enters as (G/ε) in 1/g, but
also appears in L as a symmetric traceless tensor F. Equation (9) gives an implicit
algebraic equation for the Reynolds stress anisotropy tensor for a homogeneous,
buoyant turbulent flow at equilibrium. Due to the coupling between the velocity and
the thermal field shown in (9), knowledge of the turbulent heat flux vector is required.
Once the heat flux vector is known, L∗ on the right-hand side of (9) can be evaluated.
Therefore, (9) and other equations to be derived are used to analyse the equilibrium
states of buoyant turbulence.

3. Evolution of the turbulent heat flux vector
For homogeneous buoyant shear flows, the equation governing the transport of uiθ

can be written as

d(uiθ )

dt
= Pθ i + Φθ i + Gθ i, (10)

where Pθ i = −uiuj (∂Θ/∂xj ) − ujθ (∂Ui/∂xj ) is the production of uiθ due to mean
shear and mean temperature gradient, and Gθ i = −βgiθ2 is the buoyant production of
uiθ . In order to close (10), the pressure–scrambling and viscous dissipation vector Φθ i

(hereafter pressure–scrambling vector for short) requires modelling and is assumed to
be (e.g. So & Speziale 1999)

Φθ i = − C1θ

ε

k
uiθ + C2θuj θ

∂Ui

∂xj

+ C3θuj θ
∂Uj

∂xi

+ C4θuiuj

∂Θ

∂xj

+ C5θβgiθ2, (11)

where the values for the Ciθ closure constants will be assigned later.
Just as in the case of bij , the evolution of uiθ is analysed by considering a

dimensionless form of the heat flux vector equation. Introducing the normalized heat
flux vector, ζi = uiθ/

√
kkθ , where kθ = θ2/2, the following identity can be written:

dζi

dt
=

d

dt

(
uiθ√
kkθ

)
=

1√
kkθ

d(uiθ )

dt
− uiθ

2
√

kkθ

[
1

k

dk

dt
+

1

kθ

dkθ

dt

]
. (12)
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For the homogeneous case under consideration here, the equations for k and kθ are
given by

dk

dt
= P̃ − ε + G, (13)

dkθ

dt
= P̃ θ − εθ , (14)

where P̃ θ = −uiθ (∂Θ/∂xi) is the turbulent production of kθ . Note that these two
equations are exact for homogeneous flows; therefore they do not need modelling.
Substituting (13) and (14) into (12) then yields,

ζ̇i =
dζi

dt
=

1√
kkθ

[Pθi + Φθi + Gθi] − ζi

2

εθ

kθ

[
R

(
P̃

ε
− 1 +

G

ε

)
+

(
P̃ θ

εθ

− 1

)]
, (15)

where R = (kθ/εθ)/(k/ε) is the turbulent time scale ratio. For an equilibrium
turbulence field, ζ̇i = 0, and (15) yields an implicit algebraic equation for the scaled
heat flux vector

1

εθ

√
kθ

k
[Pθi + Φθi + Gθi] − ζi

2

[
R

(
P̃

ε
− 1 +

G

ε

)
+

(
P̃ θ

εθ

− 1

)]
= 0, (16)

where the scaled variables Θi = (k/ε)
√

k/kθ (∂Θ/∂xi) and ḡi = (
√

kθ/k)(k/ε)β gi have
been introduced. Substituting Pθi , Φθi and Gθi into (16) leads to the heat flux equation

− 1

2

[
R

(
P̃

ε
− 1 +

G

ε
+ 2C1θ

)
+

(
P̃ θ

εθ

− 1

)]
ζi − RCSζkS

∗
ki + RCΩζkW

∗
ki

= 2
3
R(1 − C4θ )Θi + 2R(1 − C5θ ) ḡi + 2R(1 − C4θ )Θkbki, (17)

or, in more compact form,

− 1

aθ

ζi − RCSζkS
∗
ki + RCΩζkW

∗
ki = 2

3
RCbΘi + 2RCḡḡi + 2RCbΘkbki, (18)

where

1

aθ

=
1

2

[
R

(
P̃

ε
− 1 +

G

ε
+ 2C1θ

)
+

(
P̃ θ

εθ

− 1

)]
, (19)

CS = 1−C2θ −C3θ , CΩ = 1−C2θ +C3θ , Cḡ = 1−C5θ , and Cb = 1−C4θ . Equation (18)
is an implicit algebraic heat flux equation for homogeneous buoyant turbulent flows
that is coupled with the corresponding implicit algebraic equation (9) for the Reynolds
stress anisotropy tensor through L∗.

4. Equivalent scalar representation
For non-buoyant homogeneous turbulence with a two-dimensional mean flow,

Jongen & Gatski (1998) have shown that the polynomial tensor representation of the
Reynolds stress anisotropy tensor b can be written as

b = −{bS∗}
2Π∗

S

S∗ +
{bW ∗S∗}
4Π∗

SΠ∗
W

(S ∗W ∗ − W ∗S∗) +
3

2

{bS∗2}
Π∗2

S

(
S∗2 + 2

3
Π∗

S I
)
, (20)

where 2Π∗
S = −{S∗2} and 2Π∗

W = −{W ∗2} define the second invariants of the scaled



Equilibrium states of turbulent homogeneous buoyant flows 213

strain rate and rotation rate tensors, respectively. The generation of these scalar
invariants formed from the anisotropy tensor b and the kinematic tensors S ∗ and W ∗

then provides a closed system of three equations in the three unknowns (invariants)
{bS∗}, {bW ∗S∗}, {bS∗2}. This led to the identification of, and relationship between,
the known state variables P̃ /ε and Sk/ε for a range of homogeneous flows. This
same methodology can be extended and applied here to the buoyant homogeneous
case where the identity of, and relationship between, the equilibrium state variables
has not been previously determined.

Since the coupling between the turbulent velocity and thermal field in (9) is through
the tensor L∗ containing the buoyancy terms, the starting point for the buoyant case is
again the formation of the equations for the three invariants {bS∗}, {bW ∗S∗}, {bS∗2}
from (9). These are given by (Jongen & Gatski 1998),

1

g
{bS∗} + 2a3{bS∗2} − 2a2{bW ∗S∗} +

a4

Π∗
S

{bS∗}{bS∗2} = 2a1Π
∗
S − L∗

1, (21)

1

g
{bW ∗S∗} − 2a2Π

∗
S R2{bS∗} +

a4

Π∗
S

{bW ∗S∗}{bS∗2} = −L∗
2, (22)

1

g
{bS∗2} − 2

3
a3Π

∗
S {bS∗} − a4

6
{bS∗}2 +

a4

6Π∗
S R2

{bW ∗S∗}2 − a4

2Π∗
S

{bS∗2}2 = −L∗
3, (23)

where R2 (= −Π∗
W/Π∗

S ) is a flow parameter (e.g. R2 = 1 for a pure shear flow and
R2 = 0 for a plane strain flow). As (21)–(23) show, the coupling with the thermal
field occurs through the invariants L∗

1 = {L∗S∗}, L∗
2 = {L∗W ∗S∗}, and L∗

3 = {L∗S∗2}.
Unfortunately, unlike the non-buoyant case, where the right-hand sides of (21)–(23)
were known, buoyancy effects are not only reflected implicitly in b (through g), but
also explicitly in L∗

1, L∗
2, and L∗

3 as

L∗
1 = {L∗S∗} = a6

(
G

ε

)
{FS∗} = −a6

[
ḡiζjS

∗
ji

]
= −a6L1, (24a)

L∗
2 = {L∗W ∗S∗} = a6

(
G

ε

)
{F W ∗S∗} = −a6

[
ḡiζjW

∗
jkS

∗
ki

]
= −a6L2, (24b)

L∗
3 = {L∗S∗2} = a6

(
G

ε

)
{F S∗2} = 2

3
a6Π

∗
S

(
G

ε

)
+ a6Π

∗
S

[
ḡiζkδ

(2d)
ki

]
(24c)

where, from the Cayley–Hamilton Theorem for two-dimensional mean flows, S∗
jkW

∗
ki =

−W ∗
jkS

∗
ki has been used. The present focus is solely on the coupling effects of the heat

flux vector. For this reason, effects of dissipation rate anisotropy have not been
included (d = 0) in the present formulation. While it is also possible to proceed
with the analysis including the contribution of the nonlinear term (b2 − {b2}I/3), the
added complexity is not justified for the case of homogeneous turbulence under study
here.

The writing of (24a–c) is in anticipation of a later comparison with DNS data
of buoyant pure shear flows where the mean shear gradient makes an arbitrary
angle ϕ with the (x1, x3)-plane (Jacobitz & Sarkar 1998). It should be pointed out
that the present analysis is carried out for two-dimensional mean flow only. Thus,
equations (24a–c) are only applicable for cases where ϕ = 0 and ϕ = π/2. Therefore,

in writing (24a–c), δ
(2d)
ij is used to represent the two cases where ϕ = 0 and ϕ = π/2.
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For the ϕ = 0 case, δ
(2d)
ij =1 for i = j = 1 or 3, and 0 for i = j =2 or i �= j , while, for

the ϕ = π/2 case, δ
(2d)
ij = 1 for i = j = 1 or 2, and 0 for i = j = 3 or i �= j .

For the two cases of ϕ considered here, the mean velocity field in these homogeneous
flows can be described in an appropriate reference frame for pure shear and pure
strain, respectively, by the expressions

∂Ui

∂xj

= S cos ϕ δi1δj3 + S sinϕ δi1δj2, (25a)

∂Ui

∂xj

= [−S δi1δj1 + S δi3δj3], (25b)

and the thermal field by the expression

∂Θ

∂xi

=

(
0 , 0,

∂Θ

∂x3

)
, (26)

where S/2 is the strain rate (Leuchter & Benoit 1991), and Θ is the mean
temperature. As seen, the distortion is in the (x1 , x3)-plane with the normalized
gravitational acceleration given by ḡi = (0 , 0 , ḡ3), where ḡ3 = (

√
kθ/k) (k/ε)β g3 =

−(
√

kθ/k)(k/ε)β gc, and with the relevant mean temperature gradient aligned with
the gravitational vector. For such flows, two components of the heat flux exist, i.e.
u1θ and u3θ (or ζ 1 and ζ 3 in scaled variables). In the Appendix, a closed system of
seven equations in seven unknown variables is derived for the case of two-dimensional
mean flows.

This system can be further reduced by eliminating the explicit dependence on both
{bW ∗S∗} and {bS∗2}. The ratioP̃ /ε(= −2{bS∗}) then satisfies the equation

[
1 + 4Π∗

Sg2

(
a2

3

3
− a2

2R2

)](
P̃

ε

)
= −4g

[
a1Π

∗
S +

a6

2

(
L1 + 2a2gL2

+ 4
3
a3gΠ∗

S

(
G

ε

)
+ 2a3gΠ∗

S

[
ḡ3ζkδ

(2d)
k3

])]
. (27)

In the non-buoyant (β = L1 = L2 = G/ε = 0) homogeneous turbulence case, (27)
was sufficient for closure and the state variable P̃ /ε satisfied a cubic equation (e.g.
Jongen & Gatski 1998).

In the buoyant case, in order to close (27), it is necessary to determine the invariants
[ḡ3ζkS

∗
k3] , [ḡ3ζkW

∗
klS

∗
l3] and G/ε (= −ḡ3ζ3). A general derivation of the corresponding

invariant equations is presented in the Appendix. However, they can be simplified
by eliminating {bW ∗S∗} and {bS∗2} from (A 4)–(A 7). The general two-dimensional
equations (for the ϕ = 0 and π/2 case) necessary for determining L1(= [ḡ3ζjS

∗
j3]) ,

L2(= [ḡ3ζjW
∗
jkS

∗
k3]) and (G/ε) are

− 1

aθ

L1 + R

(
CΩ +

a6gCb

Π∗
S R2

[
ḡ3ΘkW

∗
k3

])
L2 + R

{
CSΠ

∗
S − Cba6g

[
ḡ3ΘkS

∗
k3

]}[
ḡ3ζkδ

(2d)
k3

]

− 2
3
RCba6g

[
ḡ3ΘkS

∗
k3

](
G

ε

)
= 1

3
RCb

[
2 + a3g

(
P̃

ε

)] [
ḡ3ΘkS

∗
k3

]
+ 2RCḡ

[
ḡ2

3S
∗
33

]

− 1
2
RCb

(
P̃

ε

) [
ḡ3Θkδ

(2d)
k3

]
+ a2gRCb

(
P̃

ε

)[
ḡ3ΘkW

∗
k3

]
, (28)
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RCΩΠ∗
S R2L1 −

(
1

aθ

+ a6gRCb

[
ḡ3Θkδ

(2d)
k3

])
L2 − a6gRCb

[
ḡ3ΘkW

∗
klS

∗
l3

]

×
([

ḡ3ζkδ
(2d)
k3

]
+

2

3

G

ε

)
− RCSΠ

∗
S

[
ḡ3ζkW

∗
k3

]
= 1

3
RCb

[
2 + a3g

(
P̃

ε

)] [
ḡ3ΘkW

∗
klS

∗
l3

]

+ 2RCḡ

[
ḡ2

3W
∗
3kS

∗
k3

]
+ 1

2
RCb

(
P̃

ε

) [
ḡ3ΘkW

∗
k3

]
− a2gRCbΠ

∗
S R2

(
P̃

ε

) [
ḡ3Θkδ

(2d)
k3

]
,

(29)

R

(
CS +

a6gCb

Π∗
S

[
ḡ3ΘkS

∗
k3

])
L2 + R

{
CΩΠ∗

S R2 − a6gCb

[
ḡ3ΘkW

∗
k3

]}[
ḡ3ζkδ

(2d)
k3

]

− 2
3
RCba6g

[
ḡ3ΘkW

∗
k3

](
G

ε

)
− 1

aθ

[
ḡ3ζkW

∗
k3

]
= 1

3
RCb

[
2 + a3g

(
P̃

ε

)] [
ḡ3ΘkW

∗
k3

]

+
RCb

2Π∗
S

(
P̃

ε

) [
ḡ3ΘkS

∗
klW

∗
l3

]
+ a2gRCbR2

(
P̃

ε

)[
ḡ3ΘkS

∗
k3

]
, (30)

−RCSL1 − a6g

Π∗2
S R2

RCb

[
ḡ3ΘkW

∗
klS

∗
l3

]
L2 + a6gRCb

{
2[ḡ3Θ3] − 3

[
ḡ3Θkδ

(2d)
k3

]}[
ḡ3ζkδ

(2d)
k3

]

+ RCΩ

[
ḡ3ζkW

∗
k3

]
+

(
1

aθ

+ 4
3
a6gRCb [ḡ3Θ3] − 2a6gRCb

[
ḡ3Θkδ

(2d)
k3

])(
G

ε

)

= 1
3
RCb

[
2 − 2a3g

(
P̃

ε

)]
[ḡ3Θ3] + 2RCḡ ḡ2

3 +
RCb

2Π∗
S

(
P̃

ε

)[
ḡ3ΘkS

∗
k3

]

− a2g

Π∗
S

RCb

(
P̃

ε

)[
ḡ3ΘkW

∗
klS

∗
l3

]
+ a3gRCb

(
P̃

ε

)[
ḡ3Θkδ

(2d)
k3

]
. (31)

The explicit dependence on the scalar [ḡ3ζkW
∗
k3] can be eliminated from (28)–(31);

however, the resulting forms of these equations would be sufficiently complex to
warrant retaining the equation for [ḡ3ζkW

∗
k3] given by (30). In addition, (28)–(31)

are not independent equations and can be related to one another through factors
involving the components of the strain rate and rotation rate tensors. As will
be seen shortly, the exact relationship is dependent on the particular flow under
investigation.

Up to this point in the analysis, (27)–(31) provide a set of five equations for the five
unknowns (P̃ /ε), L1, L2, [ḡ3ζkW

∗
k3], and (G/ε), respectively. It should be recognized

that in these equations the time scale ratio R and the flow parameter R2 appear as
parameters and are assumed known (S∗ and W ∗ known). For a given two-dimensional
mean flow, the associated turbulent velocity and thermal field time scales are obtained
from the k, ε, kθ and εθ equations at equilibrium (ḃij = 0, ζ̇i =0).

Since aθ retains a functional dependence on the thermal production-to-dissipation
rate ratio P̃ θ/εθ (= −R ζiΘi), it is necessary to obtain an independent relation for
this ratio. This relation can be obtained from the evolution equations for k and kθ ,
given in (13) and (14), by constructing a corresponding non-dimensional evolution
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equation for the ratio k/kθ ,(
k

kθ

)
d(kθ/k)

dt∗ =
1

S∗R

[(
P̃ θ

εθ

− 1

)
− R

(
P̃

ε
− 1 +

G

ε

)]
, (32)

where the non-dimensional time t∗ = St . At the fixed points (ḃij = 0, ζ̇i = 0),
equilibrium values exist for all the terms on the right-hand side of (32). Thus,
the ratio kθ/k is characterized by the right-hand side of (32) and could exhibit, in
general, exponential growth or decay or a fixed-point equilibrium state. If equilibrium
is reached by kθ/k, then this state is characterized by the vanishing of the right-hand
side of (32) which then provides a relation for P̃ θ/εθ in terms of the other state
variables:

P̃ θ

εθ

= 1 + R

(
P̃

ε
− 1 +

G

ε

)
. (33)

A consequence of (33) is that the closure coefficient aθ , given by (19), is now simply

1

aθ

= R

[
P̃

ε
− 1 +

G

ε
+ C1θ

]
, (34)

a result which underscores the importance of the closure coefficient C1θ in describing
the behaviour of the thermal field. In addition, from (16) it is apparent that the fixed
point for the scaled heat flux vector ζi is only dependent on the heat flux equation
(10) with no influence from either the k or kθ equation, i.e. (13) or (14). This is further
reflected in an examination of (28)–(31). Using (34) in these equations results in the
disappearance of the time scale variable R from the equations. Thus, the equilibrium
state achieved by the heat flux vector is independent of the behaviour of the thermal
time scale kθ/εθ , whereas the ratio P̃ θ/εθ retains the dependence on R as well as on
the turbulent velocity and heat flux fields.

This observation is consistent with the generalized linearity principle proposed by
Pope (1983) for modelling scalars in turbulent flows. However, most models employ
either the mixed time scale given by k/ε and kθ/εθ (e.g. Youssef, Nagano & Tagawa
1992; So & Speziale 1999) or the time scale ratio R in the empirical constants of
the εθ -equation (e.g. Jones & Musonge 1988; Craft & Launder 1989; Nagano &
Shimada 1996). For the first time, the present analysis shows that R simply does
not appear in the heat flux equations, only in the P̃ θ/εθ equation. Thus the use of
R to model the heat flux vector might not be totally appropriate even though it
gives enough good results to justify its adoption. Even though the presence of R

does not change the dimension of the model, nevertheless it violates the linearity
principle.

In the next section, the behaviour of these variables that characterize the equilibrium
state associated with ḃij = ζ̇i = 0 is examined for specific mean velocity and thermal
fields.

5. Equilibrium states in buoyant homogeneous flows
In general, it is not possible to obtain a closed analytic solution of (27)–(31), and

a numerical solution of the coupled set of nonlinear algebraic equations is required.
Nevertheless, even these nonlinear algebraic equations are more amenable to analysis
in the specific cases that will now be examined. The cases to be examined are those
with ϕ = 0. Only equations relating to pure shear flow, plane strain flow and uniform
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flow are given. The relevant equations for other values of ϕ will be given when the
specific case is considered.

5.1. Turbulent velocity and thermal field closure constants

It is important to recognize that up to this point specific closure constants have not
been assigned to the rather general functional forms that have been assumed to close
both the turbulent Reynolds stress and heat flux equations. The equilibrium state
assumed here should exactly correspond to the long-time numerical solution of the
evolution equations given by (1), (10), (13), and (14) coupled with the corresponding
modelled equations for ε and εθ (see Zhao et al. 2001). These equations and closure
constants to be specified are designated as the SSG/AD model from here on for
easy reference. This model is used to perform the numerical calculations to verify
the solutions of the respective algebraic equations for the different specific cases
considered below.

For the Reynolds stress transport equation (1), a linearized form of the SSG
pressure–strain rate model (Speziale et al. 1991) as given in (2) is assumed for Πij .
The associated constants are specified as C0

1 = 3.4, C1
1 = 1.8, C2 = 0.36, C3 = 1.25,

C4 = 0.4, C5 = 0 and C6 = 0.3. Closure for the dissipation rate is also required, and
as pointed out earlier, the dissipation rate anisotropy is assumed to be zero here. The
isotropic dissipation rate equation used is given by (see Zhao et al. 2001 for details),

dε

dt
=

(
ε2

k

)[
Cε1

(
P̃

ε

)
−

(
Cε2 − 2Cε4S

∗) − Cε3

(
G

ε

)]
, (35)

with closure coefficients Cε1 = 1.44, Cε2 = 1.83, Cε3 = 1.44, Cε4 = 0.042.
The scalar heat flux equation (10) contains the pressure–scrambling vector Φθi . The

modelling of this term closely parallels that of Πij , in that the model is partitioned

into three parts, a slow part, Φ
(S)
θ i , a rapid part, Φ

(R)
θ i , and a buoyant part, Φ

(B)
θ i . Monin

(1965) proposed a model for the slow part similar to the linear ‘return-to-isotropy’
model for the slow part of Πij . This is given by the first term on the right-hand side
of (11) with corresponding closure coefficient C1θ . The rapid part can be written in
general form as Φ

(R)
θ i = bm

ik (∂Uk/∂xm) with different models proposed for bm
ik . Finally,

the buoyant part was modelled by assuming it to be proportional to kθ and that
is given by the last term on the right-hand side of (11). If bm

ik is assumed to be
linear in the heat fluxes (Lumley 1978), a simple expansion of bm

ik in terms of the
heat flux would lead to the second and third terms on the right-hand side of (11).
The fourth term on the right-hand side of (11) was proposed by Shabany & Durbin
(1997) in order to account for the interaction of the turbulence and the mean thermal
field. A more elaborate model for bm

ik has been derived by Craft & Launder (1989)
and it includes quadratic terms in bij and interaction terms between bij and ζi .
The coefficients C2θ = 0.8 and C3θ = −0.2 were proposed by Launder (1973) and
Lumley (1978). Later, C2θ = 0.4 and C3θ = 0.33 were found to give better results
by Launder (1988). Since then, most studies have assumed an absolute value of 0.5
for C2θ and C3θ . However, in a model evaluation analysis carried out by Wikstrom,
Wallin & Johansson (2000) against DNS data of homogeneous shear flows with a
mean temperature gradient imposed either in the streamwise, transverse or spanwise
direction, they found that the presence of the C3θ term in (11) led to erroneous results
in the prediction of the streamwise to transverse heat flux ratio. In their calculations,
the C4θ term was set to zero. Furthermore, they found that reasonable results can
also be obtained when C2θ and C3θ are set to zero while C1θ = 2.5 and C4θ = 0.35
were specified instead. Therefore, their investigation showed that C3θ should be zero if
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reasonable results were to be predicted for non-isothermal, homogeneous shear flows.
As will be shown shortly, the result C3θ = 0 can also be obtained rigorously from
the current formulation by examining the limiting case of non-isothermal shear flow
where Richardson number Ri = 0. In this study, the closure constants used for the
model of Φθi are assumed to take the values C1θ = 3.28, C2θ = 0.40, C3θ = C4θ = 0
and C5θ = C2θ (Launder 1978; So & Speziale 1999; Wikstrom et al. 2000).

Finally, the εθ equation required for the solution of the kθ equation can be written
as (see Zhao et al. 2001 for details)

dεθ

dt
=

1

2

(
ε2

θ

kθ

)[
(Cd1 + 2Cd2R)

(
P̃ θ

ε

)
+ 2Cd3R

(
P̃

ε

)
− (Cd4 + 2RCd5)

]
, (36)

with closure coefficients given by Cd1 = 0, Cd2 = 1.70, Cd3 = 1.40, Cd4 = 2.0, and
Cd5 = 0.52. These are the model constants proposed by Jones & Musonge (1988).

Equations (1), (10), (13), (14), (35) and (36) with the assumed model constants
constitute the SSG/AD model used by Zhao et al. (2001) in their assessment of a wide
range of closure models for buoyant shear flows. The SSG/AD model was shown to
be the most appropriate for buoyant shear flows among all closure models examined.
This closure model is used to numerically determine the equilibrium parameters for
the different buoyant cases and the results are compared with the present analytical
predictions assuming the same model constants. In addition, comparisons are also
made with DNS data whenever available.

5.2. Buoyant shear flow

The case of a uniform shear flow with an imposed mean temperature gradient is one of
the simplest shear flows yet one of the most important for both model development
and physical insight into buoyant flows. For this case where R2 = 1, the scaled
strain rate S∗ and rotation rate W ∗ are equal, and the only imposed (scaled) mean
temperature gradient is Θi = Θ3. The corresponding Richardson number Ri is then
defined as

Ri ≡ −βg3

(
∂Θ

∂x3

)(
∂U1

∂x3

)−2

= − ḡ3Θ3

S∗2
, (37)

where scaled variables have been introduced. Using these relations, (27)–(31) can
be reduced to a closed system of three coupled, nonlinear algebraic equations.
Equation (27) for the ratio

(
P̃ /ε

)
becomes

[
1 + g2S∗2

(
a2

2 − a2
3

3

)](
P̃

ε

)
− a6gS∗

[(
G13

ε

)
− gS∗

(
a2 +

a3

3

) (
G

ε

)]
= a1gS∗2,

(38)

where L1 = −G13S
∗/2ε and L2 = GS∗2/4ε have been used. The algebraic equations

needed to describe the behaviour of the ratios G13/ε(= −ḡ3ζ1) and G/ε(= −ḡ3ζ3) can
be derived from (28)–(31) and are given by

−2S∗Cb

(
P̃

ε

)
Ri + 2

(
P̃

ε
− 1 +

G

ε
+ C1θ

)(
G13

ε

)
+ S∗(CS + CΩ )

(
G

ε

)
= 0, (39)
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2gS∗2Cb (a3 − 3a2)

(
P̃

ε

)
Ri + 3S∗(CS − CΩ )

(
G13

ε

)

+6

(
P̃

ε
− 1 +

G

ε
+ C1θ − 4

3
a6gS∗2CbRi

)(
G

ε

)
= − 4S∗2CbRi + 12Cḡḡ

2
3 . (40)

Equations (38)–(40) are now a closed set of nonlinear, algebraic equations. The
solution to these equations yields the equilibrium values for P̃ /ε, G13/ε and G/ε in
terms of the corresponding values for S∗, ḡ 3 (or Θ3 ) and Ri. These results, when
coupled with a given value of R, then determine the corresponding equilibrium value
for P̃ θ/εθ from (33).

In order to verify the existence of the fixed points ḃij = 0 and ζ̇i = 0 assumed here,
the evolution equations of the SSG/AD model, i.e. (1), (10), (13), (14), (35) and (36),
are solved. The long-time solution of these equations should yield the same results as
those determined here from the fixed-point analysis. Calculations have been carried
out for different values of Ri using the initial conditions and scaling outlined in Gerz
et al. (1989). These are given here as: (ko)

n = 4.054 × 10−4, (εo)
n = 1.042 × 10−4,

(uiuj )
n
o = 2(ko)

n/3 = 2.703 × 10−4 for i = j and 0 for i �= j , (uiθ )no = 0, (kθ )
n
o =

1.352 × 10−4, (εθ )
n
o = (2/RePr) (∂ θ/∂ xj )(∂ θ/∂xj ) = 0.139 × 10−4 for Pr = 5 (Pr is the

molecular Prandtl number and Re is the Reynolds number defined with respect to
the mean bulk velocity Um and L). The superscript n denotes quantities normalized
using 
U , 
Θ and L such that 
U = (dU/dx3)L and 
Θ = (dΘ/dx3)L. Thus, the
normalized velocity gradient S and the normalized temperature gradient are unity.
The subscript o denotes initial condition. Details of the numerical solutions are given
in Zhao et al. (2001). The long-time numerical solutions yield the state variables P̃ /ε,
P̃ θ/εθ , G13/ε, G/ε, S∗, and R. If the ḃij = 0 and ζ̇i = 0 fixed points exist, then these
state variables must satisfy (33), (38), (39) and (40) identically. Calculations were
carried out for Ri = 0 to Ri ≈ 2 and comparisons between numerical and analytical
results are made in this range of Ri.

Figures 1(a) to 1(d) show the variation of the state variables
(
P̃ /ε

)
,

(
P̃ θ/εθ

)
,

(G13/ε), and − (G/ε), respectively, with Ri at equilibrium. Also included on each plot
are the corresponding numerical solutions deduced from SSG/AD. The SSG/AD
solutions yield the same results as the equilibrium equations for the range of Ri
examined. This confirms the consistency of the set of algebraic equations for predicting
such homogeneous flows. The plots in figure 1 are made versus Ri, which is a global
parameter that depends on imposed conditions rather than on the local state of
the turbulence. According to Ivey & Imberger (1991), a turbulent Froude number,
Frt , based on local properties of the turbulence would be a better parameter to
use. Therefore, the variation of the equilibrium values of the different components
of bij is plotted versus Ri and Lo/(k

3/2/ε) = Fr3/2
t [LE/(k3/2/ε)] in figures 2(a) and

2(b), respectively. Here, Lo = (ε/N3)1/2 is the Ozmidov, or buoyancy, length scale,
LE = [β (∂ Θ/∂ z)]−1 is the Ellison, or turbulence, length scale, and N is the Brunt–
Väisälä frequency defined as N =

√
|ḡ3Θ3|/λ2. The behaviour of |bij | follows the

trend of increasing (or decreasing) for small Ri, reaching a maximum (or minimum)
at Ri = 0.2 and then slowly decreasing (or increasing) to fairly constant values as Ri
increases (figure 2a). The trend of an initial increasing value of b11 and |b33| and
a corresponding decreasing value of |b22| and |b13| is supported by the recent DNS
data of Jacobitz & Sarkar (1998), who have calculated the behaviour of bij up to

Ri = 0.2. Using (37), the normalized Lo can be written as Lo/(k
3/2/ε) = (ε/S k)3/2/Ri3/4,

which indicates that as Ri decreases Lo/(k
3/2/ε) increases and when Ri goes to zero
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Figure 1. Equilibrium state variation of (a) P̃ /ε, (b) P̃ θ /εθ , (c) G13/ε, and (d) −(G/ε) with
Ri for buoyant shear flows: ——� , SSG/AD model solution; ——� , analytical solution.

Lo/(k
3/2/ε) will go to infinity. The trend of bij versus Lo/(k

3/2/ε) is much like that
shown in figure 2(a). In other words, for equilibrium states, either Ri or Lo/(k

3/2/ε)
can be used to characterize the behaviour of bij in buoyant shear flows.

An alternative use of (33) and (38)–(40) is to verify the consistency of the turbulence
closure models. One example deals with the form of the model assumed for the
pressure–scrambling vector given in (11). For the limiting case of non-isothermal
shear flow (Ri = 0), the thermal field is decoupled from the velocity field; then
(38)–(40) can be rewritten as

[
1 + g2S∗2

(
a2

2 − 1
3
a2

3

)] (
P̃

ε

)
= ga1S

∗2, (41)

2CbΘ3

(
P̃

ε

)
− 2S∗

(
P̃

ε
− 1 + C1θ

)
ζ1 − S∗2 (CS + CΩ ) ζ3 = 0, (42)

2gCbΘ3 (a3 − 3a2)

(
P̃

ε

)
+ 3S∗(CS − CΩ )ζ1 + 6

(
P̃

ε
− 1 + C1θ

)
ζ3 = − 4CbΘ3. (43)

Equation (41) is simply the non-buoyant homogeneous shear flow result (cf. Jongen
& Gatski 1998) that correctly reflects the decoupling from the thermal field. In the
absence of any mean temperature gradient Θ3 = 0, (42) and (43) yield the equilibrium



Equilibrium states of turbulent homogeneous buoyant flows 221

0 0.5 1.0 1.5 2.0

(a)

0

–0.2

0.3

0

0.5 1.0 1.5 ∞

(b)

0.2

–0.1

Ri

0.1

bij

–0.2

0.3

0

0.2

–0.1

0.1

bij

Frt
3/2[LE/(k3/2/ε)]

Figure 2. Equilibrium-state variation of bij with: (a) Ri and (b) Fr
3/2
t [LE/(k3/2/ε)] for

buoyant shear flows: �, b11; �, b22; •, b13; �, b33.

solution {
4

(
P̃

ε
− 1 + C1θ

)2

+ [S∗(CS − CΩ )] 2

}
ζi = 0, i = 1, 3. (44)

Since CS < CΩ because CS = 1 − C2θ − C3θ and CΩ = 1 − C2θ +C3θ , then (44) suggests
that CS = CΩ or C3θ = 0 for the (vanishing) heat flux vector to have the correct long-
time asymptotic behaviour. For the choice C3θ = 0 with C5θ = C2θ , Cḡ = CS = CΩ

and the closure of the pressure–scrambling term in (11) reduces to a calibration of
the closure coefficients C1θ , C2θ and C4θ .

Another example, where the equilibrium equations can be useful in closure model
assessment, is the case where the values of S∗ and R are known from a direct numerical
simulation or physical experiment. The fixed-point equations for the state variables
yield the corresponding values of P̃ /ε, P̃ θ/εθ , G13/ε and G/ε. This result is dependent
on the pressure–strain rate and pressure–scrambling models, but independent of the
particular form of the modelled ε and εθ evolution equations. However, the equilibrium
fixed-point analysis yields results that are identical to the long-time solution of a
system of evolution equations for the Reynolds stresses and heat fluxes that include
the k, kθ , ε and εθ evolution equations. While both the k and kθ equations are
exact (for these homogeneous flows), their corresponding dissipation rate equations
are modelled. The consistency of the ε equation has long been established for such
homogeneous flows, whereas the εθ equation is not as well established. If needed, the
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current analysis can then be used to better formulate improvements to this equation
based on its performance in such homogeneous flows.

5.3. Buoyant plane strain flow

In this example, the deformation is aligned along the (x1, x3)-axes with W = 0(R2 = 0),
S11 = −S and S33 = S, and the applied temperature gradient vector is once again
aligned with the gravitational vector. It should be pointed out that the same results
would have been obtained if the signs of S11 and S33 were interchanged. The reason
is that changing the sign does not affect the total strain deformation of the fluid
element. Therefore, the present analysis will only examine the case given by S11 = −S

and S33 = S. With this mean velocity and thermal field, ζ1 = 0 as can be seen from
(18); then L∗

2 = 0 and L∗
1 is reduced to

L∗
1 = −a6L1 = a6

(
G

ε

)
S∗. (45)

Equation (27) can then be simplified to[
1 − 4a2

3

3
g2S∗2

](
P̃

ε

)
= 2gS∗

[
2a1S

∗ + a6

(
G

ε

)(
1 − 2a3

3
gS∗

)]
. (46)

The corresponding equation for (G/ε) can be obtained from (31) or (28) and is given
by [

1

aθ

+ RS∗ (
CS − 1

3
a6CbgRiS∗)] (

G

ε

)
= −Ri

Cb

3
R

[
2 + a3g

(
P̃

ε

)]
S∗2

+ 2RCḡḡ
2
3 + 1

2
RCbRi

(
P̃

ε

)
S∗, (47)

where aθ is again given by (34). With P̃ /ε and G/ε determined from the solution of
(46) and (47), the ratio P̃ θ/εθ can be deduced from (33). Note that once again Ri is
defined by (37); however, the mean velocity gradient used in the definition is now
derived from the mean strain field.

In order to validate (46) and (47) and their respective solutions, the same pressure–
strain rate and pressure–scrambling models used previously to validate the buoyant
shear case are used here. Since, at equilibrium, the state variables are independent of
the initial conditions, the same set of numerical values used to initialize the buoyant
shear calculations are used in the plane strain case. The SSG/AD modelled equations
(1), (10), (13), (14), (35) and (36) are once again solved for different values of Ri in
the range 0 to 25. The long-time solution of these equations then yields equilibrium
values for S∗ and R that are used to determine the equilibrium values for P̃ /ε,
G/ε and P̃ θ/εθ from (46), (47) and (33), respectively. These equilibrium results are
compared in figures 3(a) to 3(c) with the corresponding values obtained from the
long-time numerical solutions of SSG/AD in the range 0 � Ri � 25. The plots
show that the equilibrium state variables, P̃ /ε, G/ε and P̃ θ/εθ , asymptote to constant
values for large Ri. The asymptote is reached at around Ri = 10 for P̃ /ε and P̃ θ/εθ ,
but approximately at Ri = 20 for G/ε. As in the buoyant shear flow case, both the
long-time numerical solution and the equilibrium fixed-point analysis yield identical
results. It should be noted that the non-isothermal plane strain case corresponds
to the point Ri = 0. Since this limit is achieved by letting density become constant
(β = 0) while maintaining Θ3 finite, (47) yields the trivial solution G/ε = 0, and P̃ θ/εθ

depends on P̃ /ε and R alone. The resulting relation is given by (33) with (G/ε) = 0.
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buoyant strain flows: ——� , SSG/AD model solution; ——� , analytical solution.

5.4. Buoyant uniform flow

The case of a mean uniform flow is of dynamical interest in the study of buoyant
homogeneous turbulence. Two buoyant situations arise: the stable and the unstable
case. Only the stably stratified case is considered here since the unstable case will
most likely not lead to equilibrium turbulence. In a stably stratified uniform flow,
three different forces are competing for influence. They are the inertia, viscous and
buoyant forces (Komori et al. 1983; Metais & Herring 1989; Lienhard & Van Atta
1990; van Haren, Staquet & Cambon 1994). The interplay between the inertia and
buoyant forces would give rise to an exchange of energy between k and kθ . As a
result, counter-gradient fluxes would develop to keep the energy budget in balance
(Lienhard & Van Atta 1990; van Haren et al. 1994). In turn, this would lead to
oscillations in the evolution of the Reynolds normal stress aligned with the gravity
vector, the temperature variance, and the turbulent vertical heat flux (Stillinger et al.
1983; van Haren et al. 1994). Therefore, stable stratification inhibits mixing and leads
to the development of counter-gradient fluxes and the onset of internal gravity waves.
In view of this, equilibrium turbulence characterized by the fixed points ḃij = 0 and
ζ̇i = 0 would most likely not exist for this flow. In order to further confirm the absence
of such fixed points, the SSG/AD modelled evolution equations (1), (10), (13), (14),
(35) and (36) are solved numerically with S = W = 0 to calculate the stably stratified
case treated by van Haren et al. (1994). They considered two different cases of
stable stratification, characterized by N = π/3 and π. The initial conditions specified
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Figure 4. Variation of (a) b33, (b) P̃ θ /εθ and (c) −(G/ε) with Nt/2π for stably stratified
uniform flows.

in van Haren et al. (1994) are used here and the calculations have been carried
out to a non-dimensional time of Nt/2π = 200, far longer than that given by van
Haren et al. (1994). For details concerning the calculations, see e.g. So et al. (1999).
Sample plots of b33, P̃ θ/εθ and − (G/ε) versus Nt/2π are given in figures 4(a)–4(c)
respectively. They clearly show that b33, P̃ θ/εθ and − (G/ε) are still oscillating for
large time (see the inset in each figure showing the variation of the parameter with
a blown-up time coordinate). It is clear that b33, (P̃ θ/εθ ) and −(G/ε) oscillate with
fairly constant amplitude. The observed trend is that the oscillations will persist for
an even longer time, thus suggesting that equilibrium turbulence characterized by the
fixed points ḃij = 0 and ζ̇i = 0 does not exist for such stably stratified uniform flow.
This behaviour is true irrespective of whether the time coordinate is normalized by
2π/N or by ko/εo.

5.5. Invariant plane mapping of buoyant homogeneous turbulence

It is of interest to quantify the effect of buoyancy on the turbulent velocity field. One
of the best means of doing this is to examine the invariant map of the Reynolds
stress anisotropies 2II b = −{b2} and 3III b = {b3} (Lumley 1978). Figure 5 shows
the behaviour of these invariants for the cases of buoyant shear flow, buoyant plane
strain flow and buoyant uniform flow obtained from the numerical solution of (1),
(10), (13), (14), (35) and (36) for the respective cases. Calculations were carried out
for N = π/3–50π for the uniform flow case, Ri =0–∼2 for the pure shear flow case
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plane strain case, 0 � Ri � 25; while for the uniform flow case, π/3 � N � 50π.

and Ri = 0–25 for the plane strain case. Insets within the figure show the details of
the variations for the three cases and the arrows indicate the directional behaviour
as Ri or N increases. The effect of increasing Ri is clearly seen for the buoyant
shear flow case. As Ri increases, the turbulent anisotropy decreases and there is a
trend toward the isotropic limit (origin) of the invariant map. For this case, as Ri
increases, the buoyant time scale becomes much shorter than the shearing time scale
and a rapid-distortion limit is approached. Therefore, the rapid distortion in this case
implies that the effects of buoyancy dominate the dynamics.

In contrast, the case of plane strain shows much less effect on the turbulence with
increasing Ri even though the mean temperature gradient is once again aligned along
the direction of the gravitational vector and a direction of straining motion as well.
This shows that the effect of a pure straining motion in the mean velocity field inhibits
the return-to-isotropy effects on the turbulent velocity field with increasing buoyancy.
Even at Ri = 25, the buoyant plane strain value remains well within the realizable
limits of the invariant map.

In the absence of any mean velocity gradients, a fixed-point equilibrium state does
not exist and the turbulent velocity and thermal fields in the stable stratification
case are characterized by oscillatory behaviour. Since there is only one Reynolds
stress anisotropy component b33 directly affected by the buoyancy, the remaining
kinetic energy is equally redistributed between the two remaining normal stress
components and their anisotropies b11 = b22 (= −b33/2). As figure 4(a) shows, b33 < 0,
and this means that the turbulence anisotropies lie along the axisymmetric contraction
boundary of the invariant map shown in figure 5. After a long time, oscillations
still persist in all the state variables although the stress anisotropy oscillations are
significantly less in amplitude than the corresponding P̃ θ/εθ and − (G/ε) levels. At
this point, even with the (weak) oscillations, the turbulent velocity field dynamics is
fixed along the invariant map boundary but with no identifiable trend toward either
the two-component or isotropic limits.
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6. Comparison with DNS data
Having examined the behaviour of buoyant turbulence for the ϕ = 0 case at the

fixed points ḃij = ζ̇i = 0, the next step is to attempt to verify the calculations by
comparing them with DNS and/or experimental data. Among the pure shear, plane
strain and the uniform flow cases investigated, it was found that equilibrium as
defined by the fixed points ḃij = ζ̇i = 0 does not exist for the case of a uniform flow

with stable stratification. The reason is that bij as well as P̃ θ/εθ and − (G/ε) still
oscillates with time even for t = 400π/N . Thus, equilibrium state variables for stably
stratified flow cannot be determined. Since the present work is not about modelling,
the evolution of bij and ζi is not calculated and not available for comparison with
DNS and/or experimental data (Itsweire et al. 1986; Gerz et al. 1989; van Haren
et al. 1994). A study on the modelling prediction of equilibrium states of buoyant
shear and uniform flow has been carried out in Zhao et al. (2001). The effects of
pressure–strain models, anisotropic dissipation rate modells and εθ equation modelling
were studied in detail. Therefore, this aspect of predicting equilibrium states will not
be repeated here. For plane strain flow, to the best of the authors’ knowledge, DNS
and/or experimental data on the equilibrium state do not appear to be available.
Consequently, comparison of the present calculations is carried out with shear flow
data only.

Recently, direct numerical simulations were carried out on homogeneous buoyant
turbulent flow to investigate the evolution of turbulence in a uniformly sheared and
in a non-vertical-shear medium (Jacobitz et al. 1997; Jacobitz & Sarkar 1998; Shih
et al. 2000). Among the three studies, Jacobitz et al. (1997) and Jacobitz & Sarkar
(1998) reported on the turbulence field, on the growth rate of k, and on the behaviour
of the flux Richardson number Rif , which is defined as the ratio of the buoyant
production to the shear production of k. On the other hand, the work of Shih et al.
(2000) is an attempt to verify the findings of Jacobitz et al. (1997) that the stationary
Richardson number depends on both the Reynolds number and the dimensionless
shear number. Since the work of Jacobitz & Sarkar (1998) covered non-vertical as
well as vertical shear, their DNS data are selected for comparison with the present
calculation. Two cases are selected and these are given by ϕ = 0 and π/2. In these
two cases, the mean flow is still two-dimensional and the present calculations can
be straightforwardly performed without having to reformulate the equations for
three-dimensional flows.

Since the equations for P̃ /ε, − (G/ε) and G13/ε for the ϕ = 0 case have already
been given, i.e. (38)–(40), only equations for the ϕ = π/2 case need be derived again.
These equations can be deduced from (27)–(31) by noting that ϕ = π/2 in (25a). For
this case G13 = 0, and therefore only equations for P̃ /ε and − (G/ε) are required;
P̃ θ/εθ , is still given by (33). Omitting the details, the resulting equations and Ri are
given by

Ri ≡ −β g3

(
∂Θ

∂x3

)(
∂U1

∂x2

)−2

=
ḡ Θ3

S∗2
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Ri = 0 Ri = 0.1 Ri = 0.2
Equilibrium

values of bij for Present DNS Present DNS Present DNS
ϕ = 0 case calculation data calculation data calculation data

(a) b11 0.19406 0.21986 0.22232 0.25926 0.23776 0.31322
b22 −0.05245 −0.05674 −0.03876 −0.07407 −0.02097 −0.08333
b33 −0.14161 −0.16312 −0.18355 −0.18519 −0.21680 −0.22989
b13 −0.15794 −0.160 −0.11616 −0.06330 −0.032

(b) b11 0.19406 0.21986 0.23347 0.31602 0.25880 0.34591
b22 −0.14161 −0.16312 −0.13871 −0.19048 −0.13683 −0.22013
b33 −0.05245 −0.05674 −0.09476 −0.12554 −0.12197 −0.12579
b13 −0.15794 −0.160 −0.16157 −0.16338 −0.115

Table 1. Comparison of the calculated bij with the DNS data of Jacobitz & Sarkar (1998)
for (a) the ϕ = 0 case and (b) the ϕ = π/2 case for different Ri.

Rif

Ri Present calculation DNS data

0. 0. 0.
0.05 0.077 0.06
0.10 0.16 0.11
0.15 0.25 0.16
0.20 0.33 0.225

Table 2. Comparison of the flux Richardson number Rif with the DNS data of Jacobitz
& Sarkar (1998) for different Ri.

R
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ε
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+ 2RCḡḡ

2.

(52)

This set of equations and (38)–(40) together with (33) are used to solve the two
cases of ϕ = 0 and π/2 reported in Jacobitz & Sarkar (1998). The initial conditions
specified in Jacobitz & Sarkar (1998) were used to start the numerical calculation of
the SSG/AD modelled equations once Ri is specified so that S∗, Θ3 and R could be
determined. The equilibrium values of S∗, Θ3 and R thus obtained are then substituted
into (33), (38)–(40) and (33), (51)–(52), respectively, for the ϕ = 0 and π/2 cases in
order to solve for the equilibrium values of P̃ /ε, − (G/ε) and P̃ θ/εθ . According to
Jacobitz & Sarkar (1998), the growth rate of k for the ϕ = 0 and π/2 case can be
expressed as

γ =
1

S k

dk

d t
=

(
P̃

S k
+

G

Sk
− ε

S k

)
. (53)

Therefore, once P̃ /ε and − (G/ε) are known, γ can also be calculated and compared
with DNS data. Furthermore, the equilibrium values of bij can be calculated from

(20) once L∗
i are known from (24a–c), and Rif = G/P̃ can be determined also.

The results of these calculations are tabulated in tables 1 and 2 for comparison
with the DNS data. In addition, plots of γ versus Ri for the ϕ = 0 and π/2 case
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Figure 6. Comparison of the calculated γ with the DNS data of Jacobitz & Sarkar (1998)
for different Ri: (a) ϕ = 0, (b) ϕ = π/2; ——� , present prediction evaluated at St = 20; ——� ,
present prediction evaluated at St = 200; ——� , DNS data.

are shown in figures 6(a) and 6(b), respectively. In figure 6(a), the range of Ri is
from 0 to 0.2, while it is from 0 to 2 in figure 6(b). The corresponding DNS data
are also shown for comparison in figure 6. Note that there are only three points
from the DNS data for the ϕ = π/2 case, so the interpolation between points should
be interpreted with caution (figure 6b). Two curves for the calculated γ are plotted:
one where the values of S∗, Θ3 and R are determined at St = 20 and the other for
corresponding values of S∗, Θ3 and R evaluated at St = 200. A linear behaviour for
γ within the range of Ri examined is reproduced for the ϕ = 0 case. If the critical
Richardson number Ricr is defined by setting γ = 0 as suggested in Jacobitz et al.
(1997), then the DNS data give Ricr = 0.138, while the analysis yields Ricr = 0.130
and 0.142 for St = 20 and 200, respectively (figure 6a). On the other hand, there is
no Ricr predicted for the ϕ = π/2 case, whereas DNS data give a value of Ricr =
1.36 based on interpolation (figure 6b). The discrepancy could be due to the fact that
the model constants used in SSG/AD were not calibrated against buoyant flow data.
Therefore, the present methodology provides model developers with a more rational
way to calibrate buoyant flow models. Overall, the predicted bij is in fair agreement
with DNS data, so are the calculated Rif and γ . The discrepancy in b22 noted for
the ϕ = 0 case and in b33 for the ϕ = π/2 case is because they are deduced from the
calculated components of bij which has a zero trace.

These results showed that buoyancy effects on bij have been accounted for fairly

well through L∗ and the determination of the invariants {bS∗}, {bW ∗S∗} and {bS∗2}.
All these are accomplished through a three-term representation for b as given in (20)
and without solving any modelled ε and εθ evolution equations. The only models
invoked are those for the pressure–strain tensor and the pressure–scrambling vector.
If a representation for b is assumed that includes explicit terms for the buoyant flux,
as suggested in So et al. (2002), an improved agreement with DNS data could be
expected. It appears that equilibrium states have been reached asymptotically as early
as St = 20 because the difference between the two different plots of the calculated γ

is very small (figure 6). Based on these comparisons, for Ri � 0.2 it can be said that
the present analytical prediction of the equilibrium states is in fair agreement with
DNS data for the homogeneous buoyant shear flow where the mean shear gradient
does not necessarily lie on the same plane as the mean temperature gradient.
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7. Conclusions
A procedure developed previously for analysing the equilibrium state behaviour

for non-buoyant turbulent homogeneous flows has been extended to the turbulent
buoyant flow case. State variables have been extracted for the first time from algebraic
relationships of scalar invariants formed from the Reynolds stress anisotropy tensor,
the kinematic strain rate and rotation rate tensors, and a buoyant flux tensor. For the
general case of two-dimensional homogeneous buoyant turbulent flow, five equivalent
scalar equations were deduced from the Reynolds stress anisotropy equation and the
scaled heat flux equation. A sixth equation to close the set was derived from the
evolution equations for the turbulent kinetic energy and the temperature variance.
These equations can be reduced to a set of four for the cases of non-isothermal
homogeneous shear flow and buoyant shear flow, and a set of three equations for the
case of buoyant plane strain flow. The limiting cases of pure shear and pure strain in
the absence of buoyancy were also recovered correctly.

One immediate result of the derived algebraic equations is that R does not appear
in any of these equations except that for (P̃ θ/εθ ), which is consistent with the general
linearity principle of Pope (1983) for scalar flux modelling.

For the case of non-isothermal homogeneous shear flows, the velocity field is
decoupled from the thermal field, but not the other way around. Therefore, an
examination of the limiting behaviour given by Θ3 going to zero leads to the
conclusion that in the modelling of the pressure–scrambling vector, the coefficient
C3θ should be zero. This result has been obtained previously by Wikstrom et al.
(2000) who carried out an elaborate model evaluation to show that C3θ should be
zero, whereas the analysis used here extracted this result from an analysis of the
equations for state variables valid at equilibrium. This highlights the value of the
current methodology since it can aid in the development of the proper closure models
without recourse to extensive numerical validation tests.

In this non-isothermal homogeneous shear flow case, seven equilibrium state
parameters can be identified and they are P̃ /ε, P̃ θ/εθ , S∗, ζ1, ζ3, Θ3, and R. There
are four independent algebraic equations and they can be solved for P̃ /ε, P̃ θ/εθ , ζ1,
and ζ3, once S∗, Θ3, and R are specified from the numerical modelling solution. An
analysis of these equations also leads to the conclusion that the closure coefficient
C3θ that appeared in the modelled pressure–scrambling term must be zero.

For a buoyant turbulent shear flow, seven equilibrium state variables can be
identified. The Richardson number Ri appears as a dimensionless parameter in the
scalar equations; however, with known values of the imposed mean velocity and
temperature gradients it is a given parameter defining the problem and not an
equilibrium parameter. Thus, the independent set of state variables can be identified
as P̃ /ε, P̃ θ/εθ , k/ε, G/ε, G13/ε, k/kθ , and R (with knowledge of R and k/kθ , the
ratio ε/εθ is also known.). The four algebraic equations, (33), (38), (39) and (40), can
be solved to give the variation of the equilibrium values for P̃ /ε, P̃ θ/εθ , G/ε, and
G13/ε, with Ri, provided values of S∗, ḡ 3 (i.e. k/kθ or ε/εθ ), and R are specified.
These specified values can be obtained from the long-time numerical solution of the
modelled evolution equations (1), (10), (13), (14), (35) and (36). Since the algebraic
equations and modelled evolution equations were closed using the same pressure–
strain and pressure–scrambling models both sets of equations give identical results.
It is worth noting that while a self-consistent set of equations and methodologies has
been established for the equilibrium case, it is not possible at this time to verify the
accuracy of these values. Only with experimental and/or numerical simulation (DNS
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or LES) results at equilibrium can one assess whether the equilibrium values for state
variables are correct. Once such physical and/or numerical results are obtained, the
validity of the proposed models, particularly the model closure coefficients, can be
assessed. This would be particularly true of the modelled εθ equation since it has
not been studied as thoroughly as the other modelled equations. As was discussed
extensively by Zhao et al. (2001), numerous models for this equation have been
proposed over the years.

For the case of buoyant flow with pure strain, G13/ε = 0 so there are now
six independent equilibrium state variables: P̃ /ε, P̃ θ/εθ , k/ε, G/ε, k/kθ , and R.
Three algebraic equilibrium equations are available for the solution of the three
variables P̃ /ε, P̃ θ/εθ and G/ε provided values of S∗, ḡ 3 (i.e. k/kθ or ε/εθ ), and R

are specified. Once again, these specified values could be obtained from the long-time
numerical solution of the SSG/AD model. The values of P̃ /ε, P̃ θ/εθ , and G/ε thus
determined are again found to be identical to those obtained from the numerical
modelling solution. In the case of stably stratified buoyant flow, no equilibrium state
characterized by the fixed points ḃij = 0 and ζ̇i = 0 exists; however, at long time the

flow field variables, P̃ θ/εθ , G/ε, and b33, display a near constant oscillatory behaviour.
These results, from the pure shear, plane strain and uniform flow cases, provide a

unique mapping of the turbulence dynamics for buoyant flows. In each of the three
cases, the effect of increasing Ri or N is different. For the pure shear case the trend
is toward isotropy. The turbulent Reynolds stress invariants are much less affected in
the plane strain case. The model predictions in this case remain realizable over the
entire Ri range examined, but the trend is away from isotropy. As for the uniform
flow case, stably stratified turbulence was found to yield anisotropy invariants that
lie along the axisymmetric contraction boundary for all levels of stratification.

Finally, a comparison has been made with DNS data of buoyant turbulence with
nonvertical shear. Specifically, two cases are considered, one with ϕ = 0 and another
with ϕ = π/2. The calculated bij , Rif and γ are in fair agreement with available
DNS data. Furthermore, the predicted Ricr is in good agreement with DNS data for
the ϕ = 0 case.
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Appendix
With the quadratic term in (21)–(23) omitted (a4 = 0), these equations can be

rewritten in the form (cf. Jongen & Gatski 1998)[
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where L∗
1, L∗

2, and L∗
3 are given by (24). From (24) it can be seen that the additional

unknowns [ḡiζjS
∗
ji] and [ḡiζjW

∗
jkS

∗
ki] now appear, and the equations governing these

scalar invariants need to be constructed from the scaled heat flux vector equation (18).
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These scalar invariant equations are then given by
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where the equation for the invariant [ḡiζjW
∗
ji] is also required for closure. Equations

(A 4)–(A 6) are not independent equations and can be related to one another through
factors involving the components of the strain rate and rotation rate tensors. The
exact relationship is dependent on the particular flow under investigation and for this
reason the equations are left in the form given. In the buoyant case, with the explicit
coupling of the equations shown in (A 1)–(A 6) and the implicit coupling through
the modelling variable g = g (P̃ /ε, G/ε), it is necessary to not only account for the
dependence on P̃ /ε but also to account for the dependence on G/ε (= −ḡ3ζ3). The
ratio G/ε is determined directly from (18) and is

1

aθ

(
G

ε

)
− RCS

[
ḡiζkS

∗
ki

]
+ RCΩ

[
ḡiζkW

∗
ki

]
= RCb

(
2

3
+

2{bS∗2}
Π∗

S

)
[ḡiΘi]

+ 2RCḡ [ḡi ḡi] − RCb

{bS∗}
Π∗

S

[
ḡiΘkS

∗
ki

]
+ RCb

{bW ∗S∗}
Π∗2

S R2

[
ḡiΘkW

∗
klS

∗
li

]

−3RCb

{bS∗2}
Π∗

S

[
ḡiΘkδ

(2d)
ki

]
. (A 7)

It should be pointed out that equations (A 1)–(A 7) are only valid for two-dimensional
flows where the mean velocity gradient makes an angle ϕ = 0 or π/2 with the
(x1, x3)-plane. Furthermore, (A 1)–(A 7) provide a set of seven equations for the
seven unknowns {bS∗}, {bW ∗S∗}, {bS∗2}, [ḡiζkS

∗
ki] , [ḡj ζkW

∗
klS

∗
lj ], [ḡiζkW

∗
ki] and (G/ε),
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respectively. From the relations for the velocity and temperature gradients introduced
in (25) and (26), further reductions of these rather general forms are discussed starting
with (27).
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