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Harmonics and intermodulation in subthreshold FitzHugh–Nagumo neuron
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Intermodulation and harmonics are important in frequency analysis of nonlinear systems. In neuron
research, most investigations are taken in studying synchronization between the external stimuli and
the output of neuron, but harmonics and intermodulation are often ignored. In this paper, harmonics
and intermodulation of the subthreshold FitzHugh–Nagumo neuron are investigated and their mag-
nitudes are used to predict frequency response of the neuron. Furthermore, through analyzing the
magnitudes of harmonics, the intrinsic frequencies of the neuron could be identified.
© 2009 American Institute of Physics. �DOI: 10.1063/1.3234239�

A harmonic of a wave is a component frequency of the
signal that is an integer multiple of the fundamental fre-
quency, while intermodulation is the result of two or
more signals of different frequencies being mixed to-
gether, forming additional signals at frequencies that are
not, in general, at harmonic frequencies of either. Both
harmonics and intermodulation are caused by nonlinear
behaviors of systems. Recently, they are well investigated
in biological applications such as improving human’s
hearing and vision system. However, in neuron models,
harmonics and intermodulation are rarely concerned. In-
vestigators always focus on the external synchronization
between the input and output. In traditional study of the
external synchronization, signals at continuous frequen-
cies are introduced to stimulate neuron to get corre-
sponding output. By calculating the spectrum or Fourier
coefficient of the output at each input frequency, the fre-
quency response is obtained. So harmonics and inter-
modulation of the applied input signal have been ignored.
In this paper, a sinusoid input is applied to FitzHugh–
Nagumo (FHN) neuron to make it remain in subthresh-
old oscillations and the corresponding harmonics and in-
termodulation are studied. They are incorporated to
predict frequency response of the neuron. Also by identi-
fying the maximum magnitude of harmonics, we can get
the special input frequencies where the neuron could be
more easily excited. Moreover, it demonstrates that the
output response of a FHN neuron may not be maximum
at the input frequency. Some output frequencies gener-
ated from harmonics or intermodulation may have sig-
nificant effects on the output response which cannot be
ignored in frequency analysis of the neuron.

I. INTRODUCTION

A harmonic of a wave is a component frequency of the
signal that is an integer multiple of the fundamental fre-
quency. For instance, given a signal with a fundamental an-
gular frequency �, its harmonics are given by �, 2�, 3�, etc.

Being different from harmonics, intermodulation or inter-
modulation distortion happens when two or more signals at
different frequencies are mixed together to stimulate a non-
linear system to form additional signals at frequencies that
are not, in general, at the harmonic frequencies. Harmonics
and intermodulation are caused by nonlinear behaviors of the
signal processing being used. The theoretical outcome of
these nonlinearities can be calculated by conducting a Volt-
erra series of the characteristic, while the usual approxima-
tion of those nonlinearities is obtained by conducting a Tay-
lor series.1,2 Existing methods to study nonlinear behavior of
systems are based on transforming the Volterra kernels to the
frequency domain to yield the generalized transfer functions.
Although these approaches could characterize nonlinear sys-
tem in the frequency domain properly, the available measure-
ment techniques are all based on extending the classical lin-
ear fast Fourier transform algorithms to higher dimensions.
Inevitably, it will increase the complexity and efforts in com-
puting the nonlinear spectra. A methodology1,2 is introduced
for analyzing unknown nonlinear systems in the frequency
domain as an alternative to the nonparametric algorithms.
The method is to fit a model to an unknown system and to
apply probing method3 to obtain the nonlinear frequency
responses.

Recently, the harmonics and intermodulation in vision
and hearing systems have been well studied.4–9 As pointed
out in some of these works, intermodulation distortion could
possibly reduce the energy of pure tones at characteristic
frequency in the vision or hearing systems. It also7 shows
that significant spectral frequency-following responses are
detected at harmonics close to formant peaks and at harmon-
ics corresponding to cochlear intermodulation distortion
products10,11 present that the cochlear microphonic potentials
in homozygotes manifest harmonic and intermodulation dis-
tortion. It is impossible to list all articles on intermodulation
and harmonics in nervous system. Although harmonics and
intermodulation are well investigated in biological applica-
tion, they are rarely discussed in frequency response analysis
of neuron models. Investigators always focus on the synchro-
nization between the output and the stimuli.12–19 In other
words, they just pay attention to the output whose frequency
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matches the inputs and neglect harmonics and intermodula-
tion of the input �fundamental� frequencies. In traditional
synchronization study, the signals at continuous frequencies
are introduced to stimulate the neuron. By calculating the
output spectrum or Fourier coefficient at each input fre-
quency, the frequency response of the neuron is obtained. So
the harmonics and intermodulation of the applied signal have
been ignored. In this paper, a sinusoid input is applied to
FHN neuron to make it in subthreshold oscillation and the
corresponding harmonics and intermodulation are calculated
through the probing method to predict the frequency re-
sponse of the neuron. By identifying the maximum magni-
tude responses of harmonics, we can get the characteristic
frequencies where the neuron could get excited more easily.

This paper is organized as follows. Section II provides
nonlinear frequency response functions while Sec. III, as the
new contribution, shows the harmonics and intermodulation
in the FHN neuron, which is excited by one or two sinusoid
input stimuli. The last part is the conclusion.

II. NONLINEAR FREQUENCY RESPONSE FUNCTIONS

Based on the Volterra series, the traditional description
of output of a nonlinear system with u�t� as input is shown as
follows:20

y�t� = �
n=1

� �
−�

+�

¯� hn��1,�2, . . . ,�n��
i=1

n

u�t − �i�d�i, �1�

where hn��1 ,�2 , . . . ,�n� is the nth order Volterra kernel which
can be visualized as a nonlinear impulse response function of
order n. The nth order generalized frequency response func-
tion can be obtained by taking multiple Fourier transform of
the nth order Volterra kernel,

Hn��1,�2, . . . ,�n�

= �
−�

+�

¯� hn��1, . . . ,�n�e−j��1�1+¯+�n�n�d�1 ¯ d�n. �2�

Equation �1� states that any time-invariant, nonlinear
system can be modeled as an infinite sum of multidimen-
sional convolution integrals of increasing order.

A. Computation of nonlinear frequency
response functions

Probing or harmonic input method1,2 can be applied to
obtain the steady-state output of a nonlinear system. If the
input u�t� is a sum of K exponentials given by

u�t� = �
k=1

K

Ake
j�kt, �3�

where Ak and �k represent the amplitude and angular
frequency, respectively, the nth order output can be
expressed21 as

yn�t� = �
k1=1

K

¯ �
kn=1

K

�Ak1
¯ Akn

Hn��k1
, . . . ,�kn

��ej��k1
+¯+�kn

�t,

�4�

where each permutation of �k1
, . . . ,�kk

in the argument of
Hn� · � gives rise to a term in the nth order output and differ-
ent terms may give rise to the same output angular fre-
quency. If y�t�=�n=1

� yn�t� contains no component with angu-
lar frequency �1+�2+ ¯+�K other than those K! terms in
yn�t�, the symmetrized nth order nonlinear transfer function
Hn��1 , . . . ,�n� can be obtained by the probing input method
by equating coefficients of K !ej��1+¯+�K�t in the system out-
put when the input is defined as in Eq. �3� with Aki

=1.11,22 It
has been shown in Ref. 21 that if the angular frequencies
��1 ,�2 , . . . ,�k	 form an angular frequency base, the sum of
all terms with angular frequency �M in Eq. �4� for the nth
output component yn�t� denoted by yn�t ;�M� is given as
follows:

yn�t;�M� = n ! 
�
k=1

K
Ak

mk

mk
�Hn�m1��1	, . . . ,mk��k	�ej�Mt, �5�

where mk��k	 denotes mk consecutive arguments in Hn� · �
with the same angular frequency �k and �k=1

K mk=n. Since
yn�t� consists of all possible angular frequency mixes that
satisfy �k=1

K mk=n, Eq. �4� can be expressed as

yn�t� = �
all possible M

yn�t;�M� = �
m1=0

n

¯ �
mk=0

n

yn�t;�M� , �6�

where the terms do not have overlapping angular frequency
components.

In actual practice, the input equation �3� cannot be real-
ized and a more realistic input composed of K different
sinusoids21 is presented as follows:

u�t� = �
i=1

K

�Ai�cos��it + � Ai� = �
i=1

K 
Ai

2
ej�it +

Ai
�

2
e−j�it� , �7�

where �Ai�, �Ai, and Ai
� are the amplitude, phase, and com-

plex conjugate of Ai, respectively. By definition A−i=Ai
� and

�−i=−�i, Eq. �7� can be expressed as

u�t� = �
i=−K

i�0

K
Ai

2
ej�it. �8�

Then Eq. �5� could be rewritten as follows:

yn�t;�M�

=
n!

2n �
i=−K

i�0

K
Ai

mi

mi �Hn�m−K��−K	, . . . ,m−1��−1	, . . . ,mk��k	�

�ej�Mt. �9�

Equation �9� illustrates that the output components
�yn�t�s� are generated by the nth order frequency response
functions of the system. When a sum of K sinusoids is ap-
plied to a nonlinear system, yn�t� consists of all possible
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combinations of the input angular frequencies �−�K , . . . ,
−�1 ,�1 , . . . ,�K	 with the number of n. Because
��−K , . . . ,�−1 ,�1 , . . . ,�K	 is not an angular frequency base,
different module vectors of the same order can produce the
same output angular frequency. Equation �9� can be used to
predict how harmonics and intermodulation arise in the re-
sponse of nonlinear systems.

B. Harmonics

Harmonics are frequency components which are equal to
multiples of the fundamental input frequencies. The lth har-
monics are the frequency component oscillating at l times the
input frequency. Assume that the input is a single sinusoid,
namely, u�t�= �A�cos��t+ �A�, and consider just the nth or-
der output response yn�t�. Because the input is a single sinu-
soid, the two input angular frequencies are −� and �.

From Eq. �9�, the nth order output component that cor-
responds to an angular frequency mix �M = �m1−m−1�� is
given as follows:

yn�t;�M� =
n!

2nm−1 ! m1!
�A��m−1�A�m1Hn�m−1�− �	m1��	�

�ej�m1−m−1��t. �10�

The exponential term ej�m1−m−1��t in Eq. �10� clearly reveals
that the output consists of either the fundamental constant
component or harmonics of the input angular frequency de-
pending upon the value of the positive integers m1 and m−1.
The lth order harmonic is yielded when m1−m−1= l. Because
the output of a real system is real for real inputs and the
complex terms in yn�t� appear in conjugate pairs, the sinu-
soidal response at angular frequency �M can thus be ob-
tained by combining Eq. �10� with its complex conjugate,

ỹn�t;�M� = yn�t;�M� + yn
��t;�M�

= yn�t;�M� + yn�t;− �M�

= 2 Re�yn�t;�M�	

= Re� n!

2n−1m−1 ! m1!
�A��m−1�A�m1

�Hn�m−1�− �	,m1��	�ej�m1−m−1��t� , �11�

where ỹn�t ;�M� denotes the nth order sinusoidal response at
angular frequency �M. From Eq. �11� the magnitude of the
lth harmonic is

�El� = �A��l�� 1

2�l−1�Hl�l��	�

+
l + 2

2�l+1� �A�2Hl+2�− �,�l + 1���	� + ¯� . �12�

C. Intermodulation

The process of two or more signals combined in a non-
linear manner to produce new frequency components is
termed intermodulation. If a nonlinear system is excited by a
sum of K sinusoidal inputs as expressed in Eq. �8�, the an-

gular frequency mix represented by the nth order module
vector M = �m−K , . . . ,m−1 ,m1 , . . . ,mK� generates a nonlinear
angular frequency component at the intermodulation angular
frequency as �M = �m1−m−1��1+ ¯+�mK−m−K��K. Note-
worthy, the positive integers in the vector M sum to n. Be-
cause the output of a real system is real for real inputs, the
nth order real output response at �M is given by

ỹn�t;�M�

= 2 Re�yn�t;�M�	

= Re� n!

2n−1� �
i=−K

i�0

K
Ai

mi

mi!�
�Hn�m−K��−K	, . . . ,m−1��−1	,m1��1	, . . . ,mK��K	�

�ej�Mt� . �13�

The effect of each intermodulation term can be examined by
inspecting the magnitude associated with the intermodulation
term at angular frequency � j, which is presented as follows:

Mag�� j� = ��n=1

�

�
All possible M

such that �M=�j

ỹn�t;�M�� . �14�

III. NONLINEAR FREQUENCY RESPONSE
FUNCTIONS FOR FHN NEURON

The FHN neuron is modeled as

�ẋ�t� = − y�t� − 1
3x3�t� + x�t� ,

�15�
ẏ�t� = x�t� + a + u�t� ,

where the neuron membrane voltage x�t� and the recovery
variable y�t� are considered as dimensionless variables. � and
a are the time scale and bifurcation parameter, respectively.
For a FHN neuron without any external input, if �a��1 the
system has only one stable fixed point corresponding to the
quiescent state of the system, while if �a��1 there exists a
globally stable limit cycle. u�t� is the external input. We dif-
ferentiate Eq. �15� with respect to time and get �ẍ�t�=−x�t�
−a−u�t�−x2�t�ẋ�t�+ ẋ�t� which could be converted to

�z̈�t� + �z2�t� − 2az�t� + a2 − 1�ż�t� + z�t� = − u�t� �16�

by introducing a new variable z�t�=x�t�+a.
As the difference between the variables x�t� and z�t� is

the constant offset a, the probing method can then be applied
to Eq. �16� to obtain the nonlinear frequency response func-
tions. The procedure is begun by setting K=1,Ak=1,�k=�
in Eq. �8� to define the first probing input u�t�=ej�t. Accord-
ing to Eq. �11� with n=1,

z�t� = H1���ej�t, �17�

and hence
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ż�t� = �j��H1���ej�t, z̈�t� = �j��2H1���ej�t. �18�

Substituting Eqs. �17� and �18� into Eq. �16� gives

��j��2H1���ej�t + �a2 − 1��j��H1���ej�t + H1���ej�t

= − ej�t, �19�

and equating coefficients of ej�t on both sides yields

H1��� = −
1

��j��2 + j�a2 − 1�� + 1
. �20�

Then probe with two inputs by setting K=2,Ak=1∀k in
Eq. �3�,

u�t� = ej�1t + ej�2t. �21�

According to Eq. �4� with n=2, we could get

y�t� = �
n=1

2

yn�t�

= H1��1�ej�1t + H1��2�ej�2t + 2 ! H1��1,�2�ej��1+�2�t

+ H2��1,�1�ej�2�1�t + H2��2,�2�ej�2�2�t. �22�

Differentiating Eq. �22� with respect to time obtains its first
and second order derivatives, and substituting them into Eq.
�16� followed by equating coefficients of 2!ej��1+�2�t yields

H2��1,�2� = − aj��1 + �2�H1��1�H1��2�H1��1 + �2� . �23�

Continuing the procedures by probing with three, four, and
five exponentials and equating coefficients of 3!ej��1+�2+�3�t,
4 !ej��1+�2+�3+�4�t, and 5!ej��1+�2+�3+�4+�5�t, respectively, on
both sides of Eq. �16� yields the third, fourth, and fifth fre-
quency response functions, see Eqs. �A1�–�A3� in the
Appendix.

Notice that the procedure can be continued indefinitely
to calculate higher order nonlinear frequency response func-
tions, which will be composed by the lower order functions.
Although the Volterra expansion is infinite because of the
nonlinearity in the model and each kernel of the expansion
could contribute to the output, the influence of high order
kernels will be vanishing with the amplitude of excitation
being less than 1.

A. Case study 1

The input u�t� is chosen as a single cosine signal,
namely, A cos��t�, where A and � are the amplitude and the
angular frequency, respectively. So the two input angular fre-
quency components are −� and �. The nth order module
vector of the input angular frequencies is therefore of the
form M = �m−1 ,m1�, where m−1+m1=n. The parameters of
the FHN neuron are chosen as �=0.01 and a=1.01. Table I
shows the first to the fifth harmonic magnitudes of the out-
put. It has been assumed that the input amplitude A is so
small that the influence of the frequency response functions,
which is higher than the fifth order, could be neglected. To
evaluate the effect of input amplitude and magnitude of har-
monics on output response of FHN neuron, the effective gain
of harmonics is defined as follows:

�Gl���� =
�El����

A
, �24�

where El��� denotes the magnitude of harmonics and A is
the input amplitude.

Figure 1 shows the effective gain spectra of harmonics
for different input amplitudes. When the input amplitude is
close to zero, the output is dominated by the first harmonic
because the effective gains of higher order harmonics are
close to zero. From the effective gain spectrum of the first
harmonic in Fig. 1�a�, a spectral peak is identified at about
9.8 rad/s, which has been reported as the Carnard oscillation
angular frequency in Ref. 23. From Figs. 1�b�–1�e�, as the
input amplitude increases up to 0.01, the second, third,
fourth, and fifth order harmonics start to have effect on the
output response of the neuron. Spectral peaks at 5.0 and 9.8
rad/s are identified from the effective gain of the second
harmonic. 3.4, 4.9, and 9.8 rad/s are identified for the third
harmonic; 3.3, 5.1, and 9.8 rad/s are identified for the fourth
harmonic; and 2.5, 5, and 9.8 rad/s are identified for the fifth
harmonic. On top of the Carnard oscillation angular fre-
quency around 9.8 rad/s, the FHN neuron can easily get ex-
cited at other angular frequencies such as 2.5, 3.4, and 5
rad/s based on the identified spectral peaks from the gain
spectra of higher harmonics.

To verify if the effective gain spectra of higher harmon-
ics could predict the output response of FHN neuron, a sinu-
soid with amplitude of 0.01 and angular frequency of 5 rad/s
was used as the input stimuli. Figure 2 shows the output
response of the FHN neuron, and clearly, higher order fre-
quency response functions have very little effects on the out-
put response. Figure 3 is obtained in the same stimulus as
Fig. 2. Figure 3�a� shows the spectrum of the output signal
based on Table I and Fig. 3�b� shows the spectrum of the
output signal based on the Fourier analysis.

To evaluate the response of the output frequency to the
input frequency based on Fourier analysis, the Fourier coef-
ficient Q of the output is calculated at the input angular fre-
quency � as follows:23

TABLE I. Magnitude responses of harmonics.

Magnitude response of harmonics

�E1���� �AH1��� + 3
4A3H3�− �,�,�� + 5

8A5H5�− �,− �,�,�,���

�E2���� �1
2A2H2��,�� + 1

2A4H4�− �,�,�,���

�E3���� �1
4A3H3��,�,�� + 5

16A5H5�− �,�,�,�,���

�E4���� �1
8A4H4��,�,�,���

�E5���� � 1
16A5H5��,�,�,�,���
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Qsin =
�

2�n
�

0

2�n/�

2x�t�sin��t�dt ,

Qcos =
�

2�n
�

0

2�n/�

2x�t�cos��t�dt , �25�

Q = �Qsin
2 + Qcos

2 ,

where n is the number of periods 2� /� covered by the inte-
gration time. The Q parameter is a much more compact tool

FIG. 1. �Color online� The effective gain spectra for higher harmonics at different amplitudes of input: �a� first harmonic, �b� second harmonic, �c� third
harmonic, �d� fourth harmonic, and �e� fifth harmonic.

FIG. 2. �Color online� Output response �namely, spike train� of FHN neuron
with A=0.01 and �=5 rad /s.

FIG. 3. �Color online� Output spectra. �a� Theoretical output spectra calcu-
lated by Eq. �12�. �b� Fourier output spectra derived by simulations.
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than the power spectrum.24,25 The authors carried out a lot of
simulations by differing input angular frequency continu-
ously �e.g., 0.1–50 rad/s� to obtain the output, and by calcu-
lating the Fourier coefficient Q of each output at the corre-
sponding input angular frequency, the Fourier spectra could
be gotten. Obviously, according to Fig. 3, theoretical values
based on Table I agree with the values obtained from Fourier
analysis. Then the input amplitude is increased to 0.02 and
the output response of the FHN neuron is shown in Fig. 4. At
this situation, the higher order harmonics begin to have ef-
fects on the output response. Figure 5 shows the spectra of
the output signal based on Table I and Fourier analysis. The
second and third harmonics are found to have significant
effects on the output response because their magnitudes are
comparable to the fundamental input angular frequency at 5
rad/s. Noteworthy, if the neuron is not excited at either one
of the angular frequencies where identified spectral peaks

occur, synchronization between the input and output will be
in a low level. Figure 6 shows the spectrum of the output
signal based on Fourier analysis when the input angular fre-
quency is 1 rad/s. Figure 7 shows the output spectra when
the input angular frequency is one of the identified angular
frequencies, for instance, 5 rad/s. According to the two plots,
synchronization between the input and output could happen
more easily when the input angular frequency arrives at
5 rad/s.

B. Case study 2

The parameters of the FHN neuron are chosen as �
=0.1 and a=1.01. In Ref. 23, the authors carried out a lot of
simulations for different input stimuli whose angular fre-
quencies are from 0.1 to 5 rad/s and reported that the reso-
nant angular frequencies of the neuron are 1.4 rad/s and an-
other value, which is between 2.6 and 2.9 rad/s
approximately. To demonstrate whether the two resonant an-
gular frequencies can be captured by the frequency response
functions, the effective gains of higher harmonics are calcu-
lated. Figure 8 shows the effective gain spectra for higher
harmonics with different input amplitudes. From the effec-
tive gain spectrum of the first order harmonic, the resonant
peak around 3.2 rad/s can be identified. Besides 3.2 rad/s,
spectral peaks at 1.6 rad/s and lower angular frequencies also
appear in the effective gain spectra of second and higher
harmonics. Moreover, it can be seen that the effective mag-
nitudes of harmonics at the identified angular frequencies,

FIG. 4. �Color online� Output response of FHN neuron with A=0.02 and
�=5 rad /s.

FIG. 5. �Color online� Output spectra. �a� Theoretical output spectra calcu-
lated by Eq. �12�. �b� Fourier output spectra derived by simulations.

FIG. 6. �Color online� The spectra of the output signal based on the Fourier
analysis with angular frequency of the input being 1 rad/s.

FIG. 7. �Color online� The spectra of the output when the input angular
frequency is one of the identified values, i.e., 5 rad/s.
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which are lower than 1.6 rad/s, are very small. So the two
resonant frequencies reported in Ref. 23 can be easily iden-
tified by the frequency response functions. The advantage of
using the frequency response functions in interpreting output
response of FHN neurons is that the special frequency of the
input stimuli, which could excite the neuron more easily, can
be identified without performing any simulations.

C. Case study 3

To study the intermodulation effects of FHN neuron, the
input stimuli composed of two sinusoids are chosen. The
input is set to be u�t�=A cos��1t�+A cos��2t� with A=0.02.
The two input angular frequencies are set as �1=2 rad /s and
�2=3 rad /s, promising they are not integer multiple of each
other. Table II shows the magnitude responses of all possible
output frequencies.

The parameters of the FHN neuron are chosen as �=0.01
and a=1.01. Figure 9 shows the output response of the neu-
ron and Fig. 10 shows the output spectrum based on Table II
and Fourier analysis. A comparison of the two results reveals
that the nonlinear frequency response functions can capture
the output response of FHN neuron very well.

A repeat of the analysis on another FHN neuron with
�=0.1 and a=1.01 shown in Figs. 11 and 12 demonstrates
similar results.

IV. CONCLUSION

The probing method has been successfully applied to a
subthreshold FHN neuron to extract their nonlinear fre-
quency response functions. The effectiveness of the extracted
nonlinear frequency response functions in predicting output
responses of FHN neurons has been verified by carrying
Fourier analysis on the output responses. Furthermore, the
frequencies where the neuron can easily get excited could be
identified from the effective gain spectra of harmonics, as
well as the effect of input amplitude on output response of
the FHN neuron.

When applying a sinusoid input to a FHN neuron and
making it in the subthreshold oscillation, it demonstrates that
the output response of the neuron may not be maximum at
the frequency, which is similar to the input. Sometimes other
output frequencies generated from harmonics or intermodu-
lation may have apparent effects on the output response and
these effects cannot be ignored in the analysis of FHN
neurons.
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APPENDIX: THE HIGHER ORDER FREQUENCY
RESPONSE FUNCTION

1. Third order frequency response function

	3 = H1��1�H1��2�H1��3� − 2a�H1��1�H2��2,�3�

+ H1��2�H2��1,�3� + H1��3�H2��1,�2�� ,

�A1�
H3��1,�2,�3� = − 2j��1 + �2 + �3�	3/�6��j��1 + �2 + �3��2

+ 6�a2 − 1��j��1 + �2 + �3�� + 6� .

2. Fourth order frequency response function

	4 = − 2a�4j��1 + �2 + �3 + �4��H2��1,�2�H2��3,�4�

+ H2��1,�3�H2��2,�4� + H2��1,�4�H2��2,�3���

− 12aj��1 + �2 + �3 + �4��H1��1�H3��2,�3,�4�

+ H1��2�H3��1,�3,�4� + H1��3�H3��1,�2,�4�

+ H1��4�H3��1,�2,�3�� ,


4 = 4j���3 + �4�H1��1�H1��2�H2��3,�4� + ��2 + �4�

�H1��1�H1��3�H2��2,�4� + ��2 + �3�H1��1�H1��4�

�H2��2,�3� + ��1 + �4�H1��2�H1��3�H2��1,�4�

+ ��1 + �3�H1��2�H1��4�H2��1,�3�

+ ��1 + �2�H1��3�H1��4�H2��1,�2�� ,

TABLE II. Magnitude responses of all output frequencies.

Output frequency
�rad/s� Magnitude of output response

1
�A2H2�− �1,�2� + 3

4A3H3��1,�1,− �2� + 3
2A4H4�− �1,− �2,�2,�2� + 3

2A4H4�− �1,− �1,�1,�2� + 5
4A5H5�− �1,�1,�1,�1,− �2�

+ 15
8 H5��1,�1,− �2,− �2,�2��

2
�AH1��1� + 3

2A3H3��1,− �2,�2� + 3
4A3H3�− �1,�1,�1� + 3

4A4H4�− �1,− �1,�2,�2� + 15
4 A5H5�− �1,�1,�1,− �2,�2�

+ 5
8A5H5�− �1,− �1,�1,�1,�1� + 15

8 A5H5��1,− �2,− �2,�2,�2��

3
�AH1��2� + 3

2A3H3�− �2,�2,�2� + 3
4A3H3�− �1,�1,�2� + 3

4A4H4��1,�1,�1,− �2� + 15
4 A5H5�− �1,�1,− �2,�2,�2�

+ 5
8A5H5�− �1,− �1,�1,�1,�2� + 15

8 A5H5�− �2,− �2,�2,�2,�2��

4
�1

2A2H2��1,�1� + 3
4A3H3�− �1,�2,�2� + 1

2A4H4�− �1,�1,�1,�1� + 3
2A4H4��1,�1,− �2,�2� + 5

4A5H5�− �1,− �2,�2,�2,�2�

+ 15
8 A5H5�− �1,− �1,�1,�2,�2��

5 �A2H2��1,�2� + 3
2A4H4�− �1,�1,�1,�2� + 3

2A4H4��1,− �2,�2,�2� + 5
16A5H5��1,�1,�1,�1,− �2� + 5

8A5H5�− �1,− �1,�2,�2,�2��

6
�1

2A2H2��2,�2� + 1
4A3H3��1,�1,�1� + 1

2A4H4�− �2,�2,�2,�2� + 3
2A4H4�− �1,�1,�2,�2� + 5

16A5H5�− �1,�1,�1,�1,�1�

+ 5
4A5H5��1,�1,�1,− �2,�2��

7 �3
4A3H3��1,�1,�2� + 1

2A4H4�− �1,�2,�2,�2� + 5
4A5H5�− �1,�1,�1,�1,�2� + 15

8 A5H5��1,�1,− �2,�2,�2��

8 �3
4A3H3��1,�2,�2� + 1

8A4H4��1,�1,�1,�1� + 15
8 A5H5�− �1,�1,�1,�2,�2� + 5

4H5��1,− �2,�2,�2,�2��

9 �1
4A3H3��2,�2,�2� + 1

2A4H4��1,�1,�1,�2� + 5
4A5H5�− �1,�1,�2,�2,�2� + 5

16H5�− �2,�2,�2,�2,�2��

10 �3
4A4H4��1,�1,�2,�2� + 5

16A5H5�− �1,�2,�2,�2,�2� + 1
16A5H5��1,�1,�1,�1,�1��

11 �1
2A4H4��1,�2,�2,�2� + 5

16H5��1,�1,�1,�1,�2��

12 �1
8H4��2,�2,�2,�2� + 5

8H5��1,�1,�1,�2,�2��

13 �5
8H5��1,�1,�2,�2,�2��

14 � 5
16H5��1,�2,�2,�2,�2��

15 � 1
16H5��2,�2,�2,�2,�2��
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H4��1,�2,�3,�4� = − �	4 + 
4�/�24��j��1 + �2 + �3 + �4��2

+ 24j�a2 − 1���1 + �2 + �3 + �4� + 24� .

3. Fifth order frequency response function

	5 = − 2a�48�j�f1 + f2 + f3 + f4 + f5�

��H1�f1�H4�f2, f3, f4, f5� + H1�f2�H4�f1, f3, f4, f5�

+ H1�f3�H4�f1, f2, f4, f5� + H1�f4�H4�f1, f2, f3, f5�

+ H1�f5�H4�f1, f2, f3, f4��� − 48�aj�f1 + f2 + f3 + f4

+ f5��H2�f1, f2�H3�f3, f4, f5� + H2�f1, f3�H3�f2, f4, f5�

+ H2�f1, f4�H3�f2, f3, f5� + H2�f1, f5�H3�f2, f3, f4�

+ H2�f2, f3�H3�f1, f4, f5� + H2�f2, f4�H3�f1, f3, f5�

+ H2�f2, f5�H3�f1, f3, f4� + H2�f3, f4�H3�f1, f2, f5�

+ H2�f3, f5�H3�f1, f2, f4� + H2�f4, f5�H3�f1, f2, f3�� ,


5 = 24�j�f3 + f4 + f5�H1�f1�H1�f2�H3�f3, f4, f5�

+ 24�j�f2 + f4 + f5�H1�f1�H1�f3�H3�f2, f4, f5�

+ 24�j�f2 + f3 + f5�H1�f1�H1�f4�H3�f2, f3, f5�

+ 24�j�f2 + f3 + f4�H1�f1�H1�f5�H3�f2, f3, f4�

+ 24�j�f1 + f4 + f5�H1�f2�H1�f3�H3�f1, f4, f5�

+ 24�j�f1 + f3 + f5�H1�f2�H1�f4�H3�f1, f3, f5�

+ 24�j�f1 + f3 + f4�H1�f2�H1�f5�H3�f1, f3, f4�

+ 24�j�f1 + f2 + f5�H1�f3�H1�f4�H3�f1, f2, f5�

FIG. 9. �Color online� Output response �or spike train� of FHN neuron with
A=0.02, �1=2 rad /s, �2=3 rad /s, and �=0.01.

FIG. 10. �Color online� Output spectra with �=0.01. �a� Theoretical output
spectra calculated by Eq. �14�. �b� Fourier output spectra derived by
simulations.

FIG. 11. �Color online� Output response �or spike train� of FHN neuron with
A=0.02, �1=2 rad /s, �2=3 rad /s, and �=0.1.

FIG. 12. �Color online� Output spectra with �=0.1. �a� Theoretical output
spectra calculated by Eq. �14�. �b� Fourier output spectra derived by
simulations.
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+ 24�j�f1 + f2 + f4�H1�f3�H1�f5�H3�f1, f2, f4�

+ 24�j�f1 + f2 + f3�H1�f4�H1�f5�H3�f1, f2, f3�

+ 16�j f5H1�f5�H2�f1, f2�H2�f3, f4�

+ 16�j f4H1�f4�H2�f1, f2�H2�f3, f5�

+ 16�j f3H1�f3�H2�f1, f2�H2�f4, f5�

+ 16�j f5H1�f5�H2�f1, f3�H2�f2, f4�

+ 16�j f4H1�f4�H2�f1, f3�H2�f2, f5�

+ 16�j f2H1�f2�H2�f1, f3�H2�f4, f5�

+ 16�j f5H1�f5�H2�f1, f4�H2�f2, f3�

+ 16�j f3H1�f3�H2�f1, f4�H2�f2, f5�

+ 16�j f2H1�f2�H2�f1, f4�H2�f3, f5�

+ 16�j f4H1�f4�H2�f1, f5�H2�f2, f3�

+ 16�j f1H1�f1�H2�f2, f4�H2�f3, f5�

+ 16�j f1H1�f1�H2�f2, f5�H2�f3, f4�

+ 16�j f3H1�f3�H2�f1, f5�H2�f2, f4�

+ 16�j f2H1�f2�H2�f1, f5�H2�f3, f4�

+ 16�j f1H1�f1�H2�f2, f3�H2�f4, f5� ,

H5�f1, f2, f3, f4, f5� = − �	5 + 
5�/�120��2�j�f1 + f2 + f3

+ f4 + f5��2 + 240�j�a2 − 1��f1 + f2

+ f3 + f4 + f5� + 120� .
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