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A polymer-based magnetoelectric (ME) laminate was fabricated by sandwiching one layer of

thickness-polarized, length-stretched polyvinylidene fluoride (PVDF) piezoelectric polymer

between two layers of length-magnetized, epoxy-bonded Tb0.3Dy0.7Fe1.92 (Terfenol-D) pseudo-1–3

magnetostrictive particulate composite in the thickness direction, and its resonance ME effect was

investigated, both experimentally and theoretically, as a function of magnetic bias field (HBias).

The laminate showed a high ME voltage coefficient (aV) of 233 mV/Oe at the fundamental

resonance frequency (fr) of 60.6 kHz under a relatively low HBias of 0.6 kOe. By controlling HBias

in the range of 0.02–1.5 kOe, nonlinear tunabilities as high as 1382 and 8.6% were achieved for aV

and fr, respectively, as a result of the reduced eddy-current losses and enhanced non-180�

domain-wall motion-induced negative-DE effect in the Terfenol-D composite layers as well as the

increased compliance contribution from the PVDF polymer layer to allow the motion of non-180�

domain walls in the Terfenol-D composite layers. This improved resonance ME tuning effect,

together with the durable and tailorable natures, makes the laminate great promise for developing

into tunable ME devices. VC 2012 American Institute of Physics. [doi:10.1063/1.3678321]

The magnetoelectric (ME) effect in materials has attracted

much research attention in recent years. Laminated composites

based on Tb0.3Dy0.7Fe1.92 (Terfenol-D) magnetostrictive alloy

and 0.7Pb(Mg1/3Nb2/3)O3–0.3PbTiO3 (PMN–PT) piezoelectric

crystal have been a main focus because of their generally high

extrinsic ME effect arisen from the mechanically mediated

magnetostrictive and piezoelectric effects.1,2 When operating

at resonance, these alloy-crystal-based laminates often yield an

enhanced resonance ME effect of �10 times higher in ME

voltage coefficient (aV) compared to their nonresonance aV

counterparts.2 Recently, ME tuning has become a physically

interesting and technologically important topic for realizing

tunable ME devices.1–4 From the aspect of magnetically ME

tuning, the highest tunable aV of �10 times (i.e., aV tunability

of �1000%) and tunable resonance frequency (fr) of �2 kHz

range (i.e., fr tunability of �3%) in a magnetic bias field

(HBias) range of 0.02–0.8 kOe have been observed in the Terfe-

nol-D/PMN–PT laminates.2

In this paper, we report a high HBias-controllable nonlin-

ear resonance ME tuning effect in a polymer-based ME

laminate formed by a polyvinylidene fluoride (PVDF) piezo-

electric polymer film and two epoxy-bonded Terfenol-D

pseudo-1–3 magnetostrictive particulate composite plates.

The use of Terfenol-D composite, instead of Terfenol-D alloy,

is to alleviate its intrinsic weaknesses of high eddy-current

losses at elevated frequencies, negligibly small negative-DE
effect (or magnetomechanical tuning effect) caused by limited

non-180� domain-wall motion under zero stress bias, and

mechanical brittleness. The adoption of the relatively compli-

ant PVDF polymer, in place of PMN–PT crystals or Pb(Zr,

Ti)O3 (PZT) ceramics, not only relieves the elastic clamping

effect on the Terfenol-D composite for best possibly exhibit-

ing the built-in non-180� domain-wall motion, the large nega-
tive-DE effect, and hence the high ME tuning effect, but also

improves the durability of the whole laminate.

Figure 1(a) shows the schematic diagram of the proposed

polymer-based ME laminate in the Cartesian coordinate system.

Two Terfenol-D composite plates were bonded on a PVDF

polymer film in the thickness direction using a silver-loaded

epoxy adhesive. The Terfenol-D composite plates, which were

prepared in house using Terfenol-D particles with randomly dis-

tributed sizes of 10–300lm and Spurr epoxy as the active and

passive phases, respectively, had a cross-sectional area of

12� 6 mm2, a thickness of 1 mm, a particulate volume fraction

of 0.51, and a magnetization (M) along the length direction.5

The PVDF polymer film was commercially acquired to have the

same cross-sectional area as the Terfenol-D composite plates, a

different thickness of 0.1 mm, full-fired silver electrodes on the

two major surfaces, a polarization (P) along the thickness direc-

tion, and a mechanical stretch in the length direction.6

The working principle of the polymer-based ME lami-

nate in Fig. 1(a) is as follows. An ac magnetic field (H3)

applied along the length direction of the laminate causes the

two length-magnetized Terfenol-D composite plates to pro-

duce magnetostrictive strains in their length direction due to

the magnetostrictive effect. Since the PVDF polymer film is

mechanically bonded and sandwiched between the two

Terfenol-D composite plates, these magnetostrictive strains

subsequently stress the PVDF polymer film to generate

a)Author to whom correspondence should be addressed. Electronic mail:

eeswor@polyu.edu.hk.
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piezoelectric voltages (V3) across its thickness owing to the

piezoelectric effect. Using the equation of motion to couple

the magnetostrictive and piezoelectric constitutive rela-

tions,7,8 applying Newton’s second law of motion to the lam-

inate,7 taking free-free mechanical boundary conditions,9

considering mechanical losses,10 and finding analogous elec-

trical equivalent parameters,9 a dynamic magneto-elasto-

electric equivalent circuit of the proposed laminate in Fig.

1(a) was obtained and is shown in Fig. 1(b). The ME voltage

coefficient (aV) of the laminate can be expressed as

aV ¼
dV3

dH3

����
���� ¼ umup

u2
p þ jxC0Rþ jxC0Z

�����
�����; (1)
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Ad33;m

sH
33

;up ¼
wd31;p

sE
11
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lweS

33

tp
;
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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11 þ ð1� nÞsH
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ffiffiffiffiffiffiffiffiffiffiffi
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nq
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33

þ ð1� nÞq
sE

11

s
A cot

kl

2

� �
;

where um and up are the magnetoelastic and elastoelectric

coupling coefficients, respectively; C0 is the clamped capaci-

tance of the PVDF polymer film; R is the mechanical damp-

ing resistance of the laminate caused by internal frictions

between material phases; and Z is the total mechanical im-

pedance of the laminate. Other symbols have their usual

meanings. The resonance frequency (fr) can be written as

fr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n

SH
33

þ 1� n

SE
11

s
: (2)

Figures 2(a) and 2(b) plot the measured and calculated aV

of the polymer-based ME laminate driven by an H3 of 1 Oe

peak in the f range of 1–100 kHz under various HBias of

0.02–1.5 kOe, respectively. The aV–f curves in Fig. 2(b) were

calculated based on Eq. (1), with the material properties given

in Fig. 3(b) and Refs. 5 and 6 and the geometric parameters

described in Fig. 1. It is clear that the measured and calculated

aV agree reasonably well with each other for all HBias levels

with no remarkable frequency dispersion, except for the varia-

tions associated with the resonance frequency range of 50–70

kHz. The observation indicates that the eddy-current losses

are insignificant in the laminate for f up to 100 kHz. Moreover,

the largest resonance aV is found at a relatively low HBias level

of 0.6 kOe for both measurement and calculation. In particu-

lar, the largest resonance aV is detected to be 233 mV/Oe at

fr¼ 60.6 kHz by measurement and 228 mV/Oe at

fr¼ 60.9 kHz by calculation. These resonance aV are �20

times larger than their nonresonance aV of �12 mV/Oe. This

resonance amplification of aV is even more significant com-

pared to the best known alloy-crystal-based Terfenol-D/

PMN–PT laminates of �10 times as a result of improved cou-

pling between the Terfenol-D composite plates and the PVDF

polymer film in our laminate.2 When HBias is reduced to 0.02

kOe, the measured and calculated resonance aV undergo a

large reduction of �15 times to 16 and 17 mV/Oe, respec-

tively, while their corresponding fr exhibit an up-shift of

�2 kHz to 62.5 and 62.2 kHz, respectively. At an elevated

HBias level of 1.5 kOe, the measured and calculated resonance

aV have �1.2 times reduction to 193 and 204 mV/Oe, respec-

tively, but their corresponding fr exhibit a large up-shift of

�4 kHz to 65.7 kHz, respectively. The observations indicate

that besides the presence of a high resonance ME effect in our

laminate, there also exist an interestingly high HBias-controlla-

ble nonlinear resonance ME tuning effect in the laminate.

Figure 3(a) shows the comparison between the measured

and calculated resonance aV and fr as a function of HBias. To

enable a quantitative description of the HBias-controllable

nonlinear resonance ME tuning effect in Fig. 2, the tunability

FIG. 1. (Color online) (a) Schematic diagram of the proposed polymer-

based ME laminate in the Cartesian coordinate system. (b) Dynamic mag-

neto-elasto-electric equivalent circuit of the laminate.

FIG. 2. (Color online) (a) Measured and (b) calculated aV of the polymer-

based ME laminate driven by an H3 of 1 Oe peak in the f range of

1–100 kHz under various HBias of 0.02–1.5 kOe.
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of aV (TaV
) and tunability of fr (Tfr) expressed, respectively,

as follows are also included.

TaV
¼ aV � aV @ HBias;min

aV @ HBias;min

����
���� (3)

Tfr ¼
fr � fr@HBias;min

fr@HBias;min

: (4)

It is noted that aV @ HBias;min and fr@HBias;min in Eqs. (3) and (4)

are taken as the values of aV and fr at HBias¼ 0.02 kOe in our

case. From Fig. 3(a), the measured data agree well with the cal-

culated data with only �3% discrepancy. Both aV and TaV

increase initially up to 233 mV/Oe and 1382%, respectively, at

HBias¼ 0.6 kOe and then decrease to 193 mV/Oe and 1130%,

respectively, at an elevated HBias¼ 1.5 kOe. In the meantime,

both fr and Tfr decrease with increasing HBias, reaching 62.7 kHz

and�3%, respectively, at HBias¼ 0.6 kOe and then increasing to

65.7 kHz and 5.6%, respectively, at HBias¼ 1.5 kOe. These sug-

gest the high HBias-controllable nonlinear tunabilities of 1382

and 8.6% for aV and fr, respectively. Since an average axial resid-

ual compressive stress of �3 MPa has been developed in our

Terfenol-D composite plates through the thermal cure of the

Spurr epoxy phase during composite fabrication, this compres-

sive stress essentially exerts on the embedded Terfenol-D par-

ticles to create a preferred non-180� domain-wall state in the

composite.5 Thus, the initial increase in aV and TaV
as well as the

initial decrease in fr and Tfr with increasing HBias can be

explained by the HBias-induced motion of the available non-180�

domain walls in the Terfenol-D composite plates. That is, as

HBias is increased near 0.6 kOe, the compliance associated with

the increased deformation contribution from this non-180� do-

main-wall motion is maximized, resulting in a maximum in

strain (and hence aV and TaV
) and a minimum in stiffness (and

hence fr and Tfr). The effect is said to be the maximization of

negative-DE effect at HBias¼ 0.6 kOe.5 Beyond this optimal

HBias, constraining of non-180� domain-wall motion due to inter-

action with HBias gives rise to a decrease in strain and an increase

in stiffness. Figure 3(b) illustrates the variations of d33,m and sH
33

with HBias in the Terfenol-D composite plates. The maximization

of d33,m and sH
33 at HBias¼ 0.6 kOe not only confirms essentially

our domain-wall motion discussion, but also supports our design

of using PVDF polymer to relieve the elastic clamping effect on

the Terfenol-D composite for best possibly exhibiting the built-in

non-180� domain-wall motion, the large negative-DE effect, and

hence the high ME tuning effect.

We have reported experimentally and theoretically a high

HBias-controllable nonlinear resonance ME tuning effect in a

polymer-based ME laminate formed by Terfenol-D composite

plates and PVDF polymer film. A high resonance aV of

233 mV/Oe, which is �20 and �2 times larger than its nonreso-

nance aV and the best known alloy-crystal-based Terfenol-D/

PMN–PT laminates, respectively, has been observed at

fr¼ 60.6 kHz under HBias¼ 0.6 kOe due to the improved mag-

neto-elasto-electric coupling between the Terfenol-D composite

plates and the PVDF polymer film. Nonlinear tunabilities as

high as 1382 and 8.6% have been achieved for aV and fr, respec-

tively, in the HBias range of 0.02–1.5 kOe because of the reduced

eddy-current losses and enhanced non-180� domain-wall

motion-induced negative-DE effect in the Terfenol-D composite

plates as well as the increased compliance contribution from the

PVDF polymer film to allow the motion of non-180� domain

walls in the Terfenol-D composite plates. The laminate has great

promise for use in various tunable ME devices.
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FIG. 3. (Color online) (a) Comparison between the

measured and calculated resonance aV and fr as well as

TaV
and Tfr as a function of HBias. (b) Variations of

d33,m and sH
33 with HBias in the Terfenol-D composite

plates.
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