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Abstract 
Prescription is an important element in the medical practice. An appropriate drug 

therapy is complex in which the decision of prescribing is influenced by many factors. Any 

discrepancy in the prescription making process can lead to serious consequences. In particular, 

the General Practitioners (GPs), who need to diagnose and treat a wide range of health 

conditions and diseases, must be knowledgeable enough in deciding what type of medicines 

should be given to the patients. With the widespread computerization of medical records, GPs 

now can make use of accumulated historic clinical data in retrieving similar decisions in 

therapeutic treatment for treating the new situation. However, the applications of decision 

support tools are rarely found in the prescription domain due to the complex nature of the 

domain and limitations of the existing tools. It was argued that existing tools can only solve a 

small amount of the cases on the real world dataset 

 

This paper proposes a new revised Case-based Reasoning (CBR) mechanism, named 

Rule-Associated CasE-based Reasoning (RACER), which integrates CBR and association 

rules mining for supporting GPs prescription. It aims at leveraging the two most common 

techniques in the field and dealing with the complex multiple values solution. 800 real cases 

from a medical organization are collected and used for evaluating the performance of 

RACER. The proposed method was also compared with CBR and association rules mining 

for testing. The results demonstrate that the combination leads to increased in both recall and 

precision in various settings of parameters. The performance of RACER remains stable by 

using different sets of parameters, which shows that the most important element of the 

mechanism is self-determined. 
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1. Introduction 
Prescription is an essential element of medical practice. It functions as a 

pharmacological therapy to relieve pain of people, resolve individuals with unusual medical 

conditions by controlling their symptoms, and refreshing their bodies into healthy condition. 

The aim is to administer the most appropriate medicines for a particular patient or a 

population of patients in order to achieve the desired therapeutic results with minimal adverse 

drug effects and to improve their conditions by given the available clinical information 

(Galland, 1997). Quaglini et al. (1992) described that the therapy consists of repetitive cycles 

that the physicians are capable to: (i) obtain data regarding the state of patient; (ii) interpret 

these data to make diagnostics hypotheses and therapy for remedy; (iii) evaluate and refine 

the therapy; (iv) predict the progress; and (v) remove contra-indicated therapy. In each action 

within the process, good observation and experiences of the physicians are demanded. In 

contrast, patient data misinterpretation and insufficient knowledge in medicines are the main 

reasons for the cause of medication errors. 

 

Furthermore, the decision to prescribe is influenced by many other factors, such as 

interactions between physician and patient, cost issues, uncertainty of the diagnosis, and 

complex nature of medicine information (Bradley, 1991; Bradley, 1992; Chen and Landefield, 

1994; Gill et al., 1995; Denig et al., 1998; Coscelli, 2000; Lundin, 2000; Wazana, 2000). 

Bradley (1991), and Greenhalgh and Gill (1997) discussed that the act of issuing medicines is 

the culmination of a complex chain of decisions along with biomedical, historical, 

psychosocial, and commercial influences. Substantially, an appropriate prescription is 

difficult to be made and medication errors often occur when there is any improper use of 

medication. 

 

According to the study conducted by the Institute of Medicine (2006), around 1.5 

million people are injured and 7,000 died each year in the United States because of 

medication errors. On average, every hospital is probably subjected to at least one medication 

error every day. Carter (2004) discussed that the most likely prescription mistakes made by 

physicians are: (i) interactions between the prescribed medicines and the medicines the 

patient is already taking, or the foods that the patient commonly eats; (ii) lack of the 

considerations of medicine allergy; (iii) failure to recognize the side effect; and (iv) incorrect 

dose. In particular, General Practitioners (GPs) need to diagnose and treat a wide range of 

health conditions and diseases. Most of the patients go to consult GPs instead of specialists 

during their first visit. In other words, GPs must be knowledgeable in interpreting patients’ 

conditions as well as deciding which kind of treatments should be conducted (i.e. either 

prescribing medicines or referring the patient to other health professionals). Such complex 

demand of services increases the challenge of GPs to provide effective treatment, especially 

in cases where they are not familiar with. 

 

Attempts to respond to these issues, Oren et al. (2003) investigated that 

technology-based intervention plays an important role in avoiding medication errors and 

improving patient safety. Decision Support System (DSS) has been proposed as one of the 

most effective ways of medication errors reduction, since it integrates both knowledge-based 

and expert-based concepts to support GPs in selecting and deciding appropriate medicines to 

cure the patient (Garg et al., 2005). DSS is a computerized system which provides an 

interactive and user-friendly interface. It makes use of historic patient data and elements of 

relevant medical knowledge (such as the information provided in biomedical literatures) to 

reach the required conclusion. The historic patient data is always stored in the DSS in the 

form of Electronic Medial Record (EMR). Each EMR consists of patient information, 
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symptoms and diagnoses encountered, and resulted treatment, etc. When a General 

Practitioner (GP) faces a new medical problem, s/he looks up the DSS. The DSS then 

deduces recommendations based on the given problem and the previous successful cases 

stored in the DSS. As a result, the GP is provided with extra information and evidences for 

supporting his/her decision so as to improve the service quality. 

 

For recently decade, DSS has been widely applied to various kinds of problem solving 

in medical domains (Banning, 2008). One of the possible reasons to explain this phenomenon 

is that the decision making process of GPs is similar to the inference process employed in the 

DSS. Deutsch et al. (2001) pointed out that physicians wish to rely directly on the past 

experience that stored in the historic patient data, select similar cases that had reliable 

outcomes and reuse the solution accordingly, which works similar to the inference process of 

DSS. Therefore, the quality of a DSS is highly depended on its inference mechanism. Among 

the numerous inference techniques, Case-Based Reasoning (CBR) and association rules 

mining are the two common techniques used in the medical industry. CBR utilizes the 

specific knowledge of previously experienced and concrete problem situations (cases), while 

association rules mining relies on general knowledge of a problem domain and making 

associations along generalized relationships between problem descriptors and conclusions 

(Zhuang, et al., 2009). They are two distinct techniques that consist of their own strengths 

and limitations. And they are also seldom integrated together, particularly in the prescription 

domain.  

 

Unlike other medical domains (such as cancer diagnosing), the conclusion of decision 

support of prescription is more complex that consists of a number of medicines. Comparing 

to diagnosis, which always considers only two classes (e.g. either positive or negative) or 

multiple classes (e.g. one disease out of different diseases), each medicine out of hundreds of 

medicines can be a part of the solution in prescription making. However, the multiple values 

solution received lack of concern in the domain. Therefore, this paper proposes a new revised 

CBR mechanism, named Rule-Associated CasE-based Reasoning (RACER), to integrate 

CBR with association rules mining for supporting GP prescription. It aims at leveraging the 

strengths and compensating the limitations of CBR and association rules mining, in order to 

improve the accuracy of selecting the appropriate medicines for prescription making. 

Furthermore, RACER is the first model attempted to handle the multiple values solution by 

considering both specify knowledge and general knowledge. The model has been tested 

through a series of real data experiments and encouraging results are yielded. 

 

2. Related work 

In order to describe the process of developing the RACER, it is helpful to first discuss 

the principle and related work of CBR, association rules mining, and the integrated approach.  

 

2.1 Case-based reasoning (CBR) 

CBR is used to solve a new problem by remembering a previous similar situation and by 

reusing information and knowledge of that situation (Aamodt and Plaza, 1994). Similar to 

human problem-solving process, CBR requires a knowledge-based learning mechanism to 

learn from old cases and reuse the most specific case or set of cases to explain the new 

situations (Hammond, 1989). Compared with other problem-solving techniques (such as 

Bayesian networks and neural networks), CBR does not have the tendency to over-generalize 

(Mitchell, 1997), and thus CBR can achieve excellent accuracy provided that it generates the 

solutions from the memorized cases (Bichindaritz and Marling, 2006).  
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CBR is argued to be very effective in the medical domain. Bichindaritz and Marling 

(2006) stated that CBR is an essential tool in decision support in the health sciences because 

reasoning from historical examples is natural for healthcare professionals and case histories 

have long been used in the training of health care professionals. Huang et al. (2007) 

explained that the favor of CBR adoption in medicines are due to its cognitive adequateness, 

explicit experience, duality of objective and subjective knowledge, automatic acquisition, and 

system integration. Dussart et al. (2008) also argued that CBR is an effective reasoning 

strategy for optimizing clinical practice in which it learns through experiences and matches 

the natural reasoning model of human.  

 

Over the decades, CBR has widely applied in medical domain ranged from supporting 

diagnosis, prescription to treatment planning. For example, Marling and Whitehouse (2001) 

developed AUGUSTE to support treatment planning in Alzheimer’s disease by using CBR to 

determine if a neuroleptic medicine should be prescribed and hence select the approved 

medicines for a patient via a rule-based mechanism. Hartge et al. (2006) proposed a similarity 

measurement algorithm for a CBR system to help minimizing inappropriate selection of 

medicines that will cause adverse drug-drug interaction. Hartge et al. (2006) modeled the 

patient treatments as groups of vectors representing discrete time intervals to explore 

similarity in treatment of different patients. With the enhancement in the flexibility and speed 

of wireless computing, O'Sullivan et al. (2007) proposed that caregivers can input patients' 

symptoms to a mobile device for quickly retrieving similar profiles in supporting effective 

diagnoses and prognoses by comparing symptoms, treatments, diagnosis, test results and 

other patient information. In-depth review of applying CBR in medical domain can be found 

in Schmidt et al. (2001), and Yusof and Buckingham (2009). 

 

Despite numerous researches showing CBR is effective in problem-solving in medical 

domain, several researchers argued that the chance of reusing a case from CBR is not high in 

some areas (Atzmueller et al., 2003), such as insurance claims prediction (Daengdej et al., 

1999) and multiple medical disorder cases (Shi and Barnden, 2005). According to the study 

of Atzmueller et al. (2003), CBR can only solve about 3% of the cases on their real world 

dataset. It limits the power to explain and address the new problems. This is also true in the 

domain of prescription support. Since the solution of a prescription case typically involves 

multiple medicines (usually 5 to 7 medicines), not all the medicines are effective in 

addressing the problem in the new case. Thus, further modification of CBR is required to 

improve the accuracy of selecting the appropriate set of medicines in prescription support.  

 

2.2 Association rules mining 

Association rules mining is another common techniques used in DSS (Lee et al., 2001; 

Cho et al., 2002; Chien and Chen, 2008; García et al., 2008). It aims to extracts interesting 

correlations, frequent patterns, associations or casual structures among sets of items in 

databases (Kotsiantis and Kanellopoulos, 2006). A famous example of applying association 

rules is the market basket analysis. Agrawal and Srikant (1996) introduced the Apriori 

algorithm for discovering regularities between products in large scale transaction data 

recorded by point-of-sale systems. The rules can be expressed as “{X, Y}  {Z} [support: 

60% and confidence: 80%]” meaning that X, Y and Z occur in 60% of all transactions (i.e. 

support) and 80% of the transactions containing X and Y contains Z (i.e. confidence). In 

general, a rule regards as interesting if it satisfies both the minimal support and confidence 

thresholds that pre-defined by experienced users or domain experts. 

 

Similar to CBR, association rules mining is also widely applied in medical domain. The 
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main reasons is due to its ability in uncovering new information and relationships embedded 

in the large databases, and generating new patterns and relationships throughout learning 

mechanism (Abidi, 2001; Hung et al., 2006). Kuo et al. (2006) employed clustering 

techniques to cluster the medical database into several groups, and hence apply the 

association rules mining algorithm to discover the hidden relation in the groups easier. Jiang 

and Gruenwald (2004) proposed to use association rules to mine the association relationships 

among different genes under the same experimental conditions. Shan et al. (2008) presented 

an application of association rule mining to detect fraud and inappropriate practice in the 

health service management domain.  

 

All in all, association rules mining discovers important rules which provide useful 

references for GPs in making decisions. However, it is always difficult to handle the 

redundant frequent association when the database is large. Particularly in the prescription 

domain, the complex nature and large variety of medicines make the association rules mining 

difficult to identify useful and meaningful rules, and hence limits its ability in deriving 

solutions accurately. Furthermore, the threshold values of minimum support and confidence 

are difficult to be determined. It requires rigorous training of the parameters before real life 

applications.  

 

2.3 Integrated approach of CBR and association rules mining 

CBR has been widely integrated with other mechanisms. One of the possible options is 

to integrate with rules derived by the domain experts or generated by mining from the 

databases as such integration can achieve new synergies and significantly improve the 

problem-solving capabilities in CBR (Kumar et al., 2009). Several researches have been done 

by integrating the two approaches. Montani et al. (2003) integrated CBR, rule-based 

reasoning (RBR) and model-based reasoning to provide physicians with a reliable decision 

support tool in the context of type 1 diabetes mellitus management. Apart from approaches 

integration, Rossille et al. (2005) proposed a multi-modal reasoning decision-support system 

based on the RBR-first CBR-last approach to automatically compare the patient's case to the 

corresponding guideline, then to other cases, and retrieve similar cases for breast cancer. In 

recent years, Park et al. (2009) integrated CBR with rule induction (RI) techniques for case 

filtering. They applied their method to three medical diagnosis datasets and their findings 

demonstrated that the hybrid approach significantly outperforms the results in either CBR or 

RI.  

 

Important contributions have been made by integrating CBR and rules in numerous 

applications. However, lack of researches and empirical investigations have been done for the 

prescription related topics. Therefore, the RACER method proposed in this paper is focused 

on improving the solution extracted in CBR (especially the missing medicines) and providing 

relevant and objective evidences in the prescription support. This paper also proposes a novel 

measure to rank the multiple values solution by combining the results from CBR and 

association rules mining, so as to assist the physicians in identifying which medicines are 

more appropriate for the patients.  

 

3. Rule-Associated CasE-based Reasoning (RACER) 

The proposed RACER methodology is mainly composed of three parts: cases retrieval, 

association rules mining, and suggestions combination. RACER starts from the point where 

the GP interprets the diagnosis of patient. As shown in Figure 1, a new case (the diagnosis) is 

firstly codified based on a predefined EMR. The medical data recorded in EMR consists of 

all the examination data and patient particular information which is voluminous and 
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heterogeneous. It is important to preprocess the data by selecting attributes or features which 

are useful for prescription making. The codified new case is then processed by comparing 

with the previous cases retained in the knowledge base. Association rules mining and case 

retrieval are then applied. Association rules mining is used to extract the most interesting 

association rules based on support and confidence measure. Weightings are then assigned to 

the associated medicines. Simultaneously, the most similar cases are extracted based on a 

similarity measure for cases retrieval. Weightings are then assigned to the retrieved medicines. 

Then, the weightings of the associated medicines and the retrieved medicines are combined 

based on a simple rule of combination which is adapted from the Dempster's rule of 

combination (Dempster, 1968). Based on the combination, a consolidated medicine list is 

provided as suggestion for the new case. The suggestion is then reviewed and revised by the 

GP. When the case and results are verified, they are then retained to the knowledge base for 

future reuse. 

 

 
Figure 1: Architecture of rule-associated case-based reasoning (RACER) 

 

3.1 Cases retrieval in RACER 

In general, CBR consists of case retrieval, adaption, reuse, and retain. However, Schmidt 

et al. (2001) discussed that adoption of complete CBR cycle are rather exceptional in the 

medical field. Zhuang et al. (2009) also mentioned that it is almost impossible to generate 

adaptation rules to consider all possible important differences between current and former 
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similar cases in medical application. Since the adaptation knowledge is difficult to be 

acquired, the present study is focused only on the retrieval of similar cases.  

 

A case consists of features for describing the problem and solution. In the present study, 

the information of diagnosis and patient particular information (such as age and gender) are 

representing the problem features of a case, while the medicines to be prescribed are 

described as the solution of the case. Mathematically, each case is represented in the 

following notation: 

 

Let ΩE be the set of all cases, ΩA be the set of all problem features, and ΩD be the set of 

all medicines (i.e. the solution attribute), where each case c ∈ ΩE, each attribute a ∈ ΩA, 

and each medicine d ∈ ΩD. Thus,  

 

c = (Ac, Dc) (1) 

 

where Ac ⊆ ΩA  is the set of problem features observed in the case c. The set Dc ⊆ ΩD 

is the set of medicines to be prescribed for this case.  

 

Medical records are codified and stored as cases in a knowledge base for case retrieval. 

The present study employs a similarity measure approach, nearest-neighbor retrieval (NNR), 

for determining the degree of similarity between the new case and old case. This method is 

used due to its simplicity and good performance in case indexing (Sun and Finnie, 2004). 

During comparison, the features of a new case are matched to their corresponding features of 

all cases stored in the knowledge base.  

 

The algorithm of cases retrieval is shown in Figure 2. A threshold γ is set for 

determining the maximum number of similar cases being retrieved. The contributions of the 

retrieved cases are weighted by their corresponding similarity, so that the similar cases 

contribute more to the average than the less similar ones. It is accomplished by the following 

steps: 

 

(i) n most similar cases are retrieved based on equations (2) and (3) 

(ii) A list of unique medicines is extracted from the retrieved cases 

(iii) Weightings of the unique medicines are determined based on the occurrence of the 

corresponding medicines prescribed in each retrieved case, which is shown in 

equations (4) and (5) 

 

The similarity for each case is calculated by equations (2) and (3): 
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where Ic  and Rc  represent the new case and the old case respectively, I

ia  and R

ia  

represent the i-th feature value of the new case and the old case respectively, the similarity 

function sim( I

ia , R

ia ) computes the similarity between I

ia  and R

ia , and wi represents the 

feature weighting for each i-th feature. 

 

The weightings of the unique medicines are calculated by equations (4) and (5): 
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where cbr

jW  is the weighting of medicine j, n is the number of retrieved cases, 

),( RI

i ccsimilarity  is the similarity between the i-th retrieved case and the new case, and si,j 

is the occurrence of medicine dj being prescribed in i-th case ci. si,j is determined by the 

following equation:  

 

 As a result, a unique medicines list with weightings is generated as the suggestions of 

CBR. 

 

Input: Examination data of disease determined by the GP 

Output: A set of medicines in a ranking list 

 

Preprocessing  

Set the threshold γ as the maximum number of cases retrieved 

Set the weightings iw  for each i th feature 

 

Case retrieval algorithm 

Do while (a new case is ready) 

 Trigger Similarity Analysis 

   Compute similarity for each cases in the knowledge base 

 End Trigger 

 Sort the cases by their similarities in descending order 

 Extract the first γ most similar cases 

 Extract the unique medicines list from the retrieved cases 
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 Trigger Weighting Assignment 

   Compute the weights for each medicine in the unique medicines list 

 End Trigger 

 Sort the unique medicines list by their weights in descending order 

End Do 

Report the results 

Figure 2: Algorithm of cases retrieval in RACER 

 

3.2 Association rules mining in RACER 

A standard association rule consisting of an antecedent (i.e. X) and consequent (i.e. Y) is 

implicated as follow: 

 

X  Y where X, Y ⊂ I is a itemset (6) 

 

In the present study, the association rules mining aims to discover interesting association 

rules between the medicines and the problem features of the new case by analyzing the 

previous cases stored in the knowledge base. Thus, X is the set of problem features of the new 

case, and Y is the set suggested medicines. The interestingness of a rule is measured by its 

Support (i.e. the probability that the antecedent and consequent occur among cases in the 

knowledge base) and its Confidence (i.e. the conditional probability that the consequent 

occurs given the occurrence of the antecedent). A rule is considered as interesting when it 

satisfies both the minimum thresholds of support and confidence. Support and confidence are 

determined by equations (7) and (8), respectively.  

 

cases ofnumber  Total

 and both  containing cases ofNumber 
)(

YX
YXSupport   (7) 

 

X

YX
YXConfidence

 containing cases ofNumber 

 and both  containing cases ofNumber 
)(   (8) 

 

The algorithm of association rules mining is shown in Figure 3. Apriori algorithm 

(Agrawal and Srikant, 1996) is applied to identify the associations. It is the best-known 

algorithm to mine association rules. It uses a breadth-first search strategy to counting the 

support of rules and uses a candidate generation function which exploits the downward 

closure property of support. It is applied in the present study for speeding up the mining 

process. Similar to the consolidated of similar cases in CBR, the mined rules are consolidated 

to extract a list of unique medicines. The weightings of the medicines in the list are 

determined by the maximum confidence of the rules associated with the corresponding 

medicines, which is shown in equation (9): 

 

)}(),...,(),({ 21 jmjj

arm

j daConfidencedaConfidencedaConfidenceMaxW   (9) 

 

where arm

jW  is the weighting of medicine j, ia  is the i-th problem feature, dj is the j-th 

medicine, and m is the number of problem features. 

 

Input: Examination data of disease determined by the GP 

Output: A set of medicines in a ranking list 
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Preprocessing 

Set the minimal support α and minimal confidence β 

 

Association rules mining algorithm 

Do while (a new case is ready) 

 Trigger Apriori algorithm 

   Measure the support of the features of the new case 

   Remove the features that do not satisfy α 

   Measure the support of the medicines 

   Remove the medicines that do not satisfy α 

   Trigger Rule Extraction 

     Associate filtered medicines with the filtered features 

     Measure the support and confidence of the association rules 

     Remove the rules that do not satisfy α and β 

   End Trigger 

 End Trigger 

 Extract the unique medicines list from the associated rules 

 Trigger Weighting Assignment 

   Compute the weights for each medicine in the unique medicines list 

 End Trigger 

 Sort the unique medicines list by their weights in descending order 

End Do 

Report the results 

Figure 3: Algorithm of association rules mining in RACER 

 

3.3 Suggestions combination 

 The algorithm of combing the suggestions of CBR and that of association rules mining 

is shown in Figure 4. Before combining the suggestions, the weightings of the suggestions are 

needed to be normalized by equation (10): 
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where jN  and jW  are the normalized weighting and suggested weighting of 

medicine j of CBR (or association rules mining) respectively, and n is the number of 

medicines in the suggested medicines list of CBR (or association rules mining). 

 

A simple rule of combination is proposed to integrate the normalized weightings of CBR 

and association rules mining into one single solution. The combination method is adapted 

from the Dempster’s rule of combination (Dempster, 1968), which compensates the missing 

medicines in the solutions of CBR or that of association rules mining, and updates the 

weightings of the medicines when new evidences are available. The combination weights of 

the medicines are calculated from the aggregation of normalized weightings of CBR and 

association rules mining as shown in equation (11): 
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where com
iN , cbr

iN , and arm
iN  are the combined weighting of medicine i, normalized 

weighting of CBR of medicine j, and normalized weighting of association rules mining of 

medicine i, respectively, and cbr
iw  and arm

iw  are weighting of CBR and association rules 

mining for combination of medicine i. The final solution is then sorted by the combined 

weightings of the medicines in descending order. 

 

Input: A set of medicines in a ranking list from CBR and a set of medicines in a ranking list 

from association rules mining 

Output: A set of medicines in a ranking list 

 

Preprocessing 

Set the threshold γ as the maximum number of medicines of the output medicines list 

 

Suggestions combination algorithm 

Do while (the input is ready) 

 Normalize the weighting of medicines list of CBR 

 Normalize the weighting of medicines list of association rules mining 

 Combine the weighting of medicines lists of CBR and association rules mining 

 Sort the unique medicines list by their weights in descending order 

 Extract the first γ medicines 

End Do 

Report the results 

Figure 4: Algorithm of suggestion combination in RACER 

 

4. Experiments and results 

Figure 5 depicts the experiment setup for measuring the performance of RACER. Real 

case data is collected from a medical organization, named Humphrey & Partners Medical 

Services Limited (HPMS), in Hong Kong. HPMS is one of the largest multi-disciplinary 

medical services providers (in both general practice and specialist services) founded by a 

team of dedicated medical practitioners. Each patient’s medical history, including personal 

information, information on medical allergy, past visit’s diagnosis and therapeutic result, is 

recorded in a secure Electronic Medical Record (EMR) system. Since the study scope of this 

paper focuses on GP prescription, therefore only GP-related patient records are retrieved and 

used in this experiment. In total, 800 cases which ranged from October 2008 to January 2009 

are used in this experiment. 
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Figure 8: The experiment setup for measuring the performance of RACER 

 

Numerous data are stored in the EMR in which not all the data is useful in supporting 

the prescription making. After discussing with the medical practitioners of HPMS, four 

categories of data are used in this experiment. The four categories are: 

 Demographic category: Patient’s sex and age 

 Allergic category: Patient’s allergy on medication  

 Diagnostic category: Symptoms and diagnosis in each case 

 Therapeutic category: Medicines prescribed in each case 

 

Table 1 elucidates the features used in each category and illustrates whether the feature 

is a problem feature or a solution feature.  

 

Table 1: Features of URTI diagnosis that are used in the experiment  

Category Feature Possible values Problem feature or 

solution feature 

Demographic  Sex Boolean value (M, F) Problem 

 Age Single value (Baby, children, 

youth, adult, elderly) 

Problem 

Allergic  Allergy on 

medication 

Single or Multi-value (e.g. 

NKDA) 

Problem 

Diagnostic  Symptoms Single or Multi-value (e.g. 

itchy, nasal discharge, nasal 

congestion, and so on) 

Problem 

 Diagnosis Single or Multi-value (e.g. 

URTI) 

Problem 

Therapeutic  Medicines 

prescribed 

Single or Multi-value (e.g. 

Dexophen 30mg, Bisolvon 

Co, Actifed Co, and so on) 

Solution 

 

As shown in Figure 8, leave-one-out method is used as the validation method for 

determining how accurately a learning algorithm will be able to predict data that it was not 

trained on. Leave-one-out cross validation is useful because it does not waste data. When 

using the leave-one-out method, the learning algorithm is trained multiple times, using all but 

one of the training cases. The form of the leave-one-out method is shown as Figure 9: 

 

For i = 1 to N (where N is the number of training cases) 

 Temporarily remove the i-th case from the training set 
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 Train the learning algorithm on the remaining N - 1 points 

 Test the removed case and note the accuracy 

End For 

Calculate the overall accuracy over all N cases 

Figure 9: Algorithm of suggestion combination in RACER 

 

A series of experiments have been carried out for measuring the performance of RACER. 

The experiment setting is shown is Table 2. To verify the scalability of RACER, the 

experiments are carried out with different number of training cases (i.e. 100 to 800 cases with 

a 100 cases increment). Three different sets of minimum support and confidence are used in 

the association rules mining (i.e. 0, 0; 0.1, 0.4; and 0.2, 0.6). Three different sets of threshold 

values for determining the maximum number of retrieved cases are used (i.e. no. of training 

cases/10, no. of training cases/5, and no. of training cases/2). Three different sets of threshold 

values for determining the maximum number of retrieved cases are used (i.e. 5, 6 and 7). 

Equal feature weightings are used in the CBR and RACER analysis. Only the first most 

similar case is retrieved in the CBR analysis. Recall and precision analysis are applied for the 

performance measurement by comparing the suggested solutions of the three analysis method 

against the actual solution. The recall and precision are defined as equations (12) and (13), 

respectively. 

 

p

ps

d

dd
recall


  (12) 

s

ps

d

dd
precision


  (13) 

 

where sd  and pd  are the medicine lists of the suggested solution and the actual 

solution, respectively; sd  is the number of medicines in sd ; ps dd   is the number of 

medicines jointly appearing in sd  and pd . 

 

Table 2: Experiment setting for measuring the performance of RACER 

Test 

ID 

No. of 

training cases 

Minimum support,  

Minimum confidence 

Maximum no. of 

retrieved cases 

Maximum 

no. of 

suggested 

medicines 

1 100 0, 0 0.1, 0.4 0.2, 0.6 10 20 50 5 6 7 

2 200 0, 0 0.1, 0.4 0.2, 0.6 20 40 100 5 6 7 

3 300 0, 0 0.1, 0.4 0.2, 0.6 30 60 150 5 6 7 

4 400 0, 0 0.1, 0.4 0.2, 0.6 40 80 200 5 6 7 

5 500 0, 0 0.1, 0.4 0.2, 0.6 50 100 250 5 6 7 

6 600 0, 0 0.1, 0.4 0.2, 0.6 60 120 300 5 6 7 

7 700 0, 0 0.1, 0.4 0.2, 0.6 70 140 350 5 6 7 

8 800 0, 0 0.1, 0.4 0.2, 0.6 80 160 400 5 6 7 

 

 The results are summarized in Figures 10 to 14. Figure 10 shows the precision and recall 

of the algorithms with the minimum support = 0, minimum confidence = 0, maximum no. of 
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retrieved cases = no. of training cases/10, and maximum no. of suggested medicines = 5. The 

figure reveals that RACER outperforms the other two approaches in both recall and precision 

in this setting. Figures 11 and 12 show the precision and recall of the algorithms with a higher 

minimum support and confidence. The recall and precision of CBR and RACER remain 

steady, whereas association rules mining has a higher precision rate but a very low recall. 

Figures 13 and 14 show the effects on precision and recall of RACER by different sets of 

maximum number of retrieved cases and different sets of maximum number of suggested 

medicines, respectively. The results show that the precision and recall remain very stable with 

the maximum number of retrieved cases and it has a higher recall but lower precision when 

using a higher number of suggested medicines. For association rules mining, two parameters 

(i.e. the minimum support and confidence) are needed to be adjusted to control the recall and 

precision. RACER is only required to adjust one single parameter that is the maximum 

number of suggested medicines. In addition, the meaning of support and confidence is 

technical and difficult to be understood, while the meaning of maximum number of suggested 

medicines is much more simple and obvious.  

 

All in all, the results exhibits that the performance of RACER remains very stable by 

using different sets of parameters. The results are almost the same (i.e. only a few percentage 

differences) when different settings of parameters are used. It is not necessary to know what 

the appropriate settings for the RACER are in advance, which makes RACER robust. 
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Figure 10: The precision and recall of the algorithms (Minimum support = 0, Minimum 

confidence = 0, Maximum no. of retrieved cases = no. of training cases/10, Maximum no. of 

suggested medicines = 5) 
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Figure 11: The precision and recall of the algorithms (Minimum support = 0.1, Minimum 

confidence = 0.4, Maximum no. of retrieved cases = no. of training cases/10, Maximum no. 

of suggested medicines = 5) 
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Figure 12: The precision and recall of the algorithms (Minimum support = 0.2, Minimum 

confidence = 0.6, Maximum no. of retrieved cases = no. of training cases/10, Maximum no. 

of suggested medicines = 5) 
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Figure 13: The precision and recall of RACER with different sets of maximum of retrieved 

cases (Minimum support = 0, Minimum confidence = 0, Maximum no. of suggested 

medicines = 5) 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600 700 800 900

No. of Training Cases

R
e

c
a

ll
 /
 P

re
c
is

io
n

Recall - Max. no. of suggested medicines = 5
Precision - Max. no. of suggested medicines = 5
Recall - Max. no. of suggested medicines = 6
Precision - Max. no. of suggested medicines = 6
Recall - Max. no. of suggested medicines = 7
Precision - Max. no. of suggested medicines = 7

 
Figure 14: The precision and recall of RACER with different sets of maximum of suggested 

medicines (Minimum support = 0, Minimum confidence = 0, Maximum no. of retrieved cases 

= no. of training cases/10) 
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5. Conclusions 

This paper presents a hybrid approach, RACER, which integrates CBR and association 

rules mining for supporting the prescription making of GPs. By taking the specific 

experiential knowledge (i.e. from cases) and general knowledge in the medical records (i.e. 

from the associative relationship between clinical findings and medicines being prescribed) 

into considerations, the proposed approach is able to leverage and compensate both kinds of 

knowledge, so as to provide a better decision support. This paper also introduces a new 

ranking measurement for assigning a likelihood ratio for each medicine extracted from the 

cases. A series of experiments has been carried out for measuring the performance of RACER 

against CBR and association rules mining by using real prescription data. The results showed 

that RACER is outperforming than the other two approaches in various settings. The 

performance of RACER remains stable by using different sets of parameters, which shows 

that it is not necessary to know what the appropriate settings for the RACER are in advance. 

The next research stage will be to select the appropriate features and parameters in order to 

optimize the accuracy of the algorithm and also to design a user-friendly interface for the GPs 

to apply RACER in their daily operations.  
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