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Double-diffusive buoyancy convection in an open-top rectangular cavity with horizontal
temperature and concentration gradients is considered. Attention is restricted to the case where the
opposing thermal and solutal buoyancy effects are of equal magnitude �buoyancy ratio R�=−1�. In
this case, a quiescent equilibrium solution exists and can remain stable up to a critical thermal
Grashof number Grc. Linear stability analysis and direct numerical simulation show that depending
on the cavity aspect ratio A, the first primary instability can be oscillatory, while that in a closed
cavity is always steady. Near a codimension-two point, the two leading real eigenvalues merge into
a complex coalescence that later produces a supercritical Hopf bifurcation. As Gr further increases,
this complex coalescence splits into two real eigenvalues again. The oscillatory flow consists of
counter-rotating vortices traveling from right to left and there exists a critical aspect ratio below
which the onset of convection is always oscillatory. Neutral stability curves showing the influences
of A, Lewis number Le, and Prandtl number Pr are obtained. While the number of vortices increases
as A decreases, the flow structure of the eigenfunction does not change qualitatively when Le or Pr
is varied. The supercritical oscillatory flow later undergoes a period-doubling bifurcation and the
new oscillatory flow soon becomes unstable at larger Gr. Random initial fields are used to start
simulations and many different subcritical steady states are found. These steady states correspond to
much stronger flows when compared to the oscillatory regime. The influence of Le on the onset of
steady flows and the corresponding heat and mass transfer properties are also investigated.
© 2010 American Institute of Physics. �doi:10.1063/1.3517296�

I. INTRODUCTION

The density of a fluid can be influenced simultaneously
by heat and solute with different diffusivities. In a gravita-
tional field, this can generate many intriguing flow phenom-
ena, even when the overall density distribution is stable. Due
to its great importance in geology and many industrial pro-
cesses, this double-diffusive buoyancy convection has been
the topic of intensive research for many years.1–3

Depending on the applications, different configurations
of the temperature and solute concentration gradients have
been considered in existing literatures: vertical �T and �C,
horizontal �T and �C, or vertical �C and horizontal �T.
Here we only mention one special case where these gradients
are both horizontal and the resultant thermal and solutal
buoyancy forces are opposing and of equal magnitude �buoy-
ancy ratio R�=−1�. In this case, a quiescent equilibrium cor-
responding to the pure conductive and diffusive state exists
and can remain stable up to a critical thermal Rayleigh num-
ber. Krishnan4 was the first to numerically study in a square
cavity the transition from the equilibrium regime to the
steady convective regime. Further transitions to periodic and
quasiperiodic flows with up to three incommensurate fre-
quencies were also obtained. Gobin and Bennacer5 studied

the onset of convection in an infinite vertical layer with im-
permeable and slip boundary conditions. The situation in a
finite cavity with no-slip boundary condition was also con-
sidered and a turning point of the subcritical solution branch
was confused with the critical bifurcation point of the quies-
cent equilibrium. Later, Ghorayeb and Mojtabi6 studied this
problem more systematically. They showed that the primary
instability of the equilibrium corresponds to a transcritical
bifurcation point that is determined by Rac�Le−1�, where
Rac is the critical Rayleigh number and Le is the Lewis num-
ber. The onset of oscillatory flow as a function of Le was
studied by Ghorayeb et al.7 Nonlinear bifurcation analysis8,9

has been done and extensions of the configuration to an in-
clined cavity10 and to porous cavities11,12 have also been con-
sidered. More recently, the situation in a three-dimensional
enclosure was studied by Bergeon and Knobloch.13 These
two authors also investigated the multiplicity of stable spa-
tially localized steady states, a phenomenon known as “ho-
moclinic snaking” that can be interpreted in terms of a pin-
ning region in the parameter space.14 The onset of subcritical
convection was predicted by Ouriemi et al.15

Like buoyancy force, liquid surface tension can also be
simultaneously influenced by temperature and solute concen-
tration. A similar configuration to the above mentioned spe-
cial case is when the upper rigid wall of the cavity is re-
moved and the thermal and solutal Marangoni effects due to

a�Author to whom correspondence should be addressed. Electronic mail:
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horizontal temperature and concentration gradients are equal
and opposing �solutal to thermal Marangoni number ratio
R�=−1�. Then a purely diffusive quiescent equilibrium also
exists and can remain stable up to a certain critical thermal
Marangoni number, beyond which convection occurs.
Bergman16 was the first to study this so-called double-
diffusive Marangoni instability in the absence of buoyancy.
Some steady flow states were obtained using direct numeri-
cal simulation. However, the nature of the primary bifurca-
tion point had long remained unclear. Very recently, this
problem was studied systematically by Chen et al.,17 where it
was shown by both linear stability analysis and direct simu-
lation that the first primary instability of the equilibrium cor-
responds to a supercritical Hopf bifurcation. The flow arising
from small disturbance is oscillatory rather than steady. Tran-
sition to chaos has also been considered by Li et al.18

Double-diffusive buoyancy convection in an open-top
cavity was studied by Younis et al.,19 where Marangoni ef-
fects were neglected and the results were compared to those
in a closed cavity to evaluate the influence of the upper rigid
boundary. However, the onset of convection in this configu-
ration when the buoyancy ratio R�=−1 has never been ex-
plored. It has been found that in a closed cavity, the two most
unstable modes are all steady �transcritical and pitchfork�,
and their neutral stability curves cross successively at a se-
ries of codimension-two bifurcation points as the aspect ratio
increases.8,10 No new dynamical behavior is produced near
these codimension-two points and the onset of convection is
always steady. We find that, however, when the upper rigid
wall is removed and the upper boundary becomes stress-free,
the first primary instability of the equilibrium can be a Hopf
bifurcation, i.e., the flow arising from small disturbance can
be oscillatory, rather than always steady. It is the purpose of
the present paper to investigate the onset of convection in
such an open-top cavity when the thermal and solutal buoy-
ancy effects due to horizontal temperature and concentration
gradients are equal and opposing �R�=−1�.

The rest of this paper is organized as follows. In Sec. II,
the definition of the physical problem and the mathematical
formulation are given. Solution methods including linear sta-
bility analysis and direct numerical simulation are described
in Sec. III. Results and discussions are presented in Sec. IV,
where it is shown that the transcritical and pitchfork steady
modes can mix together to produce an oscillatory mode near
codimension-two points, and in certain parameter range
many different subcritical steady states coexist. Finally, the
conclusions are included in Sec. V.

II. PROBLEM DEFINITION

The two-dimensional rectangular cavity is made up of
three rigid walls, of length L and height H, and filled with a
binary fluid with a nondeformable liquid-air surface on the
top �Fig. 1�. Different temperatures and concentrations are
specified at the left �T1 ,C1� and right �T2 ,C2� vertical walls,
where T1�T2 and C1�C2, and zero heat and mass fluxes are
imposed on the two horizontal boundaries. The no-slip
boundary condition is adopted for all velocity components
on the rigid walls, and on the upper surface Marangoni effect

is neglected. Boussinesq approximation is assumed to be
valid except for the density �, which is allowed to vary lin-
early with liquid temperature and solute concentration. Thus,

��T,C� = �0�1 − �T�T − T0� − �C�C − C0�� , �1�

where �0=��T0 ,C0�, �T= �−1 /�0���� /�T�C, and �C

= �−1 /�0���� /�C�T. The thermophysical properties of the
fluid are estimated at the reference temperature T0 and con-
centration C0, which are set to be equal to T2 and C2, respec-
tively.

By choosing L as the unit of length and � /L as the unit
of velocity, where � denotes the kinematic viscosity of the
fluid, the nondimensionalized equations governing the con-
servation of mass, momenta, energy, and solute concentra-
tion can be written as

� · V = 0, �2�

�V

�t
+ �V · ��V = − �p + �2V + Gr�� + R� · c�j�, �3�

��

�t
+ �V · ��� =

1

Pr
�2� , �4�

�c

�t
+ �V · ��c =

1

Pr · Le
�2c , �5�

together with boundary conditions

x = 0, y � �0,A�:u = v = 0, � = c = 1, �6�

x = 1, y � �0,A�:u = v = 0, � = c = 0, �7�

y = 0, x � �0,1�:u = v = 0,
��

�y
=

�c

�y
= 0, �8�

y = A, x � �0,1�:
�u

�y
= 0, v = 0,

��

�y
=

�c

�y
= 0, �9�

where V=u · i�+v · j� is the velocity vector. There are five di-
mensionless parameters in the above system,

A =
H

L
, Pr =

�

�
, Le =

�

D
, Gr =

g�T	TL3

�2 , R� =
�C	C

�T	T
,

�10�

which are respectively the aspect ratio, the Prandtl number,
the Lewis number, the thermal Grashof number, and the

FIG. 1. Schematic of the physical system.
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buoyancy ratio. � denotes thermal diffusivity and D the mo-
lecular diffusivity. Gr is related to the classic Rayleigh num-
ber by Ra=Gr·Pr. In the present study, attention is restricted
to the special case R�=−1, in which the thermal and solutal
buoyancy forces exactly balance each other and the no-flow
equilibrium solution can remain stable up to a critical ther-
mal Grashof number.

The average heat and mass fluxes at the left vertical wall
are given by the Nusselt and Sherwood numbers as

Nu =
1

A
�

0

A � ��

�x
�

x=0
dy �11�

and

Sh =
1

A
�

0

A � �c

�x
�

x=0
dy . �12�

III. SOLUTION METHODS

A. Linear stability analysis

The linear stability characteristics of the equilibrium so-
lutions u0=v0=0, �0=1−x, and c0=1−x obtained for R�=−1
are studied. In a standard way, infinitesimal disturbances are
applied to the systems �2�–�9�, and after linearization the
following system is obtained:

�
� · V = 0

�V

�t
= − �p + �2V + Gr�� − c�j�

��

�t
− u =

1

Pr
�2�

�c

�t
− u =

1

Pr · Le
�2c ,

	 �13�

together with boundary conditions

�
x = 0, y � �0,A�:u = v = 0, � = c = 0

x = 1, y � �0,A�:u = v = 0, � = c = 0

y = 0, x � �0,1�:u = v = 0,
��

�y
=

�c

�y
= 0

y = A, x � �0,1�:
�u

�y
= 0, v = 0,

��

�y
=

�c

�y
= 0.
	 �14�

The dependent variables V=u · i�+v · j� , p ,� and c now denote
small disturbances. In order to eliminate the pressure terms,
the stream function 
��
 /�y=u , −�
 /�x=v� is introduced
and the system becomes

�
�

�t
	
 = 	2
 − Gr
 ��

�x
−

�c

�x
�

��

�t
=

�


�y
+

1

Pr
	�

�c

�t
=

�


�y
+

1

Le · Pr
	c ,

	 �15�

with boundary conditions

�
x = 0, 1, y � �0,A�:
 =

�


�x
= 0, � = c = 0

y = 0, x � �0,1�:
 =
�


�y
= 0,

��

�y
=

�c

�y
= 0

y = A, x � �0,1�:
 =
�2


�y2 = 0,
��

�y
=

�c

�y
= 0.
	 �16�

The eigenvalue problem defined by Eqs. �15� and �16� is
solved by the Tau spectral method.20 The time dependence of
disturbances is assumed to be of exponential form with a
complex growth factor �=�+ i�, while the spatial distribu-
tions are represented by series of Chebyshev polynomials.
Thus, the variables are written as


�t,x,y� = e�t�
n=0

N

�
m=0

M

anmTn�x�Tm�y� , �17�

��t,x,y� = e�t�
n=0

N

�
m=0

M

bnmTn�x�Tm�y� , �18�

c�t,x,y� = e�t�
n=0

N

�
m=0

M

cnmTn�x�Tm�y� , �19�

where Tk�x� ,k=0,1 ,2 , . . . are Chebyshev polynomials of the
first kind. Depending on the dimensionless parameters, N
and M vary in the range of 14–74 in order for the series to
converge. By substituting Eqs. �17�–�19� into Eqs. �15� and
�16�, a generalized eigenvalue problem with a matrix size of
�3�N+1��M +1� , 3�N+1��M +1�� is obtained. The complex
eigenvalue � can be determined when the parameters Gr, Le,
Pr, and A are specified. Then one of the parameters, say Gr,
is increased until the real part of � vanishes. The correspond-
ing value of Gr is the critical condition for neutral stability
and the imaginary part of � indicates whether the instability
evolves into steady convection or growing oscillation. When
the onset is oscillatory, the critical dimensionless oscillation
frequency can be determined by fc=� /2 and the full oscil-
lation cycle of the flow field can be determined by

�t ,x ,y�=��x ,y� · cos �t−��x ,y� · sin �t, where ��x ,y� and
��x ,y� are the real and imaginary parts of the corresponding
complex eigenfunction, respectively.

B. Direct numerical simulation

Equations �2�–�5� together with the boundary conditions
�6�–�9� are discretized using nonuniform control volumes.
Finer grids cluster near the boundaries in order to improve
the numerical accuracy. Colocated variable arrangement is
used and the SIMPLE algorithm is adopted to couple mo-
mentum and continuity equations. In searching for steady-
state flow, initially very large time step is used for fast con-
vergence. For cases where convergent steady solutions
cannot be obtained, small time steps are used to detect pos-
sible unsteady behavior. The time stepping is realized by the
second order, implicit, three time level scheme. Details of the
implementation of the numerical procedures can be found in
Ferziger and Peric.21

124101-3 Onset of double-diffusive convection Phys. Fluids 22, 124101 �2010�
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Validations of both the linear stability analysis and direct
numerical simulation procedures were detailed in Chen et
al.,17 where these two methods were successfully used to
investigate the onset of double-diffusive Marangoni convec-
tion in a similar configuration.

IV. RESULTS AND DISCUSSIONS

A. Linear stability analysis

1. Variations of leading eigenvalues with Gr

As the dynamic parameter Gr increases, the eigenvalues
in the complex plane move and it is the crossing of the
right-most eigenvalues with the imaginary axis that deter-
mines the onset of convection. Steady or oscillatory modes
may be induced, depending on whether the crossing eigen-
values are real or complex. Thus, it is interesting to see how
the leading eigenvalues vary with Gr.

We first investigate the situation for Pr=1 and Le=11.
This choice of parameters is motivated by earlier results.6,10

Variations of the leading eigenvalues when A=1.9 are shown
in Fig. 2�a�. Before the onset of convection �Re����0�, the
most unstable mode is a steady mode with the flow field
consisting of three vortices, while the second most unstable
mode is a steady mode with two vortices �solid and dashed
lines denote different rotating directions�. In a closed
cavity,8,10 the geometry and the linearized equations are in-
variant under combined reflection by x and y �or, equiva-
lently, under rotation by � and by the inversion of the tem-
perature and concentration perturbation fields. Let S denote
this centrosymmetry and X�
 ,� ,c� a steady solution. The
operation S :X→S�X� is �
 ,� ,c��x ,y�→ �
 ,−� ,−c��1−x ,A
−y�. Eigenmodes will be either centrosymmetric, i.e.,
S�
 ,� ,c�= �
 ,� ,c�, or anticentrosymmetric, i.e., S�
 ,� ,c�
=−�
 ,� ,c�. Centrosymmetric eigenmodes contain an odd
number of cells while anticentrosymmetric eigenmodes con-
tain an even number of cells. These two different types of
modes are generated by transcritical and pitchfork bifurca-
tions, respectively. In Fig. 2�a�, the eigenmodes containing
three and two vortices correspond, respectively, to the cen-
trosymmetric and anticentrosymmetric eigenmodes in a

closed cavity. However, in the present configuration where
the upper boundary is stress-free, this centrosymmetry or an-
ticentrosymmetry can no longer be preserved, e.g., the two
small vortices in the upper-right and lower-left corners of the
transcritical mode are no longer of the same size. As Gr
increases, the growth rates of these two steady modes in-
crease and, as shown by the inset, the transcritical mode first
gets onset at the T1 bifurcation point. Then, surprisingly, its
growth rate decreases quickly, producing a subcritical steady
bifurcation at T2. Finally, it coalesces with the pitchfork
mode �dashed line� and an oscillatory mode �dotted line� is
produced, i.e., the two real eigenvalues merge into a pair of
complex conjugate eigenvalues. As Gr further increases, this
oscillatory mode creates a Hopf bifurcation at H. The imagi-
nary part of the complex eigenvalues corresponding to this
oscillatory mode is shown as the inset. It can be seen that the
dimensionless oscillation frequency increases from zero at
the coalescence point, reaches the maximum, and then de-
creases to zero as Gr increases. When Im��� decreases to
zero, the pair of complex conjugate eigenvalues splits into
two real eigenvalues, which correspond to the transcritical
and pitchfork modes before coalescence. This whole coales-
cence and splitting process is similar to the situation of a
2�2 matrix problem studied by Tuckerman22 and the Ma-
rangoni convection in binary mixtures studied by Bergeon et
al.23 It is interesting to note that before coalescence the most
unstable mode is transcritical, while after splitting the most
unstable mode is pitchfork. In the case of a closed cavity,
these two steady modes simply cross at a codimension-two
point and near this point no new dynamical behavior is
observed.8,10 However, in our present configuration, due to
the broken centrosymmetry of the system, these two steady
modes merge into a complex coalescence when they are
about to cross, thus producing totally new dynamics: oscil-
lation. That the broken symmetry can play a significant role
in determining the system dynamics has also been studied by
Ecke et al.24 and Goldstein et al.25,26 for convection in a
rotating cylinder. In this prototype problem, these authors

FIG. 2. Variations of real parts of the leading eigenvalues with Gr for Pr=1 and Le=11: �a� A=1.9; �b� A=2. Solid and dashed lines denote two different
steady modes, with the flow structures of the eigenfunctions shown, while the dotted line denotes oscillatory mode. Variations of the imaginary parts of the
eigenvalues for the oscillatory modes are also shown as insets.
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showed that the broken reflection symmetry turns the steady-
state bifurcation in the nonrotating system into a Hopf bifur-
cation in the rotating system.

The situation when A slightly increases to 2 is shown in
Fig. 2�b�. The two steady modes coalesce well before Re���
becomes positive. The complete neutral stability curves
showing the influence of A on the onset of convection will be
shown in Sec. IV A 2. Also, the influences of Le and Pr on
the onset of oscillatory flow will be considered.

2. Influences of A, Le, and Pr

The neutral stability curves showing the influence of A
on the onset of convection are shown in Fig. 3. In the range
of aspect ratio studied, the transcritical and pitchfork modes
cross successively at a series of codimension-two bifurcation
points: A=0.63, A=1.89, A=2.16, A=3.21, and A=3.46.
When 0.63�A�1.89 and 3.46�A�4, the first onset of
convection is the transcritical mode, while when 2.16�A
�3.21 the first onset of convection is the pitchfork mode. In
the other parts of the range of A, the two steady modes merge
into an oscillatory mode. The variations of the corresponding
oscillation frequency are shown by the insets. The frequency
decreases to zero at codimension-two bifurcation points, or
equivalently, the period diverges. This is a trademark of the
disappearance of the Hopf bifurcation at these points. It is
also interesting to note that when A decreases from 0.63, the
frequency of the oscillatory mode increases exponentially
and there is no sign of decreasing to another codimension-
two point. Thus, A=0.63 is also a critical aspect ratio below
which the onset of convection is always oscillatory.

Steady flows in a vertical closed cavity �A�1� have
been studied in detail by Bergeon et al.,10 and here we are
more focused on the oscillatory flow in a horizontal cavity
�A�1�. The flow structures of the eigenfunctions at the onset
of instability when A=0.2 and A=0.5 are shown as insets in
Fig. 3�a�. As A decreases, the number of vortices increases.
The full oscillation cycle when A=0.5 is shown in Fig. 4. It
can be seen that counter-rotating vortices travel from right to
left. Figure 4�a� corresponds to the steady flow field of the
transcritical mode in a closed cavity, while Fig. 4�c� corre-
sponds to that of the pitchfork mode. Thus, it can be under-

stood that the flow field oscillates between the transcritical
and the pitchfork modes, or that the oscillatory mode is a
mixed mode of the two steady modes. This oscillatory flow
field has also been verified by direct numerical simulation.

That the oscillation frequency increases when A de-
creases from 0.63 might be explained as follows: the no-slip
boundary condition imposed on the left and right vertical
walls will oppose the flow reversal that occurs during each
oscillation. As the aspect ratio decreases, the influence of the
left and right vertical walls decreases, and thus the oscilla-
tion frequency increases. However, this explanation cannot
explain why the frequency variation in the other two inter-
vals 1.89�A�2.16 and 3.21�A�3.46 is not monotonic,
but has a parabolic shape. From Fig. 3�a�, it can be seen that
in addition to the oscillation frequency, Grc also increases
exponentially with decreasing A. This means that as A ap-
proaches 0, the equilibrium solution becomes linearly infi-
nitely stable. Such infinite stability is of course unphysical.
Fully nonlinear direct simulations show that finite amplitude
disturbance can set in well before the linear threshold and
render the equilibrium state unstable. Since supercritical os-

FIG. 3. Neutral stability curves when �a� A�1 and �b� A�1 for Pr=1 and Le=11. Solid lines denote transcritical modes, dashed lines denote pitchfork
modes, and dotted lines denote oscillatory modes. The dimensionless frequencies of the oscillatory modes are also shown as insets.

FIG. 4. Flow structure of the eigenfunction at the end of eight successive
equal time intervals totaling a full oscillation period when Pr=1, Le=11,
and A=0.5.
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cillatory flow with very large Grc cannot be obtained, the
exponentially diverging frequency is also physically impos-
sible.

We also perform a detailed comparison between the on-
set of convection in a closed cavity and that in the present
configuration, as shown in Table I. The results for 1�A�4
in the closed cavity have been tabulated by Xin et al.8 �see
their Table I�, and the present results agree very well with
their results. In the range of A studied, there exist three
codimension-two points for the closed cavity case: A=0.47,
A=2.14, and A=3.45. No new dynamical behavior is ob-
served near these points. When the upper rigid wall is re-
moved, the critical criterion �Grc� for both modes decreases,
since the upper wall has a stabilizing effect on the equilib-
rium solution. More importantly, after the removal, near the
three original codimension-two points there exist certain
ranges of A in which the two steady modes mix into the
oscillatory mode �Fig. 3�.

For the steady onset of convection, it has been shown by
Ghorayeb and Mojtabi6 that the critical condition is deter-
mined by the product Rac�Le−1�, which depends on A only.
However, when the onset of instability is oscillatory, the
principle of exchange of stability is no longer valid. The
above critical product does not exist and thus the variation of

Pr or Le can independently have an effect on the stability of
the equilibrium solution. The neutral stability curves show-
ing the influence of Le when A=0.5 and Pr=0.1, 1, and 10
are shown in Fig. 5. At this aspect ratio, the onset of insta-
bility is oscillatory �Fig. 3�a��. The critical Grc decreases as
Le increases, which means that at higher Le the equilibrium
is more unstable. This is reasonable and characteristic of
double-diffusive instability, since it is the difference of the
diffusivity rates of the two components in the fluid that trig-
gers the instability and Le denotes how large this difference
is. When the difference vanishes �Le=1�, the equilibrium is
infinitely stable �very large Grc�, as is apparent from Fig. 5
when Le decreases toward 1. The flow structure of the eigen-
function along these neutral curves has been verified to be
qualitatively the same as that shown in Fig. 4. The variation
of the critical frequency is also shown as inset in Fig. 5.
Smaller Le value corresponds to larger Grc and faster oscil-
lation.

The neutral stability curves showing the influence of Pr
when A=0.5 and Le=11, 101, and 1001 are shown in Fig. 6.
It is interesting that these curves are almost parallel straight
lines in this log-log scale. Since the ratio of the diffusivities
of heat and solute has been fixed �11, 101, and 1001�, smaller
Pr value means that heat and solute diffuse faster. Then in-
finitesimal disturbances of the temperature and concentration
field can be dissipated faster, rendering the equilibrium solu-
tion more stable. Again, the flow structure of the eigenfunc-
tion along these neutral curves has been verified to be quali-
tatively the same as that shown in Fig. 4, and the critical
frequency increases as Pr decreases.

Figures 5 and 6 cover very large ranges of both Le and
Pr numbers, and thus the situation for different binary fluids
can be expected. For example, for a binary metallic mixture
with Pr=0.01 and Le=104, from Fig. 6 it can be expected
that Grc is O�103�, since the three neutral curves for Le=11,
101, and 1001 intersect the left vertical axis at about Grc

=106, 105, and 104, respectively. Similarly, it can be expected
from the inset that 2fc is O�0.1�.

TABLE I. Critical Grashof number �Grc� for the onset of convection in a
cavity with rigid wall upper boundary �R� and stress-free upper boundary
�F�. “TR” and “PF” denote the transcritical and pitchfork modes, respec-
tively, while those values in brackets denote the onset of the oscillatory
mode.

A

Grc �R� Grc �F�

TR PF TR PF

0.2 429 084.8 426 778.5 �278 154.7�
0.3 90 270.9 89 635.8 �59 917.8�
0.4 31 865.7 30 398.0 �21 288.2�
0.5 13 922.9 14 405.0 �10 151.0�
0.6 7 218.0 8 454.9 �5 916.7�
0.7 4 330.1 5 678.3 3452.6 4440.0

0.8 2 921.5 4 153.9 2382.8 3408.6

0.9 2 160.4 3 215.3 1824.8 2709.4

1.0 1 716.4 2 589.8 1500.3 2222.9

1.2 1 262.5 1 829.7 1165.8 1615.8

1.4 1 058.9 1 407.4 1013.1 1274.2

1.6 957.3 1 152.0 935.6 1069.9

1.8 902.6 999.9 893.6 941.6

2.0 870.2 900.3 �863.4�
2.2 847.2 835.7 834.0 817.4

2.4 826.4 793.4 814.9 780.6

2.6 804.8 765.9 792.7 757.9

2.8 782.3 748.2 770.5 743.5

3.0 760.8 737.0 750.1 734.5

3.2 741.9 729.9 731.4 729.7

3.4 726.4 724.7 �721.4�
3.6 714.4 720.3 710.4 717.6

3.8 705.5 715.6 702.6 712.6

4.0 699.1 710.1 697.3 706.7

FIG. 5. Neutral stability curves for A=0.5 and different Pr values. The
variation of the critical frequency is also shown as the inset.
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B. Direct numerical simulation

1. Oscillatory flow regime

Careful direct numerical simulations have also been per-
formed to verify the linear stability analysis results and to
study the nonlinear evolution of the flow field after the onset
of convection. It is well known that near a supercritical Hopf
bifurcation, the amplitude of the periodic solution is
O�Gr−Grc1/2�,27 where Grc is the critical Grashof number at
which a Hopf bifurcation occurs. Using the equilibrium so-
lution as the initial fields, we start direct simulation for
Pr=1, Le=11, A=0.5, and Gr=10 220. Oscillatory flow is
obtained. Then successive runs are performed for decreasing
Gr with a step of 	 Gr=10, with the result of the last run as
the initial fields of the next run. The square of the saturation
amplitude of u�t ,0.5,0.5� versus Gr is plotted in Fig. 7. The
linear fit intersects the horizontal line at Gr=10 150.0, which
agrees extremely well with Grc=10 151.0 �Table I�. The
critical frequencies by these two different methods are 0.244
and 0.246, respectively. So, indeed, under the present param-
eter combination the first critical point encountered by the

equilibrium solution is a supercritical Hopf bifurcation. The
flow structure obtained by direct simulation is exactly the
same as that shown in Fig. 4.

With increasing Gr, we continue the simulations from
Gr=10 220. The maximum stream function of this oscilla-
tory flow is shown by the circle points in the inset of Fig. 8.
When Gr is further increased from 10 310 to 10 320, a
period-doubling bifurcation is encountered. This is apparent
from Fig. 9 where the time series of u�0.5,0.5� and the cor-
responding power spectra are shown. When Gr=10 310, the
flow is single periodic with a fundamental frequency f1

=0.230. When Gr=10 320, f1 slightly decreases to 0.224 and
a subharmonic f1 /2=0.112 appears in the power spectrum.
The oscillation period doubles after the bifurcation. This new
oscillatory flow remains stable up to Gr=10 350 and is rep-
resented by the start points in the inset of Fig. 8. When Gr is
further increased to 10 360, the oscillatory flow can no
longer be preserved and the flow field transits to a steady
state. The characteristic of different steady flow states in Fig.
8 will be discussed in Sec. IV B 2.

2. Steady flow regime

Similar to the situation in a vertical closed cavity studied
by Ghorayeb and Mojtabi,6 different subcritical steady states
can be obtained in the present configuration. The final con-
vergent steady flow state depends on the initial fields. In
order to get as many steady states as possible, we have used
random velocity, temperature, and concentration fields to
start simulations. The initial value of every physical quantity
on a grid point is a random number uniformly distributed in
the interval �0, 1�. By using such random initial fields, we
hope that the solution can be perturbed into the basins of
attraction of different steady states. However, we have no

FIG. 6. Neutral stability curves for A=0.5 and different Le values. The
variation of the critical frequency is also shown as the inset.

FIG. 7. Square of the amplitude of u�t ,0.5,0.5� vs Gr when Pr=1, Le=11,
and A=0.5. Square points are obtained by direct numerical simulations
while the solid line is the linear fit.

FIG. 8. Maximum stream function vs Gr when Pr=1, Le=11, and A=0.5.
Solid line denotes stable equilibrium and dashed line denotes unstable equi-
librium. The circle points in the inset represent oscillatory flows arising from
the supercritical Hopf bifurcation, while the star points represent oscillatory
flows after a period-doubling bifurcation. Three different types of steady
flows are represented by the triangular, square, and diamond points, respec-
tively, together with the flow structures shown.
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guarantee that such method can reveal all the steady-state
solutions of the system. As many as 100 times of repeated
runs with random initial fields are carried out for one param-
eter combination.

Totally three different types of steady solution are found,
as shown in Fig. 8. The typical flow fields are also shown as
insets. For type 1 steady solution, thermal and solutal buoy-
ancy effects are dominant in the right and left parts of the
cavity, generating a clockwise and a counterclockwise rotat-
ing vortex, respectively. For type 2 solution, the reverse is
true, with a clockwise rotating vortex on the left and a coun-
terclockwise rotating vortex on the right. For type 3 solution,
the whole cavity is dominated by thermal buoyancy effect
and the flow field consists of a large clockwise rotating vor-
tex. These three steady solutions are induced by finite ampli-
tude disturbances and correspond to much stronger flows
when compared to the supercritical oscillatory flows, which
are only stable in a small range of Gr. The three steady
solution branches start from different Gr values and remain
stable at least up to Gr=20 000, which is the maximum pa-
rameter investigated.

It should be mentioned that using direct numerical simu-
lation, the bifurcation diagram shown in Fig. 8 is incomplete,
since only stable solution branches are presented. While it is

clear from linear stability analysis that the oscillatory flow
arises from small disturbance via a supercritical Hopf bifur-
cation, the origins of the different steady solution branches,
especially how these branches connect to the equilibrium
solution, remain unexplored in the present study. We are cur-
rently developing a continuation method to generate a more
complete bifurcation diagram, in order to fully explore the
different solution branches and to study how the stable solu-
tions lose stability, or how the unstable solutions regain sta-
bility.

As Le increases, the onsets of different steady flows are
shown in Fig. 10. The neutral curve for Pr=1 in Fig. 5 for the
onset of oscillatory flow is also plotted for comparison. It can
be seen that these four different curves do not intersect each
other and remain well separated. Thus, given appropriate dis-
turbances, small or finite amplitude, type 1 steady, type 2
steady, oscillatory, and type 3 steady flows appear succes-
sively as Gr increases. These four curves qualitatively have
the same shape.

When A decreases to 0.2, totally four different types of
steady solutions are found, as shown in Fig. 11, where the

FIG. 9. Time series of u�0.5,0.5� �insets� and the corresponding power spectra when �a� Gr=10 310 and �b� Gr=10 320 for Pr=1, Le=11, and A=0.5.

FIG. 10. Onset of different steady and oscillatory flows as Le increases for
Pr=1 and A=0.5.

FIG. 11. Contours of stream function �top�, temperature �middle�, and con-
centration �bottom� fields showing the multiplicity of steady-state solution
for Pr=1, Le=11, A=0.2, and Gr=800 000.
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contours of stream function, temperature, and concentration
are plotted for the same parameter set. The most important
character of these four different flow structures is that every
large counterclockwise rotating vortex consists of two coro-
tating cores. The first two types correspond to the type 1 and
type 2 solutions when A=0.5, respectively, while the last two
types seem to be new. The heat and mass transfer properties
of these four steady solutions are shown in Fig. 12 by plot-
ting Nu and Sh versus Gr. Again, given appropriate finite
amplitude disturbances, type 1 to type 4 steady flows appear
successively as Gr increases. They remain stable at least up
to Gr=900 000, and in the range 675 000�Gr�900 000
these four steady states simultaneously exist. The Nu values
increase almost linearly while that for the Sh values is clearly
nonlinear. The most interesting feature is that while type 3
steady state is most efficient in heat transfer, it is least effi-
cient in mass transfer, and while type 4 steady state is least
efficient in heat transfer, it is most efficient in mass transfer.
For most part of the parameter range, type 1 and type 2
steady states almost have the same heat transfer rate.

V. CONCLUSIONS

The onset of double-diffusive natural convection in a
rectangular cavity with horizontal temperature and concen-
tration gradients is studied in the present work. While the
case of a closed cavity has been extensively investigated in
existing literatures, that in the present work has a stress-free
upper boundary, which is more relevant to many engineering
applications. Both linear stability analysis and direct numeri-
cal simulation are used and the main results are summarized
as follows:

�1� Variations of the leading eigenvalues with Gr are shown.
Depending on the cavity aspect ratio, the first two real
eigenvalues can merge into a complex coalescence as Gr
increases. Then the onset of convection is induced by a
supercritical Hopf bifurcation. As Gr further increases,
the pair of complex conjugate eigenvalues splits into
two real eigenvalues. The two leading steady modes

switch place after the splitting. This interesting new phe-
nomenon cannot be observed when the upper boundary
of the cavity is a rigid wall.

�2� Neutral stability curves showing the influences of A, Le,
and Pr are obtained. There exist some ranges of A in
which the first two steady modes mix into an oscillatory
mode. Below a critical aspect ratio �Ac=0.63�, the onset
of convection is always oscillatory. The oscillatory flow
consists of counter-rotating vortices traveling from right
to left and the number of vortices increases as A de-
creases. The flow structure of the bifurcating eigenfunc-
tion does not change qualitatively along the neutral
curve when Le or Pr is varied.

�3� The oscillatory flow arising from small amplitude distur-
bance undergoes a period-doubling bifurcation when Gr
is further increased. Only in a small range of Gr does
this oscillatory flow regime remain stable.

�4� Many different subcritical steady states are found. They
are induced by finite amplitude disturbances and corre-
spond to much stronger flows when compared to the
oscillatory regime. The influence of Le on the onset of
steady flows and the heat and mass transfer properties
are also investigated.

The physical model studied in the present work can be
considered a prototype configuration relevant to some hori-
zontal crystal growth techniques, e.g., horizontal
Bridgman.28 An interesting new phenomenon is observed
and the results presented can enrich the studies on the onset
of double-diffusive convection when the horizontal gradients
of temperature and concentration are equal and
opposing.6,8,10
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