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We investigate the propagation of spiking regularity in noisy feedforward networks (FFNs) based on

FitzHugh-Nagumo neuron model systematically. It is found that noise could modulate the

transmission of firing rate and spiking regularity. Noise-induced synchronization and synfire-enhanced

coherence resonance are also observed when signals propagate in noisy multilayer networks. It is

interesting that double coherence resonance (DCR) with the combination of synaptic input correlation

and noise intensity is finally attained after the processing layer by layer in FFNs. Furthermore,

inhibitory connections also play essential roles in shaping DCR phenomena. Several properties of the

neuronal network such as noise intensity, correlation of synaptic inputs, and inhibitory connections

can serve as control parameters in modulating both rate coding and the order of temporal coding.
VC 2012 American Institute of Physics. [doi:10.1063/1.3676067]

Multi-layer FFNs are related to functional groups of neu-

rons where information is transmitted from one group to

the next. It is a generic framework to characterize the

propagation of neural code. Since much information in

neural systems is carried by interspike intervals time se-

ries, the propagation of spike regularity in the brain is an

essential problem. We investigate the effects of noise on

the propagation of spike regularity in FFN. Noise-

induced synchronization and synfire-enhanced coherence

resonance are observed during the propagation. Further-

more, double coherence resonance phenomenon is found

in FFNs due to the interaction of correlated synaptic

input and noise.

I. INTRODUCTION

The propagation and processing of neural code in an ex-

citable system of oscillators are essential elements in neuro-

nal network.1 Effects of noise on signal propagation in

excitable systems are also broadly studied, and varieties of

phenomena induced by noise have been found.2

Coherence resonance (CR), which refers to the coherent

oscillation induced only by noise, is one of the widely stud-

ied phenomena in excitable systems. The system achieves

optimized regulation of spiking by noise with a finite

strength.3 Spiking regularity of neuronal oscillations is often

associated with the origin of many cognitive tasks, such as

memory formation, neural coding, and perception.4,5 Experi-

mental evidence of CR has also been reported in the cat’s

somanosensory system.6 In addition to noise, correlation of

neuronal discrete stochastic excitatory or inhibitory inputs

can also induce a maximal regularity in a single FitzHugh-

Nagumo neuron model, which is called double coherence

resonance.7 However, whether this phenomenon exists in the

neuronal network with more realistic synapse and topology

and whether there are differences are still unknown.

In recent years, influences of network topologies on coher-

ence resonance have been widely studied. It is found that linear

coupling of oscillators enhances signal propagation.8,10–12

Array-enhanced coherence resonance is found in an array of

coupled FitzHugh-Nagumo neurons.8,9 For more complex cou-

pling, optimal configuration of network exists when predefined

topology structures are given13–16 or self-organized connec-

tions are developed based on spike-timing-dependent plasticity

(STDP) learning rules.17

Multilayer feedforward network (FFN) structure, which

is one of the most extensively studied network structure, can

characterize the properties of spiking activities in propaga-

tion.1 Each layer in this network is related to a functional

group of neurons, and information is transmitted from one

group to the next.18 Rate coding and temporal coding that

both exist in this framework are related to desynchronized

states and the synchronized states (synfire chain activity) in

the networks, respectively.1,19 Precisely timed sequential fir-

ings of neurons which are associated with temporal coding

in FFN are observed in a number of neural systems.20–22

Propagation of rate code is also found to be associated with

neuronal spatial coherence23,24 and could be propagated

robustly in feedforward network by synchronized states

based on Hodgkin-Huxley(HH) neurons.25,26

Most of the studies about FFN focus on the propagation of

firing rates and the the spatial coherence in each layer. Evolu-

tion of temporal regularity and the relations between the spatial

coherence and temporal regularity in FFN have not been well

investigated systematically, especially in noisy conditions.

a)Author to whom correspondence should be addressed. Electronic mail:

jiangwang@tju.edu.cn.
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This paper is structured as follows. First, we investigate

the propagation of firing rate and regularity in noisy FFN

based on FitzHugh-Nagumo (FHN) model. Then, noise-

induced synchronization and evolution of coherence reso-

nance through multi-layers are studied. Furthermore, double

coherence resonance of the combination of synaptic input

correlation and noise intensity is found in the networks.

Influences of inhibitory connections on double coherence

resonance are also investigated. Finally, the discussion and

conclusion are given.

II. DESCRIPTION OF A FEEDFORWARD NETWORK

Information of stimulus is transmitted from one group to

another in the brain.21 Multi-layer feedforward network

structure is the general framework for the studies of spatial-

temporal coding in sensory organs.22 The FHN model is a

simplified form of the famous model by Hodgkin and Hux-

ley. It has essential neuronal properties such as threshold and

refractoriness.27 A neural feedforward network of FHN neu-

rons is constructed as shown in Fig. 1. There are 200 neurons

in each layer without recurrent connections. Each neuron

receives synaptic inputs from the neurons in the previous

layer with probability P. The network model is described as

follows:

e
dxi;j

dt
¼ xi;j �

x3
i;j

3
� yi;j þ Isyn

i;j ðtÞ;
dyi;j

dt
¼ xi;j þ a� byi;j þ ni;jðtÞ;

Isyn
i;j ðtÞ ¼ �

XNsyn

k¼1

gsynaðt� ti�1;kÞðxi;j � VsynÞ: (1)

Here, the layer indices are i ¼ 1; 2; 3:::n, and the neuron indi-

ces in each layer are j ¼ 1; 2; 3:::N with N¼ 200. xi;j and yi;j

denote the membrane potential and recovery variable,

respectively, in each neuron. Isyn
i;j ðtÞ is the total of synaptic

current of neuron j in layer i. aðtÞ ¼ ðt=sÞe�t=s, where s
denotes the synapse time constant, and Nsyn is the total num-

ber of coupling by synapse from the previous layers. Here,

the conductance of the synapse is gsyn ¼ 0:04 and s ¼ 0:3 in

this paper unless mentioning specifically. The values of Nsyn

are determined by linking probability P and are identical for

all neurons. The type of synapses is determined by the syn-

aptic reversal potential Vsyn. For excitatory synapses

Vsyn ¼ 0, and for inhibitory synapses Vsyn ¼ �2.

In single FHN model without inputs, the Andronov-

Hopf bifurcation occurs at a¼ 0.7.28,29 When a < 0:7, the

neuron is in excitable states, and when a < 0:7, periodic

oscillations are generated. Canard phenomenon can be

observed near a¼ 0.7. Here, e¼ 0.08, a¼ 0.75, and b¼ 0.45.

ni;jðtÞ indicates that the network is in noisy circumstan-

ces, and they are assumed to be independent Gaussian white

noise with zero mean and correlation. In many cited papers,

it is shown that important features like coherence resonance

and stochastic resonance apparently do not depend on to

which equation noise is added.2 Therefore, we only add the

noise in the second equation. hni;jðtÞni;jðt0Þi ¼ 2Ddðt� t0Þ,
where D represents the noise intensity. The numerical inte-

gration is done by Euler method with a time step of 0.005.

Average cross correlation K of firing times of neurons is

applied to measure the synchronization of one layer in the

network,

K ¼ 1

NðN � 1Þ
XN

j¼1

XN

m¼1;m 6¼j

Kj;mðdÞ; (2)

where Kj;mðdÞ is defined as

Kj;mðdÞ ¼

Pk
i¼1

XjðiÞXmðiÞ

Pk
i¼1

XjðiÞ
Pk
i¼1

XmðiÞ
� �1=2

: (3)

First, transform the spiking binary series into spiking train

after dividing the time series into k bins. d represents the length

of the bins. If there is a spike in the ith bin X, XðiÞ ¼ 1, other-

wise, XðiÞ ¼ 0. When K¼ 1, the layer is in a synchronized

state, and when K¼ 0, the layer is desynchronized.

Interspike intervals (ISI) are often used to characterize

the features of neural signals. The regularity of ISI is quanti-

fied by the sharpness of the ISI distribution R. Rj is calcu-

lated as Rj ¼ Tj
k

D E
t
=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðTj

kÞ
q

. Tj
k is ISI time series of the

FIG. 1. (Color online) A schematic of multilayer feedforward network with

200 FHN neurons in each layer. P denotes the connection probability

between the nearby layers.

FIG. 2. (Color online) Output of firing rate rout (layer 8 as a whole) versus

the input firing rate r1 (layer 1 as a whole) in the FFN without noise.
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neuron j. Here, j¼ 1, 2,., N is the index of neurons in one

layer of N neurons. hit denotes the average value over time,

and VarðTj
kÞ denotes the variance of the ISI time series of

neuron j. R is obtained by averaging Rj of all neurons in one

layer.

III. PROPAGATION OF FIRING PATTERNS IN NOISY
FFNs

To investigate the propagation of firing rate and regular-

ity through the FFN, we generate a set of Poisson spike trains

with a firing rate r1. These spike trains are taken as the out-

put of the neurons in layer 1 of the FFN.

The propagation of different firing rates in the network

is shown in Fig. 2. It indicates that the output firing rates rout

of the FFN (layer 8) with different P have a nonlinear

dependence on the firing rates in the first layer. Therefore,

the firing rates could be propagated in FFN based on

FitzHugh-Nagumo neurons. The optimal P for basically lin-

ear propagation is shown to be P¼ 0.3. It is also found that

the network with high P is more sensitive to lower input fir-

ing rates r1 but less sensitive to the variation of input rate

when r1 is higher.

Noise is used to reflect thermal fluctuation, ion channel

activities, and the uncorrelated synaptic input received from

excitatory and inhibitory neurons outside the FFN. Transmis-

sions of both rate code and spike timing based code are

found to be sensitive to noise intensity. The firing rate and

the spiking regularity R in each layer of the noisy FFN tend

to increase with D as shown in Figs. 3(a) and 3(b). These

phenomena can be explained by the following mechanisms.

The introduction of noise makes each layer more sensitive to

the presynaptic inputs. So, the mean firing rate of the noisy

layer becomes a little higher. The firing rhythm becomes

more close to their intrinsic frequencies, and the firing pat-

terns become more regular. Then, this effect is amplified by

the multi-layers.

The relationship between the connection probability P
and output firing patterns (layer 8) in the noisy FFN is inves-

tigated systematically and shown in Fig. 4. r value denotes

the average firing rate of certain layer as a whole. It is found

that the firing rates increase with the linking probability P
for a fixed D. Furthermore, the output firing rates have posi-

tive correlations with the level of noise intensity D for all

coupling probability P (Fig. 4(a)). For a lower noise intensity

D, the temporal regularity R increases with the linking prob-

ability P. It is interesting that when D becomes higher, the

regularity R first increases with the linking probability P and

then decreases after the peak values. The noise also facili-

tates the propagation of the neural code in network with rela-

tively lower connections probability.

IV. DOUBLE COHERENCE RESONANCE IN NOISY
FFNs

A. Propagation of spiking regularity in noisy FFNs

Then, we focus on the effects of noise on the propaga-

tion of spiking regularity and synchronized firing (spatial

coherence) and the relations between them more systemati-

cally from the perspective of coherence resonance. Here,

noise is the only external stimulus of the homogenous FFN

in this section (layer 1 is also stimulated by noise).

Spiking regularity of each layer in noisy FFN is shown

in Fig. 5. Each point in the heat map represents the degree of

temporal regularity R of the layer in noisy environments.

Similar to the coherence resonance in single FHN neuron,

the optimal noise intensity for regular spiking is near

D ¼ 0:03 in the first layer. Then, the spikes become gradually

regular when they are transmitted through the multi-layers

with lower noise intensity as shown in Figs. 5(a) and 5(b).

FIG. 3. (Color online) Effects of noise

on propagation of firing rate and spiking

regularity in the multi-layers with

P¼ 0.3. (a) Average firing rate r in each

layer (as a whole) of FFN with different

noise intensities D. (b) Propagation of

spiking regularity R in each layer of

FFN with different D.

FIG. 4. (Color online) Effects of noise

and linking probability on firing rate and

spiking regularity. (a) Firing rates r ver-

sus linking probability with different

noise intensities. (b) Spiking regularity

R versus linking probability with differ-

ent noise intensities.
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Coherence resonance phenomenon can be observed in each

layer of the FFN. The maximal value of R becomes higher

as the signals are transmitted through layers until being

saturated. Furthermore, it is found that the optimal noise

intensity for regular firing in the final layer is much lower

than these of the first several layers. It makes the regular

spiking much easier to be achieved with the help of network

structure.

By comparing Fig. 5(a) with Fig. 5(b), a larger parame-

ter range of noise intensity for regular spiking can be

observed when the connection probability P is higher. The

optimal noise intensity for maximal regularity also shifts

slightly with the variation of P value in general.

The regularity R becomes saturated because the network

achieves synchronization and transmits signals by synchron-

ized firing in spite of the presence of noise when the noise in-

tensity is relatively low as shown in Figs. 5(c) and 5(d). In

order to study this problem in detail, different firing patterns

of FFN with different noise intensities are shown in Figs.

6(a)–6(c). When D < 10�3, neurons fire so sparsely that the

spiking pattern cannot be propagated (Fig. 6(a)). For medium

level of noise intensities, the synchronized states are gradu-

ally achieved in spite of noise (Fig. 6(b)). So, the spiking

patterns can be propagated robustly. Interestingly, an optimal

noise intensity for the maximal spatial coherence K is found

for some layers in this noise range in which maximal tempo-

ral regularity is also achieved. When the noise intensity

becomes larger, neurons in each layer fire irregularly,

because noise corrupts both temporal regularity and spatial

coherence (Fig. 6(c)). It is also shown that the temporal regu-

larity and the noise-induced synchronization in FFN are

correlated to some extent. In noisy condition, synchroniza-

tion makes the transmission of firing patterns more robust to

noise. So, the noise-induced synchronization can enhance

the temporal regularity of firing pattern. As the firing

patterns of the network basically do not vary qualitatively

after layer 8, we take the output of layer 8 as the output of

FFN in the following studies.

B. Double coherence resonance in noisy FFNs

Double coherence resonance (DCR) means a maximum

coherence occurs for an optimal combination of P and D.

For FFN, connection probability P, which denotes the input

correlation of neurons in the same layer, is an important fac-

tor for signal propagation. The spiking regularities in the 8th

layer as a function of noise intensity D and linking probabil-

ity P are shown by heat map in Fig. 7(a). It is shown that

there exists a maximum R for all connection probability P
and noise intensity D. When P value is low, the maximum

coherence cannot be attained, because signals cannot be

propagated by in-layer synchronized firings. When P value

is medium, the spikes with maximum coherence are propa-

gated by synchronization with relatively lower noise inten-

sity (Fig. 6(b)). As P value becomes larger, the maximal

spiking regularity decreases. The details of its firing patterns

are shown in Fig. 6(d). That is because the irregular firing

patterns which violate the relative refractory period of the

FIG. 5. (Color online) Propagation of spiking regularity and synchrony in the noisy multi-layer network. (a) Spiking regularity R as a function of layers and

noise intensity D with P¼ 0.2. (b) Spiking regularity R as a function of layers and noise intensity D with P¼ 0.4. (c) Synchronized states in different layers

with P¼ 0.2. (d) Synchronized states in different layers with P¼ 0.4.
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neuron can be propagated robustly by in-layer synchroniza-

tion due to the high correlation of synaptic inputs. Here, tem-

poral regularity and spatial coherence are not positively

correlated when P value becomes relatively large (compar-

ing Fig. 7(a) with Fig. 7(b)).

All the networks mentioned above are connected only

by excitatory synapses. Inhibitory connections also widely

exist in neural system such as hippocampus and play an

essential role in neural coding. Sub-layers which consist of

inhibitory neurons are taken into consideration in the follow-

ing studies. Here, the dynamic properties of inhibitory neu-

rons are the same as the excitatory ones we mentioned

above. Pinh is used to represent the ratio of inhibitory neu-

rons in each layer. Here, we investigate the double coherence

resonance when Pinh � 0:2, which is the ratio of inhibitory

neurons in the mammalian neocortex. The linking probabil-

ity P values from both excitatory and inhibitory neurons to

the neurons in next layer are identical.

Double coherence resonance in noisy FFN with different

ratios of inhibitory neurons is shown in Figs. 8(a)–8(c). It is

found that inhibitory neurons decrease the maximal regular-

ity of the output firing patterns in the FFN (comparing

Fig. 7(a) with Figs. 8(a)–8(c)). The effects of DCR can be

better observed by considering the maximal regularity R for

FIG. 6. (Color online) Comparison of raster plots in the FFNs with different noisy intensities and connections. (a) Network with lower noise intensity

(D ¼ 10�3:3) and connection probability P¼ 0.4. (b) Network with medium noise intensity (D ¼ 10�2:8) and P¼ 0.4. (c) Network with higher noise intensity

(D ¼ 10�1:4) and P¼ 0.4. (d) Network with noise intensity D ¼ 10�2:8 and P¼ 0.8.

FIG. 7. (Color online) Degrees of aver-

age temporal regularity R and spatial co-

herence K of 8th layer as a function of

noise intensity D and linking probability

P. (a) The color denotes the value of

temporal regularity R. (b) The color

denotes the value of spatial coherence K.

013104-5 Propagation of spiking regularity and double coherence resonance Chaos 22, 013104 (2012)

Downloaded 24 Apr 2012 to 158.132.161.52. Redistribution subject to AIP license or copyright; see http://chaos.aip.org/about/rights_and_permissions



each linking probability as a function of P with different Pinh

as shown in Fig. 8(d). The optimal configuration of FFN

exists at P¼ 0.3 for coherence resonance. Inhibitory connec-

tions play a role in decreasing the levels of synchronization

and corrupt the temporal regularity.

V. DISCUSSION AND CONCLUSION

Noise, which widely exists in real neuronal networks,

can increase the network sensitivity to the input signal and

modulate the propagation of both rate code and temporal reg-

ularity with the help of the amplification effects of FFN

structure.

The relations between noise, synchronization, and spik-

ing regularities are investigated systematically in feedfor-

word networks. Noise-induced synchronization is observed

in FFN when noise with medium intensity is added. Propaga-

tion of temporal regularity in a neuronal layer is also found

to be correlated with the phenomenon of noise-induced syn-

chronization to some extent. These phenomena arise from

the competition between noise and the correlated synaptic

inputs from the previous layer. When D is low or medium,

synaptic inputs play the dominant role, and when D is larger,

noise becomes the dominant factor.

The noise-induced synchronization has been widely

studied.30–32 However, there are differences between our

studies. In Ref. 31, the noise is common in each element in

the network. In Ref. 32, the synchronization is between the

system and the external signal. The mechanisms in Ref. 30

and our study have some similarities. All of them arise from

the interactions between the noise and network interactions.

Furthermore, the synchronization phenomena are both cor-

related with temporal regularity of spiking patterns when

the noise intensity is medium. However, the network struc-

tures in these cases are different. The connections in Ref. 30

are recurrent, while it is feedforward in our research. It

results in different mechanisms about the formation of

synchronization.

There are differences in the ways that noise and synaptic

input correlation modulate spiking regularity. Noise

decreases the spiking regularities mainly by corrupting the

synchronized states. However, neurons in the 8th layer are

still synchronized when the spiking regularity decreases as

the increasing of the synaptic input correlation in relatively

lower noise intensity (see Fig. 7). The competition of noise

and correlated synaptic inputs results in the double coher-

ence resonance in FFN. The optimal combination of synaptic

input correlation and noise intensity induces the maximal

spiking regularity.

Kreuz et al.7 have studied double coherence resonance

of a balanced FHN neuron with excitatory and inhibitory

pulses in the high-input regime. In our studies, we focus on

the network with excitatory synaptic connections and Gaus-

sian white noise. Furthermore, when the network becomes

balanced, double coherence resonance phenomena are not

obvious, which is different from the results of Kreuz et al.
That is because inhibitory connections are found to counter-

act the effects of excitatory connections and make the

synchronized states difficult to achieve in feedforward net-

work. So, the spiking regularity is more easily corrupted by

noise as the increasing of the inhibitory connections.

Our findings in this paper may be significant in neuro-

science. Since much information in neuronal network is car-

ried by ISI time series, noise-induced synchronization and

spiking regularity can enhance the order and robustness of

neural code in biological information processing. It is also

found that propagation of neural coherence can be controlled

by modulating input correlation or noise intensity. Input cor-

relation is found to play an essential role in information

propagation in brain activities such as attention.33 This has a

nontrivial influence on the propagation of neural code.

Therefore, these properties which are generic in neuronal

FIG. 8. (Color online) Degrees of aver-

age spiking regularity R of 8th layer as

a function of noise intensity D and link-

ing probability P with different ratios

of inhibitory connections. The color

denotes the value of R. (a) Pinh ¼ 0:05;

(b) Pinh ¼ 0:1; and (c) Pinh ¼ 0:2. (d)

The maximal R value for each P versus

linking probabilities P of the FFN with

different Pinh.
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network can serve as control parameters in modulating rate

coding, the order, and timing precision of temporal coding in

nervous systems.
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