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This work aims to study flow structures, heat and momentum transport in the wake
of two staggered circular cylinders. In order to characterize heat transport in the flow,
both cylinders were slightly heated so that heat generated could be treated as a passive
scalar. The velocity and temperature fluctuations were simultaneously measured by
traversing a three-wire (one cross-wire plus one cold wire) probe across the wake,
along with a fixed cross-wire, which acted to provide a reference signal. Four distinct
flow structures, i.e. two single-street modes (S-I and S-II) and two twin-street modes
(T-I and T-II), are identified based on the phase-averaged vorticity contours, sectional
streamlines, and their entrainment characteristics. Mode S-I is characterized by a
vortex street approximately antisymmetric about the centreline. This mode is further
divided into S-Ia and S-Ib, which differ greatly in the strength of vortices. The
vortex street of Mode S-II is significantly asymmetric about the centreline, the strenth
of vortices near the downstream cylinder exceeding by 50 % that on the other side.
Mode T-I consists of two alternately arranged vortex streets; the downstream-cylinder-
generated street is significantly stronger than that generated by the upstream cylinder.
In contrast, Mode T-II displays two streets approximately antisymmetrical about the
wake centreline. Free-stream fluid is almost equally entrained from either side into
the wake in Modes S-Ia and T-II, but largely entrained from the downstream cylinder
side in Modes S-II and T-I. The entrainment motion in Mode S-Ib is very weak
owing to the very weak vortex strength. Vortices decay considerably more rapidly in
the twin-street modes, under vigorous interactions between the streets, than in the
single-street modes. This rapid decay is particularly evident for the inner vortices
near the wake centreline in Modes T-II and T-I. Other than flow structures, heat and
momentum transport characteristics are examined in detail. Their possible connection
to the initial conditions is also discussed.

1. Introduction
Cylindrical structures in arrays are frequently seen in engineering. The simplest

configuration of an array of cylinders is two cylinders in tandem, side-by-side or
staggered arrangements. Aerodynamic interference between two cylinders may result
in flow separation, reattachment, vortex impingement, recirculation and quasi-periodic
vortices, involving most generic flow features associated with multiple cylinders. Thus,
flow around two cylinders is a good model for understanding the physics of flow
around multiple cylindrical structures.
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Numerous investigations have been conducted to study two staggered cylinders in
crossflow, mostly focusing on the distributions of mean surface pressure coefficient
Cp (e.g. Hori 1959), lift and drag coefficients, CL and Cd , on the cylinders
(e.g. Zdravkovich 1977, 1985, 1987; Price & Päıdoussis 1984; Mahir & Rockwell
1996) and Strouhal numbers, St (e.g. Kiya et al. 1980; Sumner et al. 2000, 2005;
Alam & Sakamoto 2005). Hu & Zhou (2008, Part 1) have given the major
works in their table 1 and provided a compendium of the previous major accom-
plishments.

Investigations on the near wake of two staggered circular cylinders were based
mostly on flow visualization and limited to a narrow range of the cylinder centre-to-
centre spacing (P ) and the angle (α) between the incident flow and the line through
the cylinder centres (e.g. Suzuki et al. 1971; Ishigai et al. 1972, 1973; Gu & Sun
1999). Sumner et al. (2000) investigated the near wake using flow visualization and
particle image velocimetry (PIV) over P/d = 1.0 ∼ 5.0 (d is the cylinder diameter)
and α = 0◦ ∼ 90◦ for x/d < 6 (the origin of coordinate x was defined at the mid-point
between the cylinders). They identified nine different flow patterns, depending on P

and α, of which three were associated with cylinders in close proximity, three in
small α and three in large α. Akbari & Price (2005) investigated numerically the flow
around two staggered cylinders at x/d < 6. They observed five distinct flow patterns,
depending on the geometrical arrangement of the two cylinders. However, little has
been known about how these flow structures evolve further downstream, in particular,
beyond x/d = 10. This information is important when predicting unsteady forces on
downstream structures.

Because of the nature of turbulence at a high Reynolds number, neither flow
visualization nor instantaneous PIV data could provide a definitive picture of different
flow structures. For instance, how does a typical flow structure differ from others in
the strength of vortices? What are the topological characteristics of individual typical
flow structures? This definitive picture may be extracted from conditionally averaged
experimental data. Zhou, Zhang & Yiu (2002) investigated the wake of two side-by-
side cylinders at x/d = 10 ∼ 40 for P/d = 1.5 and 3.0 (Re = 5830) based on phase-
averaged hot-wire data. They documented quantitatively the difference in the flow
structure, heat and momentum transport characteristics between the regimes of the
asymmetrical wake (P/d = 1.5) and two coupled vortex streets (P/d = 3.0). Zhou &
Yiu (2006) used the same technique to study a two-tandem-cylinder wake at 10d to
30d behind the downstream cylinder for P/d = 1.3, 2.5, 4.0 and 6.0 (Re = 7000). They
uncovered for the first time two distinct flow structures in the reattachment regime,
i.e. at P/d = 2.5 and 4.0, depending on whether the shear layers from the upstream
cylinder reattach on the downstream or upstream side of the downstream cylinder. It
is expected that the flow structure behind two staggered cylinders should differ from
that behind two side-by-side or inline cylinders.

One objective of this work is to quantify typical flow structures at x/d = 10 and 20
behind two staggered cylinders using the phase-averaging technique as used by Zhou
et al. (2002) and Zhou & Yiu (2006). Heat and momentum transport characteristics
in a two-staggered-cylinder wake are of fundamental interest. Another objective is to
understand these characteristics associated with each typical flow structure. Note that
‘heat’ in this paper is not necessarily the energy in transit. ‘Heat’ not only represents
thermal energy but also simulates a passive scalar. The importance and relevance
of passive scalar transport to pollutant transfer, turbulent mixing, combustion and
many other engineering applications have been elucidated by Warhaft (2000) and
Shraiman & Siggia (2000). Experimental details are provided in § 2. The time-averaged
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Figure 1. Schematic of experimental arrangement.

flow and temperature fields are presented in § 3, followed by the phase-averaged results
(§ 4). Section 5 studies the contribution from the coherent structures to the Reynolds
stresses and heat fluxes. Heat transport characteristics are discussed in § 6. Finally,
conclusions are drawn in § 7.

2. Experimental details
Experiments were performed in a closed-circuit wind tunnel with a 2.4 m long

square test section (0.6 m × 0.6 m). See Huang, Zhou & Zhou (2006) for more details
of the tunnel. The experimental arrangement is sketched in figure 1. The wake
was generated by two brass circular cylinders of the same diameter d = 12.5 mm in
staggered configurations. Both cylinders were placed horizontally in the mid-plane
and spanned the full width of the working section, resulting in a maximum blockage
of about 4.2 % and an aspect ratio of 48. The cylinders were arranged at α = 10◦ ∼ 60◦,
with an increment of 10◦, for P/d = 1.2 and 2.0, respectively, and α = 10◦ and 50◦

for P/d = 4.0, covering the P/d and α ranges of the nine flow patterns, reported
by Sumner et al. (2000), in the near wake of two staggered cylinders. Both cylinders
were electrically heated. The surface temperature of the cylinders, monitored by
thermocouples, was about 36 ◦C at a free-stream velocity U∞ = 8.4 m s−1. The room
was air-conditioned and maintained at 24 ◦C during experiments. The maximum
mean temperature difference between the heated wake and the ambient fluid did
not exceed 1 ◦C at x/d � 10. The buoyancy effect due to the temperature difference
was negligible and heat could be considered as a passive scalar (Matsumura &
Antonia 1993). Measurements were carried out at x/d = 10 and 20. U∞ was 8.4 m s−1,
corresponding to an Re(≡ U∞d/ν, where ν was the kinematic viscosity of the air) of
7000. The wake of an isolated circular cylinder (P/d = 0) was also measured in order
to provide a benchmark for comparison.

A movable three-wire (one cross-wire plus a cold wire) probe was used to measure
simultaneously the velocity and temperature fluctuations across the wake. The cold
wire was orientated normal to the plane of the cross-wire and positioned at about
0.8 mm upstream of the cross-wire intersection. This probe measured the fluctuating
longitudinal velocity (u), transverse velocity (v) and temperature (θ) at the nominal
same point. Another cross-wire was placed on the side near the downstream cylinder
at y/d = 4 ∼ 5, depending on P , α and x, to provide a reference phase signal.
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U
∗

Θ
∗

u∗
rms v∗

rms uv∗ θ ∗
rms St

±2% ±3% ±6% ±6% ±6% ±5% ±1%

Table 1. Experimental uncertainties (x∗ = 10 for y∗
c , U ∗

c and ω̃∗).

The sensors of the cross-wires were made of 5 μm Wollaston wire (Pt-10 % Rh)
of approximate 1 mm in length, operated on constant temperature circuits at an
overheat ratio of 1.5. The cross-wires were calibrated in terms of effective yaw angles
and velocity before and after data sampling. The cold wire, made of Wollaston
wire (Pt-10 % Rh), was 1.27 μm in diameter and about 1.2 mm in length, operated
on a constant current (0.1 mA) circuit with an output linearly proportional to θ .
The temperature coefficient of the cold wire was estimated to be 1.69 × 10−3 ◦C−1.
The velocity and temperature signals were simultaneously acquired, offset, amplified
and digitized using a 16 channel (12 bit) A/D board on a personal computer at
a sampling frequency, fsampling , of 3000 Hz per channel. The sampling duration
was 20 s.

Table 1 gives estimated experimental uncertainties in U , Θ , urms , vrms , and θrms , where
U is the instantaneous streamwise velocity, Θ is the instantaneous temperature, the
overbar and subscript rms represent time-averaged and root-mean-square values,
respectively. The uncertainties of urms and vrms were inferred from the errors of the
hot-wire calibration data, whereas those of Θ and θrms were largely due to errors
caused by the slight drift of the cold wire during measurements and a possible
change of the surrounding conditions. In this paper, an asterisk is used to denote
normalization by U∞, d and/or the maximum mean temperature excess, Θ1, in the
wake.

3. Time-averaged flow and temperature fields
In view of the observation of four typical flow structures behind two staggered

cylinders for P ∗ = 1.2 ∼ 4.0 and α = 0◦ ∼ 90◦ (Part 1), data will be presented for five
configurations, i.e. P ∗ = 1.2 at α = 30◦, 4.0 at 10◦, 2.0 at 40◦, 4.0 at 50◦ and 3.0 at 90◦,
corresponding to modes S-Ia, S-Ib, S-II, T-I, T-II, respectively. Mode T-II is extracted
from Zhou et al. (2002).

Figure 2 presents the cross-stream distributions of the mean velocity deficit 1 − U
∗

and Θ
∗

at x∗ = 10 and 20. The distributions of 1 − U
∗

and Θ
∗

display a single peak
for Modes S-Ia, S-Ib and S-II, conforming to the occurrence of one single vortex

street. The Θ
∗

distribution is asymmetric about the wake centreline (figure 2f ) for

Mode S-II, indicating an asymmetric wake. In contrast, 1 − U
∗

and Θ
∗

(figure 2a–d)
for Mode S-I are roughly symmetric about the centreline, implying a reasonably

antisymmetric flow structure. On the other hand, 1 − U
∗

and Θ
∗

(figure 2g, h) for
Mode T-I show a twin-peak distribution, suggesting the occurrence of two vortex

streets. The two peaks in 1 − U
∗

are different in magnitude, in contrast with the
case for Mode T-II (figure 2i,j ), where the two peaks exhibit approximately the same
magnitude. Apparently, the wake is asymmetric about y∗ = 0 for Mode T-I.

The major characteristic parameters of the mean flow and temperature fields are
summarized in table 2. In general, both U ∗

1 and Θ1 decrease from x∗ = 10 to 20.
Meanwhile, the mean velocity half-width, Lu, grows by 46 %, 36 %, 13 %, 11 %
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Figure 2. Time-averaged streamwise velocity deficit 1 − U
∗

and temperature Θ
∗
: (a, b) Mode

S-Ia (P ∗ = 1.2, α = 30◦); (c, d) S-Ib (4.0, 10◦); (e, f ) S-II (2.0, 40◦); (g, h) T-I (4.0, 50◦); (i, j )
T-II (3.0, 90◦). �, x∗ = 10; �, 20.

and 15 % for Modes S-Ia, S-Ib, S-II, T-I and T-II, respectively. The corresponding
increase in the mean temperature half-width, Lθ , is 49 %, 38 %, 12 %, 33 % and 22 %,
respectively. The difference indicates that the symmetric single vortex street (e.g. Mode
S-I) grows faster than the asymmetric (S-II). The wake grows approximately at the
same rate (about 12 %) in Lu for Modes S-II and T-I, but less rapidly in Lθ for S-II
than for T-I. The observation suggests that interactions between two vortex streets
enhance the diffusion of passive scalar (heat). It is worth mentioning that Lθ is larger
than Lu, regardless of the values of P, α or x. It may be concluded that the lateral

growth in Θ
∗

is faster than that in 1 − U
∗

in a two-staggered-cylinder wake.
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S-I

Mode S-Ia S-Ib S-II T-I T-II

P ∗ 1.2 4.0 2.0 4.0 3.0

α(deg.) 30 10 40 50 90

x∗ 10 20 10 20 10 20 10 20 10 20

U ∗
1 0.19 0.18 0.32 0.21 0.3 0.29 0.21 0.22 0.28 0.21

Θ1(◦C) 0.78 0.6 0.83 0.72 0.87 0.62 0.77 0.67 0.69 0.48
L∗

u 1.9 2.77 2.12 2.89 2.39 2.71 4.47 4.98 4.79 5.53
L∗

θ 2.81 4.19 3.09 4.25 4.59 5.16 5.4 7.16 5.67 6.89

Table 2. Maximum velocity defect, temperature excess and half-width.

4. Phase-averaged flow and temperature fields
4.1. Phase-averaging technique

Since Mode T-II is discussed in detail in Zhou et al. (2002), the results of this mode,
unless otherwise stated, will not be repeated. The power spectral density functions,
Eu, Ev and Eθ (not shown), of signals u, v and θ measured at x∗ = 10 and 20 behind
two staggered cylinders display one pronounced peak at St(≡ fsd/U∞) = 0.128, 0.178,
0.143 and 0.192 for Modes S-Ia, S-Ib, S-II and T-I, respectively, indicating the
occurrence of large-scale quasi-periodic events.

Careful examination on the v-signal from the three-wire probe at y∗ = 1 and the
simultaneously acquired reference vR-signal obtained from the fixed cross-wire at
y∗ ≈ 4 reveals a phase correlation in large-scale events between v and vR (not shown).
Figure 6 in Zhou & Yiu (2006) gives examples. Thus, the velocity and temperature
fluctuations are phase-averaged based on the phase signal, i.e. vR . This technique has
been discussed in detail in Matsumura & Antonia (1993), Zhou et al. (2002) and
Zhou & Yiu (2006), and thus not repeated here.

Since the vortex shedding frequency is not strictly a constant, it is subjected to
variation from one cycle to another, which is particularly significant at high Re. This
variation is connected to the random oscillation of the point of flow separation from
circular cylinders and the nature of turbulence, resulting in a phase jitter and errors
in phase-averaging. To minimize this phase jitter and its effect, vR was collected at
the same downstream station as u, v and θ (e.g. Kiya & Matsumura 1985; Hussain
& Hayakawa 1987).

The phase-averaged value of an instantaneous quantity Q is calculated by

〈Q〉k =
1

N

N∑

i=1

Qk,i,

where k represents phase. For convenience, the subscript k will be omitted hereinafter.
N is the total number of detections, around 1500, 2400, 1400 and 2600 for Modes
S-Ia, S-Ib, S-II and T-I, respectively. Q can be decomposed into a time-averaged
component Q and a fluctuating component q . The latter may be further separated
into a coherent fluctuation q̃ ≡ 〈q〉 and a remainder qr :

q = q̃ + qr,
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Figure 3. Phase-averaged vorticity contours ω̃∗ (the cutoff level = ±0.1): (a) the contour
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and

〈qs〉 = q̃ s̃ + 〈qrsr〉,
where q and s stand for either u, v or θ .

4.2. Phase-averaged flow structures

Figure 3 presents the iso-contours of phase-averaged vorticity for Modes S-Ia,
S-Ib, S-II and T-I. Modes S-Ia, S-Ib and S-II are all characterized by one single
vortex street, whilst T-I and T-II (not shown) by two streets, conforming to the

distributions of 1 − U
∗

and Θ
∗

(figure 2). Note that phase φ in figure 3, ranging from
−2π to +2π, may be explicated to be a longitudinal distance, φ = 2π corresponding
to the averaged vortex wavelength. To avoid any distortion of the physical space,
the same scales are used in the φ- and y∗-directions in figure 3 and those that
follow.

The flow structure at P ∗ = 1.2 and α = 30◦ is shown in figure 3(a) (x∗ = 10)
and 3(b) (x∗ = 20) to illustrate Mode S-Ia. The two rows of vortices at x∗ = 10
and 20 exhibit essentially the same strength, which is comparable to that in an
isolated cylinder wake. The maximum phase-averaged vorticity strength measured
here is 1.12 and 0.48 at x∗ = 10 and 20 (not shown), respectively, for the isolated
cylinder, which is comparable with Zhou et al.’s (2002) measurements (1.27 and 0.52,
respectively). Flow structures measured at P ∗ = 1.2 and α = 90◦ by Zhou et al. (2002)
and at P ∗ = 1.3 and α = 0◦ by Zhou & Yiu (2006) also fall into this mode, whose
maximum phase-averaged vorticity ω̃∗

max is 1.24 and 1.18, respectively, at x∗ = 10.
The difference in ω̃∗

max between Mode S-Ia and that in the isolated cylinder wake is
within 20 %.

The flow structure at P ∗ = 4.0 and α = 10◦ is shown in figure 3(c, d) to illustrate
Mode S-Ib. The strength of vortices (figure 3c) is no more than 40 % of that in an
isolated cylinder wake. The flow structure in a two-tandem-circular-cylinder wake
(α = 0◦) reported by Zhou & Yiu (2006) at P ∗ = 2.5 and 6.0 also falls into Mode
S-Ib, whose ω̃∗

max is less than 30 % of that in an isolated cylinder wake. Compared
with Mode S-Ia (figure 3a), vortices in Mode S-Ib appear longitudinally stretched at
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x∗ = 10 (figure 3c). This stretch is not evident at x∗ = 20 (figure 3d). The observation
suggests that the vortex formation in Mode S-Ib may not be completed before x∗ = 10,
which is consistent with postponed flow separation from the downstream cylinder
(Part 1).

In contrast with Modes S-Ia and S-Ib, which are reasonably antisymmetric about
the centreline, Mode S-II (figure 3e,f ) is apparently asymmetric about the centreline;
the strength of vortices near the downstream cylinder (y∗ > 0) is about 50 % larger at
x∗ = 10 (figure 3e) than that near the upstream cylinder (y∗ < 0). The flow structure
examined by Zhou et al. (2002) at P ∗ = 1.5 and α = 90◦ is one case of Mode S-II,
which displays similarity to that in figures 3e and 3f in terms of asymmetry, that is,
the vorticity strengths differ by about 50 % between the two vortex rows.

Mode T-I (figure 3g,h) exhibits two distinct streets. The maximum vorticity of the
street behind the downstream cylinder is about 40 % larger than that behind the
upstream cylinder. The difference is ascribed to different vortex shedding frequencies.
The frequency of vortex shedding from the upstream cylinder is higher, implying
a shorter time to accumulate vorticity before separation and hence a lower vortex
strength, than that from the downstream cylinder. This difference persists at x∗ = 10
and 20. The vortex street behind the upstream cylinder is significantly impaired at
x∗ = 20. In fact, the inner vortices vanish because of vigorous interactions between
the two streets, which will be discussed further in § 4.5.

Mode T-II occurs at P ∗ � 2.5 and α � 88◦, where two symmetric or anti-phased
streets are observed at x∗ = 10 and 20 (figures 4 and 5 of Zhou et al. 2002), and the
vortex strengths in both streets are approximately the same, which is distinct from
Mode T-I.

The vortices in the near wake of two staggered cylinders and those in a self-
preserving wake or jet exhibit different behaviours. The vortices of Modes S-Ia, T-I
and T-II are characterized by relatively strong periodicity, as is evident by the pro-
nounced sharp peak in Eu (figures 5, 11 and 13 in Part 1). Those of Modes S-Ib and
S-II are less quasi-periodical, Eu displaying a relatively broad peak (figures 7 and 9 in
Part 1). In a turbulent far wake, vortices tend to occur intermittently and in groups,
and are rather quasi-periodical within each group (Mumford 1983; Bisset, Antonia &
Browne 1990). The major peak in the u- or v-spectrum appears even broader (e.g.
Bisset et al. 1990; Zhou, Antonia & Tsang 1998). The deviation between the three
types of vortices is connected to a difference in their generation. The vortices of Modes
S-Ia, T-I and T-II originate from vortex shedding from the two cylinders, similarly
to that in the near wake of an isolated cylinder. Naturally, the quasi-periodicity of
these vortices is dictated by the frequency of vortex shedding, which is linked to the
wake width or shear-layer thickness (Roshko 1954). The vortex generation in Modes
S-Ib and S-II is more complicated because of the postponed flow separation in S-Ib
or vigorous interactions between the narrow and wide streets in Mode S-II. In both
cases, the shear-layer instability plays a role in the complete formation of vortices
(Wang & Zhou 2005; Zhou & Yiu 2006) and hence in the periodicity of these vortices.
In a turbulent far wake, the generation of vortices may be ascribed to the shear-layer
instability (Wygnanski, Champagne & Marasli 1986), which is different from that in
the near wake of a bluff body (e.g. Zhou & Antonia 1995; Zhou et al. 2001). The
shear-layer instability probably also accounts for the generation of vortices observed
in the far field (160 slot heights from the slot where the jet issued) of a turbulent
plane jet by Mumford (1982). In fact, Wygnanski & Petersen (1987) noted that the
linear modes of instability in a plane cylinder wake were the same as the plane jet.
It may be inferred that the quasi-periodicity of vortices in the far field of a turbulent
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wake or jet could be determined by the shear-layer instability frequency, which is
probably related to the wake or jet width.

4.3. Multiple dominant frequencies of large-scale vortical structures

Mode T-I is characterized by two dominant frequencies across the wake even
up to x∗ = 20. The lower and higher frequencies dominate at y∗ > 0 and y∗ < 0,
respectively, ascribed to the alternate vortex shedding from the downstream and
upstream cylinders, respectively. Naturally, this begs the question of which frequency
should be used as the centre frequency for filtering to obtain the reference phase and
how this choice would affect the phase-averaged flow. As such, a reference probe was
also placed at y∗ = − 4 ∼ − 5 (near the upstream cylinder) for P ∗ = 4.0 and α = 50◦

(Mode T-I). Phase-averaging (Matsumura & Antonia 1993; Zhou et al. 2002; Zhou &
Yiu 2006) was conducted with the centre frequency set at the two different dominant
frequencies. The iso-contours of vorticity and corresponding streamlines at x∗ = 10
were compared (not shown). When the phase is determined from the reference signal
obtained at y∗ ≈ 4, the upper-street vortices in both rows exhibit a higher maximum
vorticity than their lower-street counterparts. Once the reference phase is changed to
that associated with vortex shedding from the upstream cylinder, as extracted from
the reference signal obtained at y∗ ≈ − 4, the maximum vorticity of vortices changes
slightly, less than 10 % for both rows. This variation is anticipated because of the use
of different reference signals. Nevertheless, sectional streamlines (not shown) display
qualitatively the same flow structure, without appreciable change in the topological
details. The upper-street vortices remain stronger than the lower street ones. Similar
observations were made at x∗ = 20 (not shown). In the following, the phase-averaged
data are presented based on the reference phase extracted from the reference signal
obtained at y∗ ≈ 4.

4.4. Characteristic properties of vortices

The phase-averaged vorticity is calculated by,

ω̃ =
∂

(
V + ṽ

)

∂x
−

∂
(
U + ũ

)

∂y
≈ 	ṽ

	x
−

	
(
U + ũ

)

	y
,

where V ( ≈ 0) is the lateral time-averaged velocity, 	x = − Uc	t = − Uc/fsampling . Uc

is the averaged convection velocity of vortices, which is identified with the velocity
at the location where ω̃max occurs. The most likely vortex position y∗

c , U ∗
c and ω̃∗

max

are summarized in table 3 for the four modes of flow structures. Experimental
uncertainties for y∗

c , U ∗
c and ω̃∗

max are estimated to be 3 %, 3 % and 6 %, respectively.
In this table, ‘upper’ and ‘lower’ stand for vortices above and below the centreline,
respectively. ‘Outer’ represents the outer vortices of Modes T-I or T-II, which are shed
from the side of a cylinder nearer to the free stream; ‘inner’ denotes the inner vortices
shed from the side of a cylinder close to y∗ = 0 (figure 1). In general, U ∗

c increases with
x∗, and U ∗

c of the upper vortices is larger than that of the lower. For convenience, U ∗
c

of the outer vortex is used in Taylor’s hypothesis to convert time interval into spatial
separation, i.e. 	x = − Uc	t , and calculation of the averaged vortex wavelength,
i.e. UcTs = Uc/fs . It has been verified that the phase-averaged results do not differ
appreciably when U ∗

c is slightly changed, similarly to that observed by Zhou et al.
(2002) and Zhou & Yiu (2006).

The ω̃∗
max value (table 3) for Mode S-Ia drops by 37 % and 45 % from x∗ = 10 to

20 for the upper and lower vortices, respectively. The corresponding drops for Mode
S-Ib are 41 % and 39 %, respectively. In contrast, this drop for Mode S-II is 43 % for
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S-I

Mode S-Ia S-Ib S-II T-I T-II

P ∗ 1.2 4.0 2.0 4.0 3.0

α(deg.) 30 10 40 50 90

x∗ 10 20 10 20 10 20 10 20 10 20

y∗
c

Outer
Upper 0.38 0.65 0.62 0.88 0.89 0.99 1.56 1.94 1.88 2.06
Lower −0.12 −0.35 −1.08 −1.25 −0.56 −1.07 −2.03 −2.23 −1.87 −1.97

Inner
Upper 1.06 0.59 1.24
Lower −1.64 −1.28

U ∗
c

Outer
Upper 0.86 0.87 0.81 0.84 0.81 0.82 0.83 0.85 0.83 0.84
Lower 0.83 0.84 0.78 0.84 0.74 0.79 0.85 0.85 0.83 0.84

Inner
Upper 0.80 0.80 0.81
Lower 0.85 0.81

ω̃∗
max

Outer
Upper −0.91 −0.57 −0.47 −0.28 −1.07 −0.61 −0.92 −0.39 −0.77 −0.28
Lower 0.88 0.48 0.39 0.24 0.58 0.41 0.59 0.21 0.85 0.33

Inner
Upper 0.73 0.26 0.63 0.07
Lower −0.56 −0.72 −0.11

Table 3. The vortex path, convection velocity and maximum vorticity.

the upper vortices, but only 29 % for the lower, suggesting that the vorticity decay
rate in the asymmetric wake (Mode S-II) is different between the two rows of vortices,
and the vortices of the larger strength decay more rapidly than those of the smaller.

The vortices in Modes T-I and T-II decay faster than in the single-street modes,
ω̃∗

max falling by about 60 % from x∗ = 10 to 20 for the outer vortices. The inner vortices
decay even more rapidly, ω̃∗

max in Mode T-I dropping by 65 % for the upper inner
vortices and by 100 % for the lower. The corresponding drops exceed 80 % for Mode
T-II (Zhou et al. 2002). The rapid decay leads to the disappearance or substantial
impairment of the inner vortices at x∗ = 20. The observation is ascribed to vigorous
interactions between the two vortex streets (Kolář, Lyn & Rodi 1997; Zhou et al.
2002).

4.5. Vorticity transport

Effective turbulent vorticity flux density vector, J̃ = {J x, J y}, is examined to
understand the streamwise evolution of vortices. J x and J y are given by Kolář
et al. (1997):

J x =
∂

∂y

[〈
v2

r

〉
−

〈
u2

r

〉

2

]
+

∂

∂x

〈
urvr

〉
, (1)

J y =
∂

∂x

[〈
v2

r

〉
−

〈
u2

r

〉

2

]
− ∂

∂y

〈
urvr

〉
. (2)

The vector J̃ ∗ provides a measure for the transport of vorticity (Kolář et al. 1997).
Figure 4 presents the vectors at x∗ = 10 and 20. The length of J̃ ∗ is proportional to
the strength of the vorticity flux density. A reference vector and the corresponding
magnitude of vorticity flux density are given at the left-hand upper corner in figure 4.
To facilitate data interpretation, the outermost ω̃∗ contours in figure 3 are included
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Figure 4. Effective vorticity flux density vectors J̃ ∗. +, centres; ×, saddles. The thicker solid
line denotes the outermost vorticity contours in figure 3; the thicker broken line indicates the
diverging separatrix. (a, c, e, g) x∗ = 10; (b, d, f, h) x∗ = 20.

in the figure (and also those that follow) to indicate the vortex border. Foci and
saddle points (e.g. Zhou & Antonia 1994) associated with vortices, determined from
sectional streamlines (not shown), are marked by ‘+’ and ‘×’, respectively. The
diverging separatrix (Hussain & Hayakawa 1987) through the saddle point is shown
by a thick broken line. In general, foci correspond well to the maximum vorticity, in
particular, at x∗ = 10.

In Mode S-Ia, with the two staggered cylinders rather close to each other, the
vectors behave similarly to those in a single-cylinder wake (Zhou et al. 2002), and
relatively long vectors are seen crossing the vortex border, pointing to or reaching the
neighbouring vortices (figure 4a), in particular, on the downstream side of a vortex
(e.g. the one at φ = 0). The observation indicates vigorous vorticity exchange between
counter-rotating vortices, accounting for the 40 % drop in ω̃∗

max from x∗ = 10 to 20.
This drop is lower than that (58 %) in the isolated cylinder case (e.g. Zhou et al.
2002). Note that the present St is 0.128, about 40 % lower than in a single cylinder
wake, corresponding to a longer vortex wavelength in view of the same U ∗

c (0.86), and
subsequently implying relatively weak interactions between neighbouring vortices and
a reduced decay rate in the vortex strength. Vortices in Mode S-Ib are longitudinally
elongated. As a consequence, the cross-stream vortices of opposite sign, though weak
in strength, are close to each other along a significant portion of their periphery,
enhancing vorticity exchange between the counter-rotating vortices. The vector lengths
near the border between adjacent vortices in Mode S-Ib (figure 4c) are comparable
to those in Mode S-Ia, which is internally consistent with their comparable vorticity
decay rates (∼ 40 %) from x∗ = 10 to 20. In Mode S-II, long vectors mainly cross
the border of the upper row vortices generated by the downstream cylinder, e.g. at
φ = 0, apparently due to the greater strength of the vortices. Consequently, the upper
row vortices decay faster. Relatively long vectors in Mode T-I are mainly associated
with the inner vortices for both streets. Some of the vectors in the inner vortices
interacts with the vortices of opposite sign in the same street, and some with the inner
vortices in the other street. The vorticity exchange characteristics are similar to those
in Mode T-II (cf. figure 7 in Zhou et al. 2002). Other than interacting with vortices
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Figure 5. Phase-averaged temperature contours Θ
∗

+ θ̃∗ (the cutoff level = 0.1, the contour
interval = 0.2). The thicker solid line denotes the outermost vorticity contours in figure 3; the
broken line indicates the diverging separatrix. (a, c, e, g) x∗ = 10; (b, d, f, h) x∗ = 20.

shed from the same cylinder, the inner vortices also interact with the inner vortices
shed from the other cylinder. On the other hand, the outer vortices interact only with
inner vortices in the same street. As a result, the inner vortices decay faster; those
in the lower street generated by the upstream cylinder vanish by x∗ = 20 (figure 3h).
The inner vortices in the upper street associated with the downstream cylinder persist
at x∗ = 20, probably owing to their initial greater strength. The vorticity exchange
characteristics of Mode T-II have been discussed in detail by Zhou et al. (2002), and
thus are not repeated here. However, it is worth mentioning that the inner vortices
in both streets of Mode T-II are equally weakened from x∗ = 10 to 20, not vanishing
until x∗ = 40.

4.6. Phase-averaged temperature field

Figure 5 presents the contours of phase-averaged temperature, Θ∗ + θ̃∗. At x∗ = 10, the
isotherms of Θ∗ + θ̃∗ in general show a close similarity to the ω̃∗ contours, the higher
isotherms coinciding with the large concentrations of ω̃∗. This observation is ascribed
to the tendency of strong vortical motion to retain heat (Matsumura & Antonia
1993). The lower isotherm is drawn in toward the centreline from both sides of
the wake, indicating the arrival of cold fluid in the wake from the free stream.
Because Modes S-II (figure 5e) and T-I (figure 5g) are asymmetric about the centreline,
more cold fluid is drawn into the wake from the side near the downstream cylinder
where vortices are stronger. For Mode S-Ib (figure 5c), however, the dissociation of
the vortical structure with cold fluid is evident even at x∗ = 10 probably because of
weak vortices in this mode (figure 3c). At x∗ = 20, similarity between the Θ∗ + θ̃∗ and
ω̃∗ contours fades, in particular, for Modes T-I (figure 5h) and T-II (figure 8 in Zhou
et al. 2002), conforming to the weakened vortices.

4.7. Momentum and heat transport

4.7.1. Coherent fluctuating velocities and temperature

The phase-averaged velocity and temperature fluctuations ũ∗, ṽ∗ and θ̃∗ contours
of Mode S-Ia (figure 6a–c) resemble those previously reported in the wake of an
isolated cylinder (Matsumura & Antonia 1993; Zhou et al. 2002). The peak values
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Figure 6. Phase-averaged velocity and temperature fluctuations at x∗ = 10. The contour cutoff
level and increment are ±0.02 and 0.02 for ũ∗, ±0.04 and 0.04 for ṽ∗ and ±0.05 and 0.05 for
θ̃∗, respectively. The thicker solid line denotes the outermost vorticity contours in figure 3; the
broken line indicates the diverging separatrix.

of ũ∗, ṽ∗ and θ̃∗ are the largest of all modes, internally consistent with the strong
vorticity strength of Mode S-Ia (figure 3a).

Mode S-Ib displays disparities in the ũ∗, ṽ∗ and θ̃∗ contours (figure 6d–f ) from
Mode S-Ia. The ũ∗ contours fail to display up–down anti-symmetry about the vortex
centre at x∗ = 10, which is consistent with the relatively low strength of vortices
(figure 3c). This up–down anti-symmetry of the ũ∗ contours is, however, seen at
x∗ = 20 (not shown). The observation again suggests that the vortex formation may
not be completed at x∗ = 10. The incomplete vortex formation is probably responsible
for not so smooth ṽ∗ contours (figure 6e), whose maximum level is less than half
of that associated with Mode S-Ia. The maximum θ̃∗ (figure 6f ) does not coincide
with the maximum ω̃∗, with only part of the positive θ̃∗ contours overlapping with
the vortex, suggesting that warm fluid and vortex are not so closely associated with
each other as Mode S-Ia. Furthermore, the longer axis of the higher isotherms tends
to be aligned with that of the ω̃∗ contours, which is inclined with respect to the free
stream. In contrast, the longer axis of the higher isotherms or ω̃∗ contours of Mode
S-Ia is approximately normal to the flow direction. At x∗ = 20, the longer axis of
the higher isotherms of Mode S-Ib (not shown) approaches, compared with that at
x∗ = 10, the direction normal to the free stream, pointing again to the fact that the
vortex formation may not be completed at x∗ = 10.

The ũ∗, ṽ∗ and θ̃∗ contours (figure 6g–i) of Mode S-II resemble qualitatively their
counterparts of Mode S-Ia. Nevertheless, the maximum ũ∗ associated with the lower-
row vortices is smaller than its counterpart of Mode S-Ia, apparently because the
lower-row vortices are weaker than the upper in Mode S-II, which have comparable
strength to that of vortices in Mode S-Ia. By the same token, the maximum ṽ∗ and
θ̃∗ of Mode S-II are smaller than their counterparts of Mode S-Ia. The upper-row
vortex, e.g. the one at φ = 0, is flanked downstream with the negative θ̃∗ contours,
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Figure 7. Phased-averaged coherent shear stress and heat fluxes (x∗ = 10). The contour cutoff
level and increment are ±0.005 and 0.005 for ũ∗ṽ∗, ±0.005 and 0.005 for ũ∗θ̃∗, and ±0.01 and
0.01 for ṽ∗θ̃∗, respectively. The thicker solid line denotes the outermost vorticity contours in
figure 3; the broken line indicates the diverging separatrix.

which penetrate and completely separate the positive θ̃∗ contours associated with the
two opposite-signed cross-stream vortices (figure 6i). The lower-row vortex, e.g. at
φ = −1, however, is not flanked with the negative θ̃∗ contours. The difference suggests
that the downstream-cylinder-generated vortex is largely responsible for entraining
cold fluid into the wake.

In Mode T-I, the ũ∗, ṽ∗ and θ̃∗ contours (figure 6j–l) in each street appear
qualitatively similar to those in Mode S-Ia, though with considerably smaller
maximum levels. The maximum ũ∗, ṽ∗ and θ̃∗ associated with the downstream-
cylinder-generated vortex street (y∗ > 0) are larger than those associated with the
other street (y∗ < 0) because of the difference in their vortex strengths. In contrast,
these maxima of the two streets are essentially the same for Mode T-II (see figure 9
in Zhou et al. 2002).

4.7.2. Coherent momentum and heat fluxes

For Mode S-Ia, the contours of ũ∗ṽ∗, ũ∗θ̃∗ and ṽ∗θ̃∗ (figure 7a–c) resemble
qualitatively those in an isolated cylinder wake reported by Matsumura & Antonia
(1993). In the isolated cylinder case, ũ∗ṽ∗ is almost antisymmetric longitudinally
about φ = 0, resulting in a small contribution to uv since the positive and negative
ũ∗ṽ∗ tend to cancel each other. This antisymmetry is still evident in Mode S-Ia.
However, there is an appreciable difference in magnitude between the positive and
negative ũ∗ṽ∗, implying an increased contribution to uv, as confirmed in § 5. The
ũ∗θ̃∗ contours are dominated by positive contours within the vortex, reflecting the
close association of positive ũ with warm fluid (θ̃ > 0). The ṽ∗θ̃∗ contours within the
vortex are approximately antisymmetric longitudinally about the vortex centre, which
is ascribed to the association of both positive and negative ṽ (figure 6b) with warm
fluid.
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The clover-leaf pattern is not evident in the ũ∗ṽ∗ contours of Mode S-Ib (figure 7d)
as a result of weak vortical structures (figure 3c). The negative and positive ũ∗ṽ∗

are predominant at y∗ > 0 and y∗ < 0, respectively. This may not necessarily mean a
significant contribution to uv because of the small magnitude of ũ∗ṽ∗, as compared
with Mode S-Ia, which will be confirmed in § 5. In contrast with Mode S-Ia, the
positive ũ∗θ̃∗ (figure 7e) is less dominant within the vortex because weak vortical
motion could not retain heat well. The positive ṽ∗θ̃∗ contours (figure 7f ) dominate at
y∗ > 0 because of the difficulty for negative ṽ∗θ̃∗ to survive given ∂Θ/∂y < 0. By the
same token, the negative ṽ∗θ̃∗ overwhelms the positive at y∗ < 0, where ∂Θ/∂y > 0.

The ũ∗θ̃∗ and ṽ∗θ̃∗ contours of Mode S-II (figure 7g–i) exhibit more similarity to
their counterparts of Mode S-Ia than to those of Mode S-Ib. Nevertheless, the flow
structure is significantly asymmetric about the centreline (figure 3e). This asymmetry
is reflected in the contours, in particular, of ũ∗θ̃∗ and ṽ∗θ̃∗. The ũ∗ṽ∗ contours are
rather anti-symmetric longitudinally about the vortex centre for y∗ > 0, but not so for
y∗ < 0, implying a pronounced contribution to uv below the centreline, as confirmed
in § 5. The positive ṽ∗θ̃∗ (figure 7i) overwhelms the negative since upper vortices are
strongly coherent, accounting for most of the entrainment of cold fluid from the free
stream into the wake (figure 5e).

The ũ∗ṽ∗, ũ∗θ̃∗ and ṽ∗θ̃∗ contours (figure 7j–l) of mode T-I in the upper street
behave similarly, albeit to a lesser extent in the lower street, to their counterparts of
Mode S-Ia. The ũ∗ṽ∗ contours of the upper street are characterized by a clover-leaf
pattern, with negative ũ∗ṽ∗ predominant. The maximum magnitude of ũ∗ṽ∗ is smaller
in the lower street, and the positive ũ∗ṽ∗ contours are barely noticeable. The ũ∗θ̃∗

and ṽ∗θ̃∗ contours (figure 7k,l) display considerable difference between the streets.
In particular, the outer vortices (e.g. at φ = 0 of figure 7l) of the upper street is
flanked downstream, as Mode S-Ia, with a concentration of positive ṽ∗θ̃∗, indicating
a strong entrainment of cold fluid from the free stream. However, there is only a
weak concentration of negative ṽ∗θ̃∗ downstream of the outer vortices (e.g. at φ = 0.5
of figure 7l) in the lower street, suggesting a weak entrainment of cold fluid from the
free stream. The disparity apparently arises from distinct vortex strengths between
the streets (figure 3g). In contrast, the ũ∗ṽ∗, ũ∗θ̃∗ and ṽ∗θ̃∗contours (figure 10g–i in
Zhou et al. 2002) of Mode T-II are antisymmetrical about the flow centreline because
of the antisymmetry of the two vortex streets.

4.7.3. Incoherent momentum and heat flux

The contours of incoherent momentum and heat fluxes, 〈u∗
r v

∗
r 〉, 〈u∗

r θ
∗
r 〉 and 〈v∗

r θ
∗
r 〉

(figure 8a–c), for Mode S-Ia qualitatively resemble those in an isolated cylinder wake
(cf. figure 7a, d , g of Matsumura & Antonia 1993). The maximum concentration of
〈u∗

r v
∗
r 〉 tends to occur near the vortex centre, as observed by Zhou et al. (2002) and

Zhou & Yiu (2006). There is a significant portion of 〈u∗
r v

∗
r 〉 distributed along the

diverging separatrix through the saddle point, resulting from vortex stretching. The
positive and negative concentrations of 〈u∗

r θ
∗
r 〉 (figure 8b) or 〈v∗

r θ
∗
r 〉 (figure 8c) occur

side-by-side and mostly within vortices, with a very weak presence along the diverging
separatrix. Above the centreline, v∗

r θ
∗
r tends to be positive because of the association

of relatively cold fluid (θ∗
r < 0) with the downward motion (v∗

r < 0) or relatively warm
fluid (θ∗

r > 0) with the upward motion (v∗
r > 0), as inferred from the distribution of

Θ (figure 2b). Based on experimental data in a single-cylinder wake, Cantwell &
Coles (1983) and Hussain & Hayakawa (1987) suggested that potential fluid drawn
from the free stream by a vortex may be partially assimilated into the vortex on the
other side of the wake. This may have contributed to the presence of the negative
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Figure 8. Phased-averaged incoherent shear stress and heat fluxes (x∗ = 10). The contour
cutoff level and increment are ±0.002 and 0.002 for < u∗

r v
∗
r > , ±0.004 and 0.004 for 〈u∗

r θ
∗
r 〉,

and ±0.005 and 0.005 for 〈v∗
r θ

∗
r 〉, respectively. The thicker solid line denotes the outermost

vorticity contours in figure 3; the broken line indicates the diverging separatrix.

concentrations of 〈v∗
r θ

∗
r 〉 (positive vr associated with negative θr ), e.g. upstream of

the vortex at φ = 0. On the other hand, v∗
r θ

∗
r tends to be negative below the centreline,

but potential fluid drawn from the free stream by the vortex above the centreline
is partially assimilated into the vortex below the centreline, resulting in the positive
concentrations of 〈v∗

r θ
∗
r 〉 (negative vr associated with negative θr ). The observation

suggests that incoherent heat fluxes are probably mostly connected to intermediate-
to small-scale turbulent structures (Rinoshika & Zhou 2005) that occur within the
large-scale vortical structures, with little contribution from the saddle region.

Unlike Mode S-Ia, there is no close association between the 〈u∗
r v

∗
r 〉 concentrations

(figure 8d) and vortices in Mode S-Ib, apparently owing to the very low strength of the
vortices (figure 3c). Similarly to Mode S-Ia, there is concentrated 〈u∗

r v
∗
r 〉 aligned with

the diverging separatrix, suggesting that the saddle region is largely responsible for
the production of 〈u∗

r v
∗
r 〉 in Mode S-Ib. Negative 〈u∗

r θ
∗
r 〉 is predominant (figure 8e).

While the positive 〈v∗
r θ

∗
r 〉 (figure 8f ) overwhelms the negative for the upper row

of vortices, the opposite is observed for the lower row of vortices. The maximum
magnitudes of 〈u∗

r v
∗
r 〉, 〈u∗

r θ
∗
r 〉 and 〈v∗

r θ
∗
r 〉 exceed appreciably their coherent counterparts

(figure 7d–f ), whereas Mode S-Ia is the other way around. The observation is
reasonable since weak vortices are not expected to play a predominant role in
momentum and heat transport.

The 〈u∗
r v

∗
r 〉, 〈u∗

r θ
∗
r 〉 and 〈v∗

r θ
∗
r 〉 contours (figure 8g–i) of Mode S-II are distinct

from those of Mode S-Ia or S-Ib. While concentrated along the separatrix, 〈u∗
r v

∗
r 〉

(figure 8g) shows concentration within the stronger upper vortex, e.g. the one at φ = 0.
Above the centreline, the positive and negative 〈u∗

r v
∗
r 〉 contours occur over comparable

longitudinal extent and may act to partially cancel each other. Below the centreline,
however, the positive 〈u∗

r v
∗
r 〉 is predominant, implying a significant contribution from

the incoherent motion to uv, as confirmed in § 5. The 〈u∗
r θ

∗
r 〉 contours above the
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centreline are rather different from those below because of the asymmetry of the
wake. The 〈v∗

r θ
∗
r 〉 contours (figure 8i) within the vortex appear similar to those of

mode S-Ia. Nevertheless, 〈v∗
r θ

∗
r 〉 is more concentrated along the separatrix, similarly

to Mode S-Ib.
In Mode T-I, the maximum magnitudes of 〈u∗

r v
∗
r 〉, 〈u∗

r θ
∗
r 〉 and 〈v∗

r θ
∗
r 〉 are smaller

than their coherent counterparts. Because of the asymmetry of the flow structure
about y∗ = 0 (figure 3g), 〈u∗

r v
∗
r 〉 is considerably more concentrated at y∗ > 0 than at

y∗ < 0, in contrast with the antisymmetric distribution of positive and negative 〈u∗
r v

∗
r 〉

contours about the wake centreline in mode T-II (see figure 11 in Zhou et al. 2002).

5. Reynolds stresses, heat fluxes and coherent contributions
5.1. Structural averaging

The coherent and incoherent contributions to the Reynolds stresses, temperature
variance and heat fluxes may be estimated in terms of structural averaging. Assuming
that the phase-averaged structure begins at sample m1 (corresponding to φ = −π)
before φ = 0 and ends at sample m2 (corresponding to φ = π) after φ = 0, the structural
averaging denoted by a double overbar is defined by

q̃ s̃ =
1

m1 + m2 + 1

m2∑

−m1

q̃ s̃.

The value of m1(= m2) is 30 so that the duration (m1 + m2 + 1) corresponds

approximately to one vortex shedding period. The ratio of q̃ s̃ to qs provides a
measure to quantify contributions from large-scale coherent structures to momentum
and heat transport.

5.2. Fluctuating velocity and temperature variances

Figure 9(a–l) displays the cross-stream distributions of fluctuating velocity and
temperature variances measured at x∗ = 10, along with their coherent and incoherent
contributions. A few observations can be made. (i) u∗2 (figure 9a–d), v∗2 (figure 9e–h)
and θ∗2 (figur 9i–l) are roughly symmetric about y∗ = 0 for Mode S-Ia. However, the
quantities are in general appreciably larger at y∗ > 0 than y∗ < 0 for Modes S-Ib, S-II
and T-I. The observation is connected with the vortices shed from the downstream
cylinder (located at y∗ > 0) having a strength considerably larger than those shed

from the upstream cylinder located at y∗ < 0 (not shown here). (ii) u∗2 displays two
distinct peaks for Modes S-Ia and S-II (figur 9a, c) but merely one peak for Mode
S-Ib (figrue 9b). This is because the vortex formation is probably incomplete and
vortices are very weak at x∗ = 10 for Mode S-Ib. This assertion is supported by very

weak coherent contributions in this mode, i.e. ũ2/u2 (figure 9b), ṽ2/v2 (figure 9f )

and θ̃2/θ2(figure 9j ), as compared with others; the incoherent contribution accounts

most for u∗2, v∗2 and θ∗2. (iii) in contrast with the single street cases, ũ∗2 of Mode

T-I exhibits four peaks for ũ∗2 (figure 9d) and two peaks for ṽ∗2 or θ̃∗2 (figure 9h, l),
similarly to mode T-II (cf. figure 12, Zhou et al. 2002), which is coincident with the

occurrence of two vortex streets. (iv) ṽ2/v2 inferred from figure 9 is largest, compared

with ũ2/u2 or θ̃2/θ2, as observed from a single-cylinder wake (Kiya & Matsumura
1985; Matsumura & Antonia 1993). This is not unexpected because ṽ overwhelms ũ

in the near wake owing primarily to the alternate arrangement of counter-rotating
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Figure 9. �, Time-averaged, �, coherent and �, incoherent fluctuating velocity, temperature
variances, shear stresses and heat fluxes at x∗ = 10.

vortices. Furthermore, the present phase-averaging technique identifies vortices based
on the v-signal, thus underestimating the coherent contributions to u2 and θ2. (v)

θ̃∗2 (figure 9l) of mode T-I is much smaller at |y∗| < 1.5 than at |y∗| > 1.5, similarly
to Zhou et al.’s (2002) observation for Mode T-II (cf. their figure 14o), suggesting a
faster loss of heat from inner vortices than from outer ones, internally consistent with
the fast vorticity decay rate of inner vortices (§ 4).

5.3. Reynolds shear stress and heat fluxes

The cross-flow distribution of u∗v∗ is approximately symmetric and anti-symmetric
about the centreline for Modes S-Ia (figure 9m) and T-II (figure 12 of Zhou et al.
2002), respectively. This symmetry or anti-symmetry is absent for Modes S-Ib, S-II

and T-I (figure 9n–p). Note that uv, ũ∗ṽ∗ and 〈u∗
r v

∗
r 〉 are negative at y∗ < 0 in Mode
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S-Ia (figure 9m), in contrast to their counterparts in an isolated cylinder wake (cf.
figure 12d in Zhou et al. 2002), which are positive below the centreline. Evidently,
although the two cylinders in Mode S-Ia behave like a single body, generating a
vortex street similar to that behind an isolated cylinder, the momentum transports
between the flows are quite different. For Mode S-Ib, the ũ∗ṽ∗ magnitude (figure 7d) is
small, compared with that of 〈u∗

r v
∗
r 〉 (figure 8d). Furthermore, the 〈u∗

r v
∗
r 〉 contours are

predominantly negative at y∗ > 0 and positive at y∗ < 0. As a result, 〈u∗
r v

∗
r 〉 accounts

for most of u∗v∗ (figure 9n), which is negative at y∗ > 0 and positive at y∗ < 0. For
Mode S-II, the magnitude and longitudinal extent of the positive ũ∗ṽ∗ contours are
comparable to those of the negative at y∗ > 0 (figure 7g), implying the cancellation
of the positive and negative ũ∗ṽ∗ in structural averaging. However, the positive ũ∗ṽ∗

contours at y∗ < 0 overwhelm the negative in both magnitude and longitudinal extent.
The 〈u∗

r v
∗
r 〉 contours (figure 8g) exhibit similar behaviours. Consequently, u∗v∗ is

very small at y∗ > 0 and definitely positive at y∗ < 0 (figure 9o); ũ∗ṽ∗ and 〈u∗
r v

∗
r 〉 are

comparable. Because of the occurrence of two streets, the cross-flow distribution of
u∗v∗ for Mode T-I is different from those of the single-street modes. The coherent
contribution is comparable to the incoherent above the centreline, but accounts for
u∗v∗ more than the incoherent below the centreline.

The cross-flow distribution of uθ in Mode S-Ia (figure 9q) shows two positive peaks
with slightly different magnitudes, apparently linked to a small difference in strength
between the two rows of vortices (figure 3a). The asymmetry about y∗ = 0 is more
evident in uθ for other modes whose vortex strengths on the two sides of the wake
differ to a greater extent (figure 3). For Mode S-Ia, the positive ũ∗θ̃∗ contours are
predominant (figure 7b); in contrast, the negative 〈u∗

r θ
∗
r 〉 (figure 8b) overwhelms the

positive in both spatial extent and magnitude. Furthermore, the maximum magnitude

of ũ∗θ̃∗ is much larger than that of 〈u∗
r θ

∗
r 〉 (figure 8b). Therefore, ũ∗θ̃∗ is pronouncedly

positive, whereas 〈u∗
r θ

∗
r 〉 is negative with a relatively small magnitude, which explains

why ũ∗θ̃∗ is larger than uθ at |y∗| < 3. Similar explanation applies for the behaviours

of uθ , ũ∗θ̃∗ and 〈u∗
r θ

∗
r 〉 at y∗ > 0 in Modes S-II and T-I. In Mode S-Ib (figure 9r) the

coherent contribution to uθ is very small since weak vortices could not retain heat.
The cross-stream distribution of vθ is qualitatively antisymmetric about y∗ = 0

(figure 9u–x). The departure from this antisymmetry is small in Modes S-Ia (figure 9u),
T-I (figure 9x) and T-II (figure 12 of Zhou et al. 2002), but large in Modes S-Ib
(figure 9v) and S-II (figure 9w). Vortices are effective in transporting heat (e.g. Zhou

et al. 2002). In fact, ṽ∗θ̃∗ accounts for most of vθ for all flow modes except Mode

S-Ib, which is characterized by very weak vortices and a smaller ṽ∗θ̃∗ than < v∗
r θ

∗
r >

(figure 9v). The upper-row vortices are stronger than the lower-row in Modes S-Ib and

S-II (figure 3c, e), leading to the larger magnitude of ṽ∗θ̃∗ at y∗ > 0 than at y∗ < 0, and
subsequently the large departure from antisymmetry in the vθ distribution. Note that

the ṽ∗θ̃∗ distribution of Mode T-I shows on each side one small peak near y∗ = 0 and
another significantly more pronounced peak near the free stream, which are connected
to inner and outer vortices, respectively. Apparently, the low-strength inner vortices
could not transport heat as effectively as the outer vortices. A similar observation
was made for Mode T-II (cf. figure 12r in Zhou et al. 2002). It may be inferred
that interference between the two vortex streets in Modes T-I and T-II significantly
expedites the transport of heat out of vortices as well as the vorticity decay.
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S-I

Mode S-Ia S-Ib S-II T-I T-II

P ∗ 1.2 4.0 2.0 4.0 3.0

α(deg.) 30 10 40 50 90

x∗ 10 20 10 20 10 20 10 20 10 20

(ũ2/u2)m(%) 61 31 19 9 59 31 49 8 36 4

(ṽ2/v2)m(%) 71 52 28 27 66 55 69 31 58 23

(θ̃ 2/θ 2)m(%) 29 13 15 13 39 30 17 6 15 4

(ũṽ/uv)m(%) 69 54 25 21 50 52 65 21 28 7

(ũθ̃/uθ )m(%) 115 88 20 16 94 129 144 27 77 7

(ṽθ̃/vθ )m(%) 64 53 29 27 60 41 68 21 50 15

Table 4. Averaged contributions from the coherent structure to Reynolds stresses,
temperature variance and heat fluxes.

5.4. Streamwise evolution

The ratio of q̃ s̃/qs depends not only on x∗, but also on y∗ (figure 9). Thus, an
averaged contribution at a fixed x∗ from the coherent structure is defined, namely,

(
q̃ s̃/qs

)
m

=

∫ Y ∗

−Y ∗

∣∣∣q̃ s̃

∣∣∣dy∗
/∫ Y ∗

−Y ∗
|qs|dy∗,

where Y ∗ = 5 at which |qs| is approximately zero. The calculated (q̃ s̃/qs)m is

summarized in table 4. Generally, (q̃ s̃/qs)m is internally consistent with the

observations from qs, q̃ s̃ and 〈qrsr〉 (figure 9). Firstly, (ṽ2/v2)m is larger than (ũ2/u2)m

or (θ̃2/θ2)m, irrespective of flow structures, suggesting a larger coherent contribution

to v2. Secondly, from x∗ = 10 to 20, (θ̃2/θ2)m decreases more rapidly, by a factor of
about 3, in the twin-street modes than in the single-street modes, indicating again
a faster loss of heat owing to interference between the two vortex streets. Thirdly,

(ũṽ/uv)m in Modes S-Ia, S-II and T-I is much larger than that (48 %) in an isolated
cylinder wake (Matsumura & Antonia 1993), suggesting more effective momentum

transport. Furthermore, although smaller than (ũθ̃/uθ)m, (ũṽ/uv)m is comparable in

magnitude to (ṽθ̃/vθ )m, regardless of the value of x∗, that is, momentum transport is
as efficient as heat transport, in distinct contrast with a single-cylinder wake where

heat transport is considerably more efficient. Fourthly, (q̃ s̃/qs)m of Mode S-Ib is
small, compared with other cases, at x∗ = 10, apparently linked to the weak vortical

structures. From x∗ = 10 to 20, (q̃ s̃/qs)m declines more rapidly in Mode S-Ia than in
Mode S-II, internally consistent with the vorticity decay (§ 4), because the vortices
of both rows in Mode S-Ia are strong and interact with each other more vigorously

than in the asymmetric single street of Mode S-II. Mode S-Ib drops in (q̃ s̃/qs)m least

of all modes, owing to a small variation in vortical structures. In contrast, (q̃ s̃/qs)m
associated with Modes T-I and T-II declines much more quickly than the single-street
modes, reaching a level of about the same as Mode S-Ib at x∗ = 20, because of the
rapid streamwise decay in vortices under vigorous interactions between the streets.
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Figure 10. Coherent velocity vectors Ṽ
∗

in a reference frame moving at (a) U ∗
c = 0.86, (d)

0.81, (g) 0.81, (j ) 0.83, heat flux vectors q̃∗ and incoherent heat flux vectors q̃∗
r at x∗ = 10. The

broken line indicates the diverging separatrix.

Mode T-II decays faster in (q̃ s̃/qs)m than Mode T-I, probably because the two streets
of the same vortex strength may interact more vigorously with each other.

Srinivas et al. (2006) studied numerically a square cylinder wake over x∗ = −5 ∼ 15
and noted that up to x∗ = 11, the coherent stresses were larger than their incoherent
counterparts. The same observation is made here, which is reasonable since the
near wake is, in general, characterized by strongly coherent vortices. However, the
incoherent stresses may exceed in magnitude the coherent for Mode S-Ib. This is
not unexpected in view of very weak vortices in this mode (figure 3). It should
be mentioned that at x∗ = 20, the incoherent contributions (not shown in table 4),

e.g. (〈u2
r 〉/u2)m, (〈v2

r 〉/v2)m and (〈urvr〉/uv)m, account for more towards the Reynolds
stresses than do the coherent. The only exception is ṽ2, which exceeds slightly its
incoherent counterpart in Modes S-Ia and S-II at x∗ = 20, probably owing to the
present phase-averaging technique, which identifies vortices based on the v-signal,
thus overestimating the coherent contribution in the lateral direction.

6. Further discussion
Heat transport characteristics of the four flow modes may be further explored

by examining the coherent heat flux vector q̃∗ = (ũ∗θ̃∗, ṽ∗θ̃∗) (figure 10b, e, h, k) and
incoherent heat flux vector q̃∗

r = (〈u∗
r θ

∗
r 〉, 〈v∗

r θ
∗
r 〉) (figure 10c, f, i, l), along with the

velocity vector Ṽ
∗

= (U
∗

+ ũ∗ − U ∗
c , ṽ∗) (figure 10a, d, g, j ). Velocity vectors are

viewed in a reference frame translating at Uc. One reference vector of a specified

length is given at the left-hand upper corner of the q̃∗, q̃∗
r or Ṽ

∗
plots in figure 10 to

indicate the correspondence between the length and magnitude of a vector.

The relatively long vectors of q̃∗ are mostly aligned with Ṽ
∗

within each vortex
except Mode S-Ib whose vortex strength is very low. On the other hand, the
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low-strength vortices are associated with relatively short q̃∗, including Mode S-Ib
(figure 10e) and vortices below the centreline of Modes S-II (figure 10h) and T-I
(figure 10k), that is, the strong coherent motion retains heat and the weak loses heat
rapidly. The relatively long vectors of q̃∗ also occur in the alleyway between two
oppositely signed vortices, with the upstream one characterized by strong coherent

motion, and point towards the free stream, oppositely to Ṽ
∗
. These vectors indicate

that cold fluid is approximately evenly entrained from both sides into the wake
in Modes S-Ia (figure 10b) and T-II (refer to figure 14h in Zhou et al. 2002), but
predominantly from the downstream cylinder side in Modes S-II (figure 10h) and
T-I (figure 10k). The entrainment of cold fluid into the wake is barely discernible in
Mode S-Ib (figure 10e) because of very weak coherent motion.

The incoherent heat flux vectors, q̃∗
r , behave differently from q̃∗. They do not seem

to show any correlation with q̃∗ within the vortex, and are approximately normal
to the diverging separatrix in the saddle region since the temperature front along
the diverging separatrix is largest (Matsumura & Antonia 1993). The vectors in
Mode S-Ia show similar behaviours to their counterparts in an isolated cylinder
wake (cf. figure 8g in Matsumura & Antonia 1993 and figure 14c in Zhou et al.
2002). Downstream within the vortex at φ = 0, q̃∗

r largely points upward toward
the free stream (figure 10c), suggesting the association of either vr < 0 with θr < 0
or vr > 0 with θr > 0. The latter is more likely, corresponding to the loss of heat
owing to the incoherent motion. Upstream within the vortex, relatively long vectors
point downwards (〈v∗

r θ
∗
r 〉 < 0) and upstream (〈u∗

r θ
∗
r 〉 < 0), that is, ur < 0 tends to

correspond to θr > 0, and vr > 0 (or vr < 0) is associated with θr < 0 (or θr > 0); these
vortices appear crossing the vortex border. The negative 〈v∗

r θ
∗
r 〉 is most probably

due to the assimilation of cold potential fluid (θr < 0) drawn into this vortex from
the free stream by the vortex at φ = 1 on the other side of the wake. Similar
observations are also made for the vortices at φ = ± 1, though relatively long
vectors upstream within the vortices cross the vortex border considerably more
evidently than the upper-row vortex. It may be concluded that the incoherent motion
plays a key role in transporting heat out of vortices and drawing cold fluid into
vortices.

For Mode S-Ib, the incoherent heat flux vectors (figure 10f ) behave distinctly from
Mode S-Ia, pointing largely towards the free stream, in particular, those normal to
and intersecting with the diverging separatrix, suggesting the association of θr > 0
with vr > 0 for y∗ > 0 and with vr < 0 for y∗ < 0 or the association of θr < 0 with
vr < 0 for y∗ > 0 and with vr > 0 for y∗ < 0. The former results from heat transport
out of vortices or turbulent heat diffusion, while the latter from the entrainment of
cold fluid into the wake because of incoherent motion.

The vectors, q̃∗
r , in Mode S-II show more asymmetry about the centreline because

of the significant departure of the two rows of vortices from anti-symmetry (figure 3e).
Those corresponding to the lower-row vortices resemble their counterparts of Mode
S-Ia. This is, however, not the case for the upper-row vortices. First, relatively long
vectors downstream within the vortex, which point upward towards the free stream,
cross the vortex border, which is not so evident in Mode S-Ia. Secondly, in contrast
to Mode S-Ia, the vectors are short upstream within the vortex, but exhibit more
similarity in the saddle region to those in Mode S-Ib. The vectors, near the saddle,
normal to and intersecting with the diverging separatrix are rather long, suggesting
considerable heat transport in the saddle region, which is internally consistent with

the peak at y∗ ≈ 2 in v∗
r θ

∗
r (figure 9w).
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Vectors, q̃∗
r , in each street of Mode T-I (figure 10l) behave similarly to those

of Mode S-Ia, though there is a difference due to interference between the streets.
In general, relatively long vectors occur upstream of the vortices, regardless of the
inner or the outer, which point upstream towards the free stream for the inner
vortices, but towards the centreline for the outer. The former cross the vortex border
much more evidently than the latter, probably because the central region about
y∗ = 0 is of higher temperature (figure 2h), indicating that the inner vortices lose
heat more rapidly than the outer, corroborating the earlier observations based on
figure 9(x).

Based on Ṽ
∗
, q̃∗ and q̃∗

r , the flow structure and heat transport characteristics at
x∗ = 10 are summarized in figure 11. The flow structure is sketched, based on flow-
visualization data in Part 1, on the left-hand side of each plot, where typical initial
relationships between shear layers around the cylinders are also included for each
flow mode. Apparently, the relationships are distinct from one mode to another. The
effect of initial conditions may persist even in the self-preserving turbulent shear flows,
including wakes (e.g. Wygnanski et al. 1986; George 1989; Zhou & Antonia 1995).
Naturally, the flow structure and heat transport behind two staggered cylinders may
differ from one mode to another in view of their distinct initial conditions.

Both flow structure and heat transport of Mode S-Ia (figure 11a) are very similar to
the isolated cylinder case (Matsumura & Antonia 1993). Cold fluid is drawn equally
into the wake from either side of the vortex street, namely, from free stream 1 under
the combined coherent motions of vortices A and C through the alleyway downstream
of vortex A and from free stream 2 owing to the joint coherent motions of vortices
B and A via the alleyway downstream of vortex B. As a result, the coherent heat
flux is significant in the alleyways. Heat loss is mostly due to the incoherent motion,
including heat transport out of quadrant I of vortex A and quadrant IV of vortex B
and the assimilation of cold fluid into quadrant III of vortex A and quadrant II of
vortex B by vortices on the other side of the wake.

Because of weak vortices, the incoherent heat transport in Mode S-Ib (figure 11b)
overwhelms the coherent; the entrainment of cold fluid into the wake is insignificant,
leading to a barely discernible coherent heat flux in the alleyway between oppositely
signed vortices, compared with Mode S-Ia. Furthermore, the lateral incoherent heat
flux contributes mostly to the net heat transport out of vortices, which occurs largely
in the two quadrants of vortices near the free stream.

Heat transport for Mode S-II (figure 11c) is distinct from that for Mode S-Ia or
S-Ib. The coherent motion originating from the downstream cylinder is significantly
stronger than from the upstream cylinder. Accordingly, vortex A plays a major role
in drawing cold fluid from free stream 1 into the wake, resulting in a considerable
coherent heat flux in the alleyway downstream of vortex A. In contrast, cold fluid
entrained from free stream 2 by vortex B is less and subsequently the coherent heat
flux in the alleyway between B and A is significantly weaker. Similarly to Mode
S-Ia, the incoherent motion leads to considerable heat transport out of quadrant I of
vortex A and quadrant IV of vortex B, and the assimilation of cold fluid, entrained
by vortex A, into quadrant II of vortex B. Because vortex B is weak, the assimilation
of cold fluid into quadrant III of vortex A is not so evident.

Each street of Mode T-I (figure 11d) behaves qualitatively similarly to Mode S-
Ia in the flow structure and heat transport. However, interference between the two
streets of different vortex strengths does cause a difference. Being characterized by
stronger vortices, the upper street entrains more cold fluid, mainly via its outer vortices
(vortex A), from free stream 1 than the lower from free stream 2, resulting in a larger
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Figure 11. Summary sketch of the flow structures and heat transport at x∗ = 10.
(a) Mode S-Ia; (b) S-Ib; (c) S-II; (d) T-I; (e) T-II.

coherent heat flux in the alleyway between vortices A and C than that between E
and D. Furthermore, heat loss from quadrant II of the inner vortex B (or C) owing
to incoherent motion exceeds appreciably that from quadrant III of the outer vortex
A, contributing to the rapid loss of heat from the inner vortices. The same is observed
in the lower street. Heat transport for Mode T-II (figure 11e) has been discussed in
detail in Zhou et al. (2002, figure 15b), and thus is not repeated here.
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7. Conclusions
Four typical flow structures, i.e. Modes S-I, S-II, T-I and T-II, are identified in the

wake of two staggered circular cylinders, each exhibiting distinct heat and momentum
transport from others.

Mode S-I is characterized by a single vortex street of reasonable antisymmetry
about the centreline, and is further divided into S-Ia and S-Ib. The maximum vorticity
concentration of S-Ia exceeds 80 % of that in an isolated cylinder wake. Mode S-Ib
is characterized by very weak vortices, with the maximum vorticity concentration not
exceeding 40 % of that in an isolated cylinder wake; the vortices are longitudinally
stretched and their formation is probably not completed at x∗ = 10. Mode S-II is a
single street asymmetric about the wake centreline, with the vortex strength in one
row (associated with the downstream cylinder) double that in the other (associated
with the upstream cylinder). Mode T-I is characterized by two distinct streets of
different vortex frequencies, which persist even beyond x∗ = 10. The vortex strength
in the downstream-cylinder-generated street is about 40% higher than that in the
upstream-cylinder-generated street. Mode T-II consists of two coupled streets of the
same vortex strength and frequency (St ≈ 0.21; e.g. Zhou et al. 2002).

The four typical flow structures are distinct in the streamwise evolution. The phase-
averaged maximum vorticity concentration of Mode S-Ia drops by about 40 % from
x∗ = 10 to 20 owing to interactions between the cross-stream opposite-signed vortices.
This drop is smaller than that (58 %) in an isolated cylinder wake (Zhou et al. 2002),
which is ascribed to the longer vortex wavelength of Mode S-Ia. In Mode S-Ib, the
longitudinally stretched opposite-signed vortices, though weak, are liable to interact
with each other, resulting in a 40 % drop in ω̃∗

max . The two rows of vortices in Mode
S-II display different decay rates, their maximum vorticity concentration dropping by
43 % and 29 %, respectively. Owing to vigorous interactions between the two streets,
Modes T-I and T-II decay in the vortex strength more rapidly than the single-street
modes; the outer vortices experience a drop in ω̃∗

max by about 60 % from x∗ = 10 to 20,
with the inner by 80 % for Mode T-II and even vanished for Mode T-I. The vorticity
flux density vectors indicate that inner vortices interact not only with the outer
vortices generated by the same cylinder, but also with vortices generated by the other.

Turbulent entrainment differs from one flow mode to another. While brought in
equally from either side of the wake in antisymmetric Mode S-Ia or symmetric T-II, the
free-stream fluid is largely entrained into the wake by downstream-cylinder-generated
vortices (which are stronger than upstream-cylinder-generated ones) in asymmetric
Modes S-II and T-I. Owing to weak vortices, the entrainment motion is very weak in
Mode S-Ib.

The distinct flow structures naturally lead to a difference in the behaviours of
Reynolds stresses and heat fluxes. It is worth pointing out that, although the two
cylinders in Mode S-Ia behave like a single body, generating a vortex street that
appears to resemble an isolated cylinder wake, the momentum transports between
the flows are distinct. The difference between the flow modes is further reflected
in the coherent contribution from vortices to Reynolds stresses and heat fluxes. In
general, vortices transport heat more efficiently than momentum in a two-staggered-
cylinder wake, as observed in an isolated cylinder wake (Matsumura & Antonia
1993). However, momentum transport can be significant in Modes S-Ia, S-II and T-I,
for exceeding an isolated-cylinder case. The averaged coherent contribution in Mode
S-Ia at x∗ = 10 is largest of all the modes, amounting to about 61 % to u2, 71 %
to v2, 29 % to θ2, 69 % to uv and 64 % to vθ . In contrast, they are lowest in Mode
S-Ib, only 19 %, 28 %, 15 %, 25 % and 29 %, respectively. These contributions are
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59 %, 66 %, 39 %, 50 % and 60 %, respectively, in Mode S-II and 49 %, 69 %, 17 %,

65 % and 68 %, respectively, in Mode T-I. From x∗ = 10 to 20, (q̃ s̃/qs)m decays faster
in the symmetric/antisymmetric modes than in the asymmetric, that is, Modes S-Ia
and T-II decay faster than S-II and T-I, respectively. Mode S-Ib decays slowest in

(q̃ s̃/qs)m. The heat transport of twin-street modes is accelerated owing to interactions
between the streets, resulting in a rapid drop, a factor of about 3, in the coherent
contribution to vθ from x∗ = 10 to 20, along with the rapid decay in the vortex
strength. Furthermore, the inner vortices of Modes T-I and T-II lose heat faster than
the outer, leading to a negligible contribution to vθ at x∗ = 10.
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