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Here we show that the configuration of an inhabited area controls the time required by all the

pedestrians to vacate the space. From the minimization of the global evacuation time emerges the

optimal configuration of the area. This is a fundamental principle for designing living spaces with

efficient evacuation quality, and it is demonstrated here with several simple building blocks that

can be used as components of more complex living structures: single walkway, corner, and

T-shaped walkway. We show analytically and numerically that the ratio of the widths of the stem

and branches of the T-shaped walkway has an optimal value that facilitates the evacuation of

all the inhabitants. This result is fundamental, and is the crowd-dynamics equivalent of the

Hess-Murray rule for the ratio of diameters in bifurcated ducts with fluid flow. VC 2012 American
Institute of Physics. [http://dx.doi.org/10.1063/1.3689771]

I. THE PHYSICS OF EVACUATION OF LIVING SPACES

Pedestrian movement is the most basic physics aspect of

human life, from locomotion on the landscape to modern

architecture, engineering and traffic. This is a subject that

has generated a significant body of empirical work in social

dynamics and animal locomotion.1–7 In this paper, we pro-

pose a principle-based physics approach to the prediction of

pedestrian movement. We also develop an applied physics

method for designing the shape and structure of living spaces

such that they facilitate the movement of pedestrians.

Designs that facilitate pedestrian movement are essential

in all domains of human activity. They are absolutely critical

in emergency situations (e.g., fire, explosions, accidents, ter-

rorism, tornados, tsunamis), where the fast evacuation of the

population is the chief concern.8 Presently, the evacuation

plans for living spaces are based on numerical simulations of

crowd dynamics. The numerical codes range from fluid dy-

namics analogies1–3 to reliance on cognitive science.6

The method proposed in this paper relies on the con-

structal law, which states that the designs of all flow systems

evolve in time toward configurations that provide easier

access to their currents.9,10 The evacuation of pedestrians

from an inhabited space is one such flow system, and the

designing of better and better configurations for evacuation

is an evolutionary design that can be aided (i.e., fast for-

warded) based on constructal theory.

The method consists of discovering the configurations

that tend to reduce the time needed for full or partial evacua-

tion. The work is about discovering the relationship between

the configuration of the living space and the evacuation time.

We develop the method in a modular sequence that proceeds

from the simplest building blocks (e.g., one straight walk-

way, one corner) toward more complex structures (e.g., one

bifurcated walkway). The design value of this article is that

more complex configurations can be designed for efficient

evacuations by using fundamental building blocks of the

kind treated in this paper.

II. PEDESTRIAN SPEED AND SPACING

The objective of the method is to determine the relation-

ship between the geometry of the living space and the time

needed to evacuate a finite number of inhabitants from the

space. The ultimate objective is to identify the geometry that

facilitates the evacuation.

Here we take the approach that the time needed for

evacuation is governed not only by the geometry of the

inhabited space but also by the path selected by every inhab-

itant in that space. The inhabitant has complete freedom to

choose the path: in the following analysis we assume that ev-

ery inhabitant selects the fastest escape route.

Assume that all the movement is pedestrian. The

obstacles that every pedestrian must avoid are two: the rigid

walls that define the living space, and the neighboring inhab-

itants. The monotonic relation between the walking speed of

a person and the average person-to-person distance is shown

in Fig. 1, where the walking speed data2,3 can be correlated

adequately with the function

V

V1
¼ C 1� S0

S

� �1=2

; (1)

where V1 ffi 1:3 m=s is the walking speed in the limit of

sparse populations ðS� S0Þ and S0 ffi 0:5 m is the cutoff

spacing below which the population is so dense that it stops

moving. The constant C is dimensionless and of order 1: for

example, noting that in Fig. 1 the speed V is roughly 1 m/sa)Electronic mail: abejan@duke.edu.
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when S¼ 1 m, we find that Eq. (1) fits the data near the knee

of the curve.

In sum, the moving crowd moves faster when the inter-

personal distances are of order 1 m or greater. This means

that the moving population must spread itself over the avail-

able space, and must cover the space with sparse traces of

minimal travel time so that the entire space is evacuated fast.

In this study we pursue this human dynamics design as a

sequence of fundamental constructal design problems con-

cerning simple (building block) configurations.

III. LONG WALKWAY

Consider first a long walkway with unspecified variable

width W(x) and length L (Fig. 2). The width is considerably

smaller than the length. The total floor area represents the

size of the space, and it is fixed,

A ¼
ðL

0

WðxÞdx: (2)

A stream of pedestrians moves from x¼ 0 to x¼L, as shown

in Fig. 2. Because the number of pedestrians who pass

through every constant-x plane is the same for any x, then

the interpersonal spacing varies as W(x),

SðxÞ ¼ 1

n
WðxÞ; (3)

where n is the number of pedestrians who fit transversally,

within W(x). Equations (1) and (3) establish V(x) as a func-

tion that depends on x via S(x) and W(x),

VðSÞ ¼ V
1

n
WðxÞ

� �
: (4)

The time of travel between x¼ 0 and x¼L is

t ¼
ðL

0

dx

VðxÞ : (5)

According to the method of variational calculus,4 to minimize

this integral by selecting W(x) subject to the constraint (2) is

equivalent to minimizing the aggregate integral formed as a

linear combination of the integrands of integrals (2) and (5),

U ¼
ðL

0

1

V
þ kW

� �
dx: (6)

The solution for the optimal walkway width is obtained by

solving

@F

@W
¼ 0; (7)

where F is the integrand of (U). We obtain

� 1

V2

@V

@S

@S

@W
þ k ¼ 0; (8)

where @S=@W is a constant equal to 1/n and, according to

Fig. 1, @V=@S is a monotonic function of S or V, for example

f(V). The conclusion from Eq. (8) is that V�2f(V)¼ constant,

and this means that V must have one value (independent of

x). This also means that the spacing S and walkway width W
must be uniform, independent of x. The best walkway is the

walkway with constant width.

IV. TURNING A CORNER

Next, consider the design of a walkway that must make

a 90 deg turn. To save time, every pedestrian is tempted to

cut the corner, but this tends to increase the pedestrian den-

sity in the turn region, and to decrease the speed of the entire

flow. How should the pedestrians space themselves in the

turn region so that the crowd moves most easily?

In Fig. 3, the pedestrian with the shortest path is the one

who walks along the wall, P0. This pedestrian and those

behind him pass through the sharp corner. It is relative to the

sharp corner that the spacing S1 between P0 and the closest

pedestrian (P1) is measured.

The distance traveled by P1 around the turn is ðp=2ÞS1.

The speed V1 (S1) is given by Eq. (1). The travel time

t1 ¼ ðp=2ÞS1=V1 is minimal when

r1 ¼
S1

S0

¼ 3

2
; (9)

t1 ¼
pS0

2CV1

r1

ð1� r�1
1 Þ

1=2
: (10)

Similarly, the distance traveled by the next (outer) pedestrian

P2 is ðp=2ÞðS1 þ S2Þ, and the speed is V2 (S2) follows from

Eq. (1). The travel time of P2 is minimal when

FIG. 1. The average pedestrian speed V vs the average person-to-person

spacing S.1

FIG. 2. Slender walkway with arbitrary width W(x) and fixed length L.
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r2 ¼
S2

S0

¼ 3þ 211=2

4
¼ 1:896; (11)

t2 ¼
pS0

2CV1

r1 þ r2

ð1� r�1
2 Þ

: (12)

The next pedestrians Piði � 3Þ walk the fastest when their

spacings ri ¼ Si=S0 are given by the recurrence formula

r1 ¼
1

4

�
3þ ð9þ 8

Xi�1

k¼1

rkÞ1=2

�
; (13)

which validates Eqs. (9) and (11) for i¼ 1 and 2. The corre-

sponding minimal travel times are

t1 ¼
pS0

2CV1

Pi

k¼1

rk

ð1� r�1
i Þ

1=2
: (14)

The spacings and times are summarized in Table I. Proceed-

ing away from the sharp corner, the person-to-person spac-

ings, walking times, and speeds increase.

V. BIFURCATED WALKWAY

Another basic configuration is the bifurcated walkway

shown in Fig. 4. This configuration is a combination of the

straight walkways (Sec. III) and the movement around cor-

ners (Sec. IV). The pedestrian flow from the walkway of

length L1 and width W1 is divided equally into two streams,

each stream proceeding along a walkway of length L2 and

width W2. The direction of pedestrian flow can be either

from stem (L1) to branches (L2), or from branches to stem.

The objective of the design is to provide the shortest time for

travel through the T-shaped construct,

t ¼ L1

V1

þ L2

V2

(15)

subject two constraints, total walkway surface (assuming

W1�W2 is negligible),

Aw ¼ L1W1 þ 2L2W2 (16)

and total rectangular territory inhabited by the T-shaped

construct,

AT ¼ 2L2L1: (17)

The speeds along the stem (V1) and branches (V2) depend on

the spacings between pedestrians, in accord with Eq. (1),

V1 ¼ CV1 1� S0

S1

� �1=2

; (18)

V2 ¼ CV1 1� S0

S2

� �1=2

: (19)

The spacings depend on the respective widths of the

walkways,

S1 ¼
W1

n1

; S2 ¼
W2

n2

; (20)

FIG. 3. Round paths followed by strings of pedestrians around a 90-deg

turn.

TABLE I. The optimal interpersonal spacings and minimal times for walk-

ing around the 90-deg turn shown in Fig. 3.

Pedestrians ri ¼ Si

S0
ti ¼ 2CV1

pS0

P1 1.5 2.60

P2 1.90 4.94

P3 1.97 8.14

P4 2.55 10.76

FIG. 4. T-shaped walkway with uniformly spaced pedestrian flow.
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where n1 and n2 are the numbers of pedestrians across each

walkway. As shown in Fig. 4, we assume that the distance

between pedestrians during walking is on an average S1. The

flow rate of pedestrians along the stem is

n�1 ¼
n1

Dt1

¼ n1

V1

S1

; (21)

where Dt1¼ S1/V1 is the time step between successive rows

on n1 pedestrians. Similarly, the flow rate of pedestrians

along one of the branches is

n�2 ¼
n2

Dt2

¼ n2

V2

S2

: (22)

The conservation of pedestrian flow rate at the bifurcation

requires
n�1 ¼ 2n�2 (23)

which, in view of Eqs. (20)–(22) yields

2 ¼ W1

W2

S2

S1

� �2 V1

V2

: (24)

To summarize, the objective is to minimize Eq. (15) subject

to constraints (16) and (17), and the fact that V1/V2 and W1/

W2 are related via Eq. (24). To make analytical progress, we

use Eqs. (18) and (19) to write

V1

V2

¼ 1� a
1� ab

� �1=2

; (25)

where a and b are two ratios that account for the spacings S1

and S2, which vary,

a ¼ S0

S1

< 1; b ¼ S1

S2

� 1 : (26)

With this notation, Eq. (24) becomes

2b2 ¼ W1

W2

1� a
1� ab

� �1=2

ffi W1

W2

: (27)

We start by assuming that a is fixed, which means that V1 is

fixed. Then, to minimize t means to maximize V2, or to mini-

mize b and W1/W2, cf. Eq. (27). Next, to minimize W1/W2

subject to the walkway surface constraint (16) is the same as

seeking the extremum of the function

/ ¼ W1

W2

þ lðL1W1 þ 2L2W2Þ; (28)

where l is a Lagrange multiplier. The solution obtained with

the method of undetermined coefficients (Ref. 4, pp. 493 – 495)

is

W1

W2

¼ 2
L2

L1

: (29)

This result means that the surface of the stem (L1W1) must

equal the combined surface of the two branches (2L2W2), or

that Aw must be divided equally into one stem and two

branches.

The next challenge is to determine L1/L2. We continue

with the assumption that V1 is fixed because a is fixed.

Consequently, the total walking time Eq. (15) can be writ-

ten as

tV1 ¼ L1 þ L2

V1

V2

; (30)

where V1/V2 is given by Eq. (25),

tV1 ¼ L1 þ L2

1� a
1� ab

� �1=2

: (31)

From Eq. (24) we obtain

2b2 ¼ W1

W2

1� a
1� ab

� �1=2

; (32)

which means that approximately [i.e., based on the same

approximation as in Eq. (27)]

2b2 ffi W1

W2

¼ 2
L2

L1

(33)

namely,

b ffi L2

L1

� �1=2

: (34)

In sum, in place of Eq. (30) we minimize the function

tV1 ¼ L1 þ L2

1� b

1� aðL2=L1Þ1=2

 !1=2

(35)

by selecting L2/L1 subject to the territory constraint Eq. (17).

The solution is based on the method of undetermined coeffi-

cients, and is found by solving the implicit equation

1

x2
¼ ð1� aÞ1=2

ð1� axÞ3=2
1� ax

2

� �
; (36)

where x¼ (L2/L1)1/2 and, as noted earlier, a¼ S0/S1. The so-

lution of Eq. (36) expresses the optimal L2/L1 as a function

of S0/S1, and is reported in Fig. 5. For example, when a� 0.5

[i.e., when S1 is of order 2S0, or V1 is high enough to be com-

parable with V1] the optimal L2/L1 is of order 0.7. In view

of Eq. (29), in this S1/S0 range W1/W2 is of order 1.4, and b
� 0.84. The fact that b is comparable with 1 confirms the ini-

tial assumption (26), which led to the approximations made

in Eqs. (27) and (33).

Figure 5 also shows that at both ends of the abscissa

range, a¼ 0 and a¼ 1, the optimal L2/L1 is 1. This corre-

sponds to W1/W2¼ 2 and b¼ 1, which again validates the

simplifying assumption made in Eqs. (26), (27), and (33).

One can show that in the vicinity of S0/S1 ffi 1, the L2/L1

curve (36) behaves as

054903-4 Lui et al. J. Appl. Phys. 111, 054903 (2012)

Downloaded 18 Apr 2012 to 158.132.161.52. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_and_permissions



1� L2

L1

� �1=2

¼ 1

4
1� S0

S1

� �� �1=3

: (37)

Finally, we examine the effect of the last parameter that can

still vary, namely a¼ S0/S1. Substituting in Eq. (35) the two

optimization results obtained so far [namely Eq. (34) and Eq.

(36), or Fig. 5], we can write the total time Eq. (35) as

tCV1
2

AT

� �1=2

¼ 1

xð1� aÞ1=2
þ x

ð1� axÞ1=2
: (38)

The function x(a) is provided by Eq. (36), or Fig. 5. In sum,

the dimensionless time tCV1ð2=ATÞ1=2
increases monotoni-

cally as the ratio S0/S1 increases, i.e., as a decreases, Fig. 6.

When S0/S1 is lower than 0.5 the dimensionless time is of

order 2 and is insensitive to S0/S1.

VI. NUMERICAL SIMULATIONS OF T-SHAPED WALK-
WAY MOVEMENT AND OPTIMIZATION

To demonstrate the existence of the opportunity to opti-

mize the configuration of bifurcated walkways, we simulated

numerically the movement of pedestrians on the T-shaped

walkway area defined in Fig. 4. The shape of the overall area

was square, L1þW2¼ 2L2þW1¼ 50 m. The total area of

the walkway floor was fixed at 250 m2, which represents one

tenth of the overall area. Variable is the ratio of the two

widths, W1/W2.

We simulated the pedestrian movement in several

T-shaped configurations with different W1/W2 ratios and

estimated the time (t) of evacuating the population from the

T-shaped walkway area (the branches) to the end of the trunk

(the stem). The objective was to identify the configuration

with the W1/W2 ratio that offers the shortest evacuation time.

We performed this program of simulations for a scenario of

20 persons distributed over areas of 10 m2 at the two extrem-

ities of the W2�L2 branches of the T, which corresponds to

a density of 2 persons/m2. This total population of 40 persons

is constituted of males aged 40. At t¼ 0, the people start

vacating the area toward the left side of the W1� L1

walkway.

We performed simulations with Simulex,2 which is a

computer package that allows simulations of escape move-

ment of occupants from large, geometrically complex build-

ing structures. By using the computer-aided-designed floor

plans of buildings with staircases, final external exits can be

defined outside the buildings. A distance map representing a

mesh of squares 0.2 m� 0.2 m in size is spread over the

entire building space. The value of distance-to-exit from the

center of each square is calculated with Simulex. Occupants

are assigned inside the premises individually or as groups.

When the building population has been defined, the potential

routes of the occupants can be calculated and then a simula-

tion can be carried out to find the total evacuation time. The

occupants move toward the pre-defined exits with individual

walking speeds dependent upon individual characteristics

and the proximity of other people. The algorithms for the

occupant individual movement are based on real-life data,

collected by using computer-based techniques for the analy-

sis of human movement, observed in real-life footage.

FIG. 5. The optimal ratio L2/L1 for the bifurcated walkway of Fig. 4.

FIG. 6. The effect on the spacing on the stem (S1/S0) on the minimized

travel time through the bifurcated walkway of Fig. 4.

FIG. 7. The evolution of the standard deviation and evacuation time vs the

number of simulations W1/W2¼ 1.83).
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Furthermore, because each simulation is based on a set

of initial parameters that have random character (for exam-

ple, initial speed and direction), the simulations that are con-

ducted for a given configuration (W1/W2) produce evacuation

times that differ from one simulation to the next. We calcu-

lated the evacuation time by averaging it over a number (n)

of simulations that are large enough such that increasing n

does not cause significant changes in the averaged travel

time. Plotting the standard deviation of the average evacua-

tion time as a function of the number of simulations, we

found that n¼ 30 is large enough, as demonstrated in Fig. 7.

To strengthen the numerical results further, we calculated

two evacuation time values: t100, the time when 100% of the

population has exited through the end of the trunk, and t90,

when only 90% of the pedestrians have reached the exit.

The evacuation times calculated in this manner are

reported in Fig. 8. They show that there is one ratio of walk-

way widths W1/W2 for which the evacuation time is mini-

mum. This value is approximately W1/W2¼ 2, and it is

robust because the minimum is shallow. Along with its ana-

lytical derivation in Sec. V, the optimal ratio of walkway

widths emerges as the crowd dynamics counterpart of the

Hess-Murray rule for selecting the ratio of diameters in a bi-

furcated duct with fluid flow.4,10–12

VII. CONCLUSIONS

In this paper we constructed a physics-based method for

the fundamental design of evacuation from living spaces.

The method focuses on the relation between the configura-

tion (shape, structure) of the living space and the time

needed for pedestrian evacuation. The application of the

method was organized into modules that proceed from the

simple to the more complex (walkway, corner, T-shaped

walkway). These modules can be assembled and used in

evacuation designs for more complex structures.

The fundamental contribution made with this approach

is that pedestrian movement, evacuation, and the design of

the living space are recognized as flow systems with chang-

ing (evolutionary) configurations, in accord with other ani-

mate and inanimate flow designs unified by the constructal

law.9
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