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By using a four-hot-wire probe and an eight-hot-wire probe, different approximations to energy dissipation
rate have been made in the far field of a cylinder wake. The appropriateness of the various approximations is
evaluated by examining their mean values, spectra, conditional analysis, and scaling range exponents. It is
found that there are significant differences between the instantaneous values of �iso, the isotropic dissipation
rate, and other approximations. The present measurements also allow the examination of the spatial correlation
between the energy dissipation rate and the enstrophy �. While the correlation between �iso and � is low, there
is a strong correlation between the other approximations to energy dissipation rate � and the enstrophy �. The
scaling range exponents show that the substitutes to the energy dissipation rate and enstrophy based on isotropy
are more intermittent than their corresponding true values. The present results suggest that using �iso as a
substitute of � should be re-examined, especially for the instantaneous values.
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I. INTRODUCTION

The instantaneous values of the turbulent energy dissipa-
tion rate ���2�si,jsi,j� and the enstrophy ����i�i� are two
important characteristics of the small-scale turbulence, where
sij ��ui,j +uj,i� /2 is the turbulent rate of strain; ui,j represents
the velocity derivative �ui /�xj; �i=�ijkuk,j is the vorticity
component; �ijk is the alternating tensor; and � is the kine-
matic viscosity of the fluid. For example, the second-order
behavior of the energy dissipation is crucial to understand
the characteristics of intermittency �1�. The measurements of
� are useful for examining the intermittency models �e.g.,
�2,3��. However, the measurement of the energy dissipation
rate � is fraught of difficulties, since nine velocity derivatives
need to be resolved simultaneously. A possible method to
measure these velocity derivatives is by using multi-hot-
wires. As the number of wires increases, problems related to
the spatial resolution of the probe, flow blockage, noise con-
tamination, and possibly aerodynamic interference of the
wires become important. Therefore, there are only a few
measurements of � reported previously in various turbulent
flows �e.g., �4–7��. Most of the � data used in the literature
for examining the small-scale turbulence are obtained by the
so-called pseudo-dissipation rate, i.e.,

�iso = 15�u1,1
2 , �1�

which is the one-dimensional surrogate of energy dissipation
rate � in isotropic turbulence based on Taylor’s hypothesis.
The limitations of Taylor’s hypothesis are relatively well
known, especially in flows with high turbulence intensity �8�.
It needs to be noted that some important ideas on the small-
scale structure of turbulence, such as the multifractal distri-
bution of dissipation in space �9� and the bimodality of con-

ditional probability density functions for a small-scale range
�10� of the Kolmogorov variable in the refined similarity
hypothesis �RSH� �11�, have been reformulated explicitly for
�iso. This reformulation has been verified for several cases
and therefore can be considered as fundamental at high Rey-
nolds numbers �10�. However, in many aspects, the true val-
ues of � may give important different results as compared
with those when �iso is used, especially at low and moderate
Reynolds numbers �12�. This possibility was pointed out by
Hosokawa �13� and Thoroddsen �14� and discussed later in
detail by Hosokawa et al. �15� and Wang et al. �12�, using
direct numerical simulations �DNS� of fully developed de-
caying isotropic turbulence at moderate Reynolds numbers.
Direct numerical simulations are prior to the experiments
since the velocity derivatives can be determined reliably and
simultaneously, albeit in relatively simple flows.

The spatial relationship between the fields of � and � has
been reviewed by Sreenivasan and Antonia �16�. There is
general agreement that the highest vorticity appears to reside
in tubes, while the moderate vorticity resides in sheets sur-
rounding the tubes. This suggests a relatively high correla-
tion between � and �. For homogeneous turbulence, since
the mean values of � and � are related, i.e., ���=����, it is
natural to expect a close relationship between the instanta-
neous values of � and �. This relation, however, does not
mean that their local scaling and intermittence are identical.
If they do, however, the scaling exponents for small-scale
turbulence should be unique �17�. The existing experimental
results surveyed by Sreenivasan and Antonia �16� suggest
that the scaling exponents for energy dissipation rate and
enstrophy may indeed not be the same, even though the ex-
perimental results may be affected in unknown ways by ar-
tifacts such as Taylor’s hypothesis and the use of one-
dimensional surrogates of dissipation and vorticity. By using
full measurements for � and � obtained in grid turbulence,
Antonia et al. �6� found that � is more intermittent than �.
This is consistent with the direct numerical simulations of*Electronic address: mtmzhou@ntu.edu.sg
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Chen et al. �17�, where the inertial range scalings of the
locally averaged � and � are studied at a Taylor microscale
Reynolds number of 216.

The main objective of the present paper is to examine the
differences between various substitutes of � using data ob-
tained in the far region of a turbulent wake from a four-hot-
wire probe and an eight-hot-wire probe. Differences among
various approximations to � will be examined in terms of
their mean values, spectra, correlations with the enstrophy
fields, and inertial range scaling. After a brief introduction in
Sec. I, the experimental setup is given in Sec. II. The mean
values of � obtained using different approximations are com-
pared in Sec. III. The differences of various approximations
to � are compared in Sec. IV in terms of the correlations with
enstrophy. The inertial range scaling of the energy dissipa-
tion rate and enstrophy is examined in Sec. V. Conclusions
are drawn in Sec. VI.

II. EXPERIMENTAL DETAILS

The experiments were conducted in a closed-loop wind
tunnel �Fig. 1�. The wind tunnel has two test sections,
namely, the high-speed and the low-speed sections. The
present measurements are conducted in the high-speed test
section with dimensions of 1.2 m �width� �0.8 m �height�
and 2 m long. The free stream across the tunnel is uniform to
within 0.3%. The free stream turbulence intensity is less than
0.5%. The free-stream velocity U1 is about 5 m/s, corre-
sponding to a Taylor microscale Reynolds number R�

��u1�� /�, where �=u1� /u1,1� is Taylor microscale and the su-
perscript prime denotes the rms value� of about 45 �or Red
�U1d /�=2060, d=6.35 mm is the diameter of the stainless-
steel circular cylinder�. The measurement location is at
x1 /d=240. At this location, the turbulence intensity ui� /U1
�i=1, 2, or 3� is about 2%, favoring the use of Taylor’s
hypothesis. The Kolmogorov length scale � is about 0.5 mm
over the vertical range of x2 /L= ±1, where L is the wake
half-width. This value of � is large enough to ensure ad-
equate spatial resolution of the probes for the measurements
of the velocity derivatives. With the increase of Reynolds
number, the Kolmogorov length scale � will decrease and
the spatial resolution of the probes will deteriorate. There-

fore, the present experiments were conducted at a relatively
low Reynolds number.

A probe consisting of four hot wires �Fig. 2�a�� was used
to measure approximately the energy rate. Wires a and b in
�Fig. 2�a�� together form the X-wire; wires c and d are the
two parallel wires which straddle the X-wire. The solid thin
line at the center of wires a, b, c, or d represents the active
part �i.e., the sensor� of the four hot wires. 	 is the angle
between flow direction and wire a. The four hot wires also
allow the calculation of the spanwise component �3 of the
vorticity vector using the measured velocity signals u1 and
u2. The included angle of the X-wire is about 100°. The
separation 
x2 between the two parallel hot wires c and d is
about 1.5 mm. This separation corresponds to 3� in the cen-
tral part of the wake. This separation is adequate for
velocity-derivative measurements using hot wires �18�. Us-

FIG. 1. Schematic diagram of
the wind tunnel and the coordinate
system.

FIG. 2. Sketches of the �a� four-hot-wire and �b� eight-hot-wire
probes.
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ing the present probe, three of the nine velocity derivatives
that make up � are measured simultaneously. These deriva-
tives are u1,1, u1,2, and u2,1. Assuming local isotropy and
homogeneity, simultaneous approximations to � can be made
based on continuity �19�, viz.

�ap � ��6u1,1
2 + 3u1,2

2 + 2u2,1
2 + 2u1,2u2,1� , �2�

where the subscript ap represents “approximation.” Since
more derivative correlations are included in Eq. �2� than the
one usually used by experimentalists after assuming local
isotropy �Eq. �1��, it is expected that Eq. �2� should provide
more reasonable approximations to � than when �iso �Eq. �1��
is used. With the present four hot-wire probe, the spanwise
vorticity component �3 can be obtained viz.

�3 = u2,1 − u1,2 �

u2


x1
−


u1


x2
, �3�

where 
u1 is the velocity difference between the longitudinal
velocity fluctuations from the two parallel wires c and d,
which are separated in the x2 direction �Fig. 2�a��. 
u2 rep-
resents the difference between values of u2 at the same point
in space but separated by one sampling time interval 
t�
�1/ fs�. In Eqs. �1�–�3�, Taylor’s hypothesis is used to esti-
mate the velocity derivatives in the streamwise direction, i.e.,
�u2 /�x1=−U1

−1
u2 /
t.
The probe used to measure the full energy dissipation rate

consists of four X-wires �Fig. 2�b��. Two are in the x1-x2
plane and separated in the x3 direction; the other two are in
the x1-x3 plane and are separated in the x2 direction. It is
assumed that each X-wire measures two velocity compo-
nents at the center of the probe. The separation between two
inclined wires in each pair of X-wire is about 1 mm. The
separation between the centers of the two X-wires aligned
either in the x1-x2 plane and separated in the x3 direction or
the x1-x3 plane and separated in the x2 direction is about
2.7 mm, i.e., around 5�, which satisfies the criteria of hot-
wire separation �3	5�� for velocity derivative measure-
ments proposed by Antonia et al. �18�.

The effective angle for each X-wire is about 40°. The full
expression for the mean energy dissipation rate ���
�2��si,jsi,j� can be written as

�� f� � �
2�u1,1
2 � + 2�u2,2

2 � + 2�u3,3
2 � + �u1,2

2 � + �u2,1
2 � + �u1,3

2 �

+ �u3,1
2 �+ �u2,3

2 � + �u3,2
2 � + 2�u1,2u2,1� + 2�u1,3u3,1�

+ 2�u2,3u3,2�� , �4�

where the subscript f represents the full energy dissipation
rate. Seven of the above nine velocity derivatives can be
obtained with the eight-wire probe. By assuming incom-
pressibility, the quantities u2,2

2 and u3,3
2 can be estimated by

the following equation:

u1,1 + u2,2 + u3,3 = 0 �5�

or

2�u2,2
2 � + 2�u3,3

2 � = 2�u1,1
2 � − 4�u2,2u3,3� . �6�

By assuming homogeneity, the last term on the right of Eq.
�6� can be replaced by −4�u2,3u3,2�, since

�u2,2u3,3� = �u2,3u3,2� . �7�

Substitution of Eqs. �6� and �7� into Eq. �4� yields

�� f� � �
4�u1,1
2 � + �u1,2

2 � + �u2,1
2 � + �u1,3

2 � + �u3,1
2 �+ �u2,3

2 �

+ �u3,2
2 � + 2�u1,2u2,1� + 2�u1,3u3,1� − 2�u2,3u3,2�� .

�8�

By using the measured velocity signals from the eight-wire
probe, the three vorticity components can be calculated using
the following finite difference method �ui /�xj =
ui /
xj, i.e.,

�1 = u3,2 − u2,3 �

u3


x2
−


u2


x3
, �9�

�2 = u1,3 − u3,1 �

u1


x3
−


u3


x1
, �10�

and

�3 = u2,1 − u1,2 �

u2


x1
−


u1


x2
. �11�

The streamwise derivatives are calculated using Taylor’s hy-
pothesis, i.e., �ui /�x1=−U−1
ui /2
t �i=2,3�, where U is
the local mean velocity and 
t��1/ fs� is one sampling time
interval. This method would have the advantage of keeping

x1�
x2�
x3.

Both the four- and eight-wire probes comprised
2.5-�m-diameter Wollaston Pt-10%Rh wires, each etched to
an active length of about 0.5 mm. The length-to-diameter
ratio of the wires was about 200. The hot wires were oper-
ated with in-house constant temperature circuits at an over-
heat ratio of 1.5. The probes were calibrated at the centerline
of the wind tunnel against a Pitot-static tube. The yaw cali-
bration was performed over ±20°. The output signals from
the anemometers were passed through buck and gain circuits
and low-pass filtered at a cutoff frequency fc�1600 Hz,
which is close to fK, where fK�U /2�� is the Kolmogorov
frequency. The filtered signals are sampled for 60 s at a fre-
quency of 3200 Hz into a PC using a 16-bit A/D converter.

III. MEAN ENERGY DISSIPATION RATES

The mean energy dissipation rates ��� obtained using Eqs.
�1�, �2�, and �8� across the wake for different x2 /L are com-
pared in Fig. 3, where L is the wake half-width. In this fig-
ure, the energy dissipation rate is normalized by L and the
maximum velocity deficit U0. Since more derivative correla-
tions are included in Eqs. �2� and �8�, it is expected that they
should provide more reasonable approximations to � than
when �iso �Eq. �1�� is used. To account for the effect of the
imperfect spatial resolution, all velocity derivatives involved
in these relations have been corrected using spectral method.
Details of the correction methods for the four-hot-wire and
eight-hot-wire probes can be found in Antonia et al. �20� and
Zhu and Antonia �21�, respectively. Figure 3 shows that the
magnitude of �� f� is about 10% larger than that of ��iso�
across the wake, which should be in the range of experimen-
tal uncertainty, indicating that the one-dimensional surrogate
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can represent the full mean energy dissipation rate properly.
The present results of �� f� also agree favorably with that of
��ap� obtained using the four-wire probe �Eq. �2��. These lat-
ter values of ��� agree well with that reported by Browne
et al. �22�. The satisfactory agreement shown in Fig. 3 indi-
cates that there is no apparent difference of the measured ���
when different approximations of � were used.

The spectra corresponding to the energy dissipation rates
obtained on the wake centerline using different methods are
compared in Fig. 4, where a superscript asterisk denotes nor-
malization by Kolmogorov length scale � and/or velocity
scale uK��� /��. These spectra are obtained by summing all
the spectra of the velocity derivatives involved in Eqs. �1�,
�2�, and �8�, respectively. Since the velocity derivative spec-
tra are normalized by the Kolmogorov scales, the areas under
the various distributions of the energy dissipation rate should
be equal to 1. The distribution of �ap

�k1� agrees well with
that of �f

�k1�, indicating that Eq. �2� could provide a good
approximation to the full energy dissipation rate. In contrast,

�iso
�k1� departs significantly from both �f

�k1� and �ap
�k1�,

except for k1
*�0.15. Since �iso

�k1�=15�u1/�x1
�k1�, the spec-

trum of �iso is actually the same �multiplied by a factor of 15�
as that of �u1 /�x1, while the spectrum of the full energy
dissipation rate �f

�k1� is the sum of the spectra of the ve-
locity gradients involved in Eq. �8�, which are different from
that of �u1 /�x1. The departure of iso from the other mea-
sures in Fig. 4 is therefore not surprising. This result indi-
cates that the use of the instantaneous values of �iso as a
substitute of the instantaneous values of �, as usually used in
experimental studies, may cause significant errors, at least in
the spectral domain. The satisfactory agreement at high wave
numbers indicates that local isotropy is satisfied by various
approximations to energy dissipation rate, even at a rela-
tively low Reynolds number.

IV. CORRELATION BETWEEN ENERGY DISSIPATION
RATE AND ENSTROPHY

Using the four-wire probe, only one component ��3� of
the enstrophy can be measured. By assuming local isotropy,
the instantaneous values of � can be obtained using

� = 3��k
2 �k = 1,2,or 3� . �12�

All three vorticity components in the full expression of �
can be measured using the present eight-wire probe. The
enstrophy can then be calculated as

� = ���1
2 + �2

2 + �3
2� . �13�

The spatial correlations between � and � can be quantified
by means of conditional statistics, �	 ���, the expectations of
	 conditioned on particular values of �. This conditional
expectation is defined as

�	��� = 
−�

+�

	p�	���d	 , �14�

where p�	 ����p�,	 /p� is the pair distribution function
�PDF� of 	 conditioned on �. These conditional expectations
will be examined using various definitions of the energy dis-
sipation rate. Figure 5 shows the conditional expectations
�� ��� / ��� measured on the wake centerline. The values
�� f ��� / �� f� increase linearly with �3

2 at an overall gradient of
0.87, reflecting a strong dependence of � on �. The magni-
tude of ��ap ��3

2� / ��ap� from the four-wire measurement
shows the similar trend, except that its gradient is changed
from 0.87 for the eight-wire measurements to 0.75. This may
suggest a slightly lower correlation between �ap and �3

2than
that between � f and �. Compared with ��ap ��3

2� / ��ap� and
�� f ��3

2� / �� f�, the values of ��iso ��3
2� / ��iso� increase slowly

with �3
2 / ��3

2�, indicating a much weaker correlation between
� and �3

2 when using �iso to represent �. This result suggests
again that using �iso as a substitute of � should be re-
examined, especially for instantaneous values.

The spatial correlation between � and � can also be quan-
tified by means of the conditional expectation ��r

n+ ��r
+�,

where the superscript + denotes that the quantities are nor-
malized by their mean values, i.e., ��3

2�r
+= ��3

2�r / ���3
2�� and

FIG. 3. Comparison of the mean turbulent energy dissipation
rate ��� obtained using different approximations: �, �� f� �Eq. �8��;
�, ��ap� �Eq. �2��; 
, ��iso� �Eq. �1��; and —, Browne et al.�22�.

FIG. 4. Spectra of energy dissipation rate obtained using various
methods: – – –, ��ap

* �k1
*�; - - -, �� f

* �k1
*�; and — · —, ��iso

* �k1
*�.
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�r
+=�r / ���; �r and �r are the average values of � and �

obtained over a distance r in the streamwise direction. The
conditional expectations ���3

2�r
n+ � ��ap�r

+� for n=1 and 2 mea-
sured using the four-wire probe are shown in Fig. 6 to check
the spatial correlation between the two quantities. The value
of r is chosen such that it is located in the inertial range. It
needs to be noted that an inertial range is not expected at
such a low Reynolds number �R�=45�. Arguably, a scaling
range �SR� over which the third-order velocity structure
function ���SL

*�3� is approximately linear to r can be defined
�Fig. 7�, where �SL��u1�x1+r�−u1�x1�� is the longitudinal
velocity structure function. The functions y=c1x and y
=c2x2 are also included in Fig. 6, where c1 and c2 are con-
stants determined by the curve fitting. It shows clearly that
the first- and second-order moments of ��3

2�r
+ increase with

�r
+. The values of ���3

2�r
+ � ��ap�r

+� grow linearly with ��ap�r
+

over the range of �r
+�0.1. They also agree quite well with

y=c2x2 in this range. These results imply a strong spatial
correlation between the spanwise vorticity and the energy
dissipation rate. The present results are consistent with the
DNS study by Chen et al. �17�, where the full energy dissi-
pation rate and enstrophy � were used. When �iso is used
�Fig. 8�, even though the first- and second-order moments of
��3

2�r
+ increase with ��iso�r

+, the gradients become much
smaller than those shown in Fig. 6. The results seem to sug-
gest that the use of the one-dimensional energy dissipation
rate to substitute the full energy dissipation rate may lead to
erroneous conclusions. To validate the present four-wire re-
sults and to clarify the different behaviors between �iso and
� f, the expectations of ���3

2�r
n� �n=1 and 2� conditioned on

either � f or �iso obtained from the eight-wire probe are shown
in Figs. 9 and 10, respectively. In Fig. 9, ���3

2�r
+ � �� f�r

+� and
���3

2�r
2+ � �� f�r

+� reveal almost the identical trends as those

FIG. 5. Expectations of � conditioned on particular values of

�3
2: �, ��ap ��3

2� �Eq. �2��; 
, �� f ��3
2� �Eq. �8��; and �, ��iso ��3

2�
�Eq. �1��.

FIG. 6. Conditional expectations ���3
2�r

n+ � ��ap�r
+� as a function of

�ap using the four-wire probe: �, n=1; �, n=2; - - -, y=c1x; and —
· —, y=c2x2.

FIG. 7. Kolmogorov normalized third-order structure function
multiplied by r*−1.

FIG. 8. Conditional expectations ���3
2�r

n+ � ��iso�r
+� as a function

of �iso using four-wire probe: �, n=1; �, n=2; - - -, y=c1x; and —
· —, y=c2x2.
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shown in Fig. 6, and both of them agree well with functions
y=c1x and y=c2x2, respectively, thus proving the strong cor-
relation between the spanwise vorticity and the energy dissi-
pation rate. The results also support the use of Eq. �2� as a
proper substitute to the full energy dissipation rate. In Fig.
10, the expectations of ���3

2�r
n� �n=1 and 2� conditioned on

�iso show large discrepancies with those obtained using � f
�Fig. 9�. The discrepancy between Figs. 9 and 10 further
implies that it is inappropriate to use �iso as a substitute of �.

To further study the correlation between � and �, the
conditional expectations ��r

n+ � �� f�r
+� and the reverse condi-

tional expectations ��� f�r
n+ ��r

+� for different orders �n=1, 2,
4, 6, and 8� are also examined. These results are shown in
Figs. 11�a�–11�e�. The data used in this figure for � and � are
measured using the eight-wire probe. It is found that while
��r

n+ � �� f�r
+� scales with �� f�r

�n+ for large values of �� f�r
+, the

reversed conditional expectations ��� f�r
n+ ��r

+� seem to scale
with �r

	n+ for large �r
+, with 	���1. For example, when

n=1 �Fig. 11�a��, the values of ��r
+ � �� f�r

+� grow linearly with
�� f�r

+ over the range of �� f�r
+�0.06 ��=1 in this case�, re-

flecting a strong correlation between enstrophy and energy
dissipation rate. The same conclusion can be obtained for the
distribution of ��� f�r

+ ��r
+�, which grows with �r

+ by a power
law of 0.953 �	=0.953 in this case� for �r

+�0.6. While for
n=6 �Fig. 11�d��, the dependence of ��r

6+ � �� f�r
+� on �� f�r

+

over the range of �� f�r
+�0.3 shows an approximate power

law of 5.7 �or �=0.951�; the power is 4.5 �	=0.752 in this
case� for distribution of ��� f�r

6+ ��r
+� over the range of �r

+

�0.6. The values of � and 	 for different powers n are listed
in Table I. It can be seen that while both � and 	 decrease
with the increase of n, the values of � are always larger than
the corresponding values of 	, with a much lower decreasing
rate than that of 	. The fact that � is larger than 	 with a
lower decreasing rate may suggest that the spatial growth of
�r

+ in a statistical sense is slower than that of �r
+. It is worthy

to note that the present results are consistent with the DNS
study by Chen et al. �17�, who also found that although
strong domain correlation exists between � and �, they are
not correlated point by point.

V. SCALING OF LOCALLY AVERAGED ENSTROPHY
AND ENERGY DISSIPATION RATES

Over the past years, extensive experimental and numerical
investigations have highlighted the difference between the
scaling exponents �L�n� and �T�n� of longitudinal and trans-
verse velocity increments, respectively. In the present study,
the longitudinal velocity structure function �SL is defined as

�SL = �u1�r� = u1�x1 + r� − u1�x1� . �15�

Taylor’s hypothesis is used to convert the temporal delay � to
a spatial increment r in the streamwise direction, with r
��U, where U is the mean velocity in the streamwise direc-
tion. The transverse velocity structure function can then be
defined as

�ST = u2�x1 + r� − u2�r� . �16�

In the present study, due to the limited value of R� studied,
an apparent inertial range cannot be defined unambiguously
�please refer to Fig. 7�. To obtain the scaling exponents of the
velocity structure functions, the extended self-similarity
�ESS� method �23� is used. This method has been widely
used for estimating the scaling exponents. The corresponding
scaling exponents are known as the values relative to the
third-order velocity increments. All the scaling exponents are
estimated over the scaling range shown in Fig. 7. By plotting
the nth-order velocity structure functions against the third-
order moment of ��SL�, i.e.,

���SL�n� 	 ���SL�3��L�n� �17�

and

���ST�n� 	 ���SL�3��T�n�, �18�

the longitudinal and transverse scaling exponents �L�n� and
�T�n� can be estimated. The values of �L�n� and �T�n� for n

FIG. 9. Conditional expectations ���3
2�r

n+ � �� ful�r
+� as a function

of �� f�r
+ using eight-wire probe: �, n=1; �, n=2; - - -, y=cx; and

— · —, y=c2x2.

FIG. 10. Conditional expectations ���3
2�r

n+ � ��iso�r
+� as a function

of ��iso�r
+ using eight-wire probe: �, n=1; �, n=2; - - -, y=c1x; and

— · —, y=c2x2.
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=1−8 are shown in Fig. 12. The predictions of the scaling
exponents based on Kolmogorov �24� or K41, where the ve-
locity structure functions are scaled as n /3, and the lognor-
mal model of Kolmogorov �11� or K62 are also shown for
comparison. For K62,

�L�n� =
n

3
−

�

18
n�n − 3� , �19�

where � is the intermittency parameter with a magnitude of
0.2	0.3. The value of � can be obtained using the 6th-order

FIG. 11. Conditional expectations ��r
n+ � �� f�r

+� and ��� f�r
n+ ��r

+� as a function of � f
+ and �r

+, respectively: �, ��r
n+ � �� f�r

+�; �, ��� f�r
n+ ��r

+�;
- - -, y=c1x�n; and — · —, y=c2x	n; �a� n=1; �=1, 	=0.953; �b� n=2; �=0.993, 	=0.917; �c� n=4; �=0.975, 	=0.813; �d� n=6; �
=0.951, 	=0.752; and �e� n=8; �=0.947, 	=0.746.
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velocity structure function, since ���SL�6�	r2−� �i.e., �=2
−�L�6�� in the scaling range. The values of �L�n� depart sig-
nificantly from the prediction of K41 �24� �i.e., n /3� for n
�4. This result may reflect the increasing effect of the inter-
mittency for higher orders of the longitudinal velocity incre-
ments. The measured values of �L�n� show satisfactory
agreement with that predicted by K62 �11�. It can be seen
that �T�n� values are significantly smaller than �L�n�.

The inequality between �L�n� and �T�n� may be due to
several factors: �1� the Reynolds number effect �e.g.,
�25–27��; �2� global anisotropy of the flow �e.g., �28–30��;
�3� the initial and boundary conditions �31�, and �4� the ef-
fects of intermittencies on the longitudinal and transverse
velocity structure functions �32�. Analogous to the refined
similarity hypothesis �RSH� �11�, Chen et al. �32� proposed a
modification which they called the refined similarity hypoth-
esis for transverse velocity structure functions �RSHT�. In
RSH and RSHT, the scaling of the longitudinal and trans-
verse velocity structure functions are

���n� =
n

3
+ ���n/3� �20�

and

���n� =
n

3
+ ���n/3� , �21�

where ���n /3� and ���n /3� are the scaling exponents of the
locally averaged energy dissipation rate and the enstrophy,

respectively. They are inferred from the distributions of
log��r

n/3� and log��r
n/3� vs log r over the scaling range indi-

cated in Fig. 7. The values of ���n /3� and ���n /3� can be
inferred based on various approximations to � and � consid-
ered in the present study. These values are listed in Table II.
The values of ���n����n /3�+���n /3�� and ���n����n /3�
+���n /3�� as well as the measured �L�n� and �T�n� are also
included in Table II for comparison. If RSH is valid, there
should be favorable agreement between �L�n� and ���n�. The
values shown in Table II indicate that ��f

�n� and ��ap
�n� agree

well with �L�n� for all orders. Both of them are smaller than
��iso

�n� for n�2 and slightly larger than ��iso
�n� n�3. This

result indicates that for �ap is a proper substitute to � f, while
�iso is more intermittent than either � f or �ap. The later result
is consistent with previous investigations reported by

TABLE I. The values of � and 	 for different orders of n.

n 1 2 4 6 8

� 1.00 0.993 0.975 0.951 0.947

	 0.953 0.917 0.813 0.752 0.746

FIG. 12. Scaling exponents �L�n� and �T�n� as a function of n:

�, �L�n�; �, �r�n�; ——, K41 �Ref. �24��; and — · —K62 �Ref.
�11�.

TABLE II. Scaling exponents of the velocity structure functions, energy dissipation rates, and enstrophy.
The values in the brackets represent the corresponding standard deviations.

n �L�n� �T�n� �� f
�n� �� f

�n� ��ap
�n� ��ap

�n� ��iso
�n� ��iso

�n� ���n� ���n� ��3
2�n� ��3

2�n�

1 0.356 0.292 0.01
�±0.001�

0.343 0.0188
�±0.001�

0.352 0.0348
�±0.001�

0.368 0.0222
�±0.001�

0.356 0.0531
�±0.001�

0.386

2 0.688 0.545 0.009
�±0.001�

0.676 0.0182
�±0.001�

0.685 0.0324
�±0.001�

0.699 0.0219
�±0.001�

0.689 0.044
�±0.001�

0.711

3 1 0.736 −0.01
�±0.0013�

0.99 −0.0082
�±0.001�

0.992 −0.0088
�±0.001�

0.99 −0.00613
�±0.001�

0.994 −0.01
�±0.001�

0.99

4 1.293 0.902 −0.0452
�±0.0013�

1.288 −0.0591
�±0.001�

1.274 −0.0838
�±0.001�

1.25 −0.0594
�±0.001�

1.274 −0.103
�±0.001�

1.23

5 1.568 1.037 −0.097
�±0.001�

1.57 −0.132
�±0.001�

1.535 −0.1879
�±0.001�

1.479 −0.1353
�±0.0011�

1.531 −0.227
�±0.0011�

1.44

6 1.83 1.144 −0.164
�±0.004�

1.836 −0.228
�±0.001�

1.772 −0.3173
�±0.0013�

1.683 −0.2319
�±0.0015�

1.768 −0.378
�±0.001�

1.622

7 2.05 1.222 −0.2461
�±0.0015�

2.09 −0.343
�±0.001�

1.99 −0.4685
�±0.0014�

1.864 −0.3468
�±0.002�

1.987 −0.55
�±0.001�

1.783

8 2.26 1.273 −0.3423
�±0.0015�

2.32 −0.475
�±0.0013�

2.192 −0.6387
�±0.0015�

2.028 −0.478
�±0.0028�

2.189 −0.739
�±0.0012�

1.928

ZHOU et al. PHYSICAL REVIEW E 74, 056308 �2006�

056308-8



Sreenivasan and Antonia �16�, Chen et al. �32�, and Wang
et al. �12�. If RSHT is valid, the difference between �L�n�
and �T�n� should be compensated by the difference between
���n� and ���n� or ���n /3� and ���n /3�, respectively. How-
ever, the results shown in Table II indicate that the magni-
tude �L�n�−�T�n� is much larger than that of ���n�−���n�,
regardless of the methods used to obtain � and �. Therefore,
RSHT is only partially valid for the temporal transverse ve-
locity increments obtained by using Taylor’s hypothesis. This
result is in contrary to that reported by Bi and Wei �33�,
where the transverse velocity structure functions were ob-
tained using both the temporal and spatial methods; the en-
ergy dissipation rate � and enstrophy � were approximated
by �iso and 3��2

2, respectively. Comparing the values for
���n /3� and ��3

2�n /3�, we can see that the former is consis-
tently smaller than the latter. It is worthy to note that the
present magnitude of ���n /3� is comparable with those re-
ported by Antonia et al. �6� in a grid turbulence, while the
values of ��3

2�n /3� are also comparable to those reported by
Zhou et al. �34� in a cylinder wake. The results shown in
Table II indicate that the full enstrophy �Eq. �13�� is less

intermittent than its individual vorticity component �Eq.
�12��. The values in Table II also indicate that the enstrophy
field is more intermittent than the energy dissipation rate. To
get a better understanding on the intermittency phenomena
and to study the scaling features of enstrophy and energy
dissipation, it is necessary to examine the scaling relation
between the higher-order moment of enstrophy and those of
energy dissipation rate. Wang et al. �12�, in their DNS stud-
ies, pointed out that for the energy dissipation rate, the one-
dimensional surrogate field is in general more intermittent
than the full field. Both the isotropic �Eq. �1�� and the full
energy dissipation rate �Eq. �8�� are used to examine the
relative scaling with the enstrophy. In Figs. 13�a�–13�d�, the
quantities ��r

n+� are plotted against ��r
n+� for n=2, 4, 6, and

8. The relative power laws can be identified in the scaling
range �a region indicated by the double-arrowed vertical line�
and quantified by the scaling exponent k, which is calculated
from ��r

n+�	��r
n+�k. For convenience, the values of k for

different orders n are listed in Table III. It can be seen that
the values of k�� f� are always greater than 1 for n=2, 4, 6,
and 8. This result shows that the locally averaged full enstro-
phy are larger than those of locally averaged full dissipation

FIG. 13. ��r
n� as a function of ��r

n�. Here r is an implicit variable. �, obtained using � f �Eq. �8��; �, obtained using �iso �Eq. �1��; and
·······, y=x. Arrowed vertical line indicates points within inertial range. �a� n=2; �b� n=4; �c� n=6; �d� n=8.
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rate, indicating a stronger intermittency of the former than
the latter, which is consistent with Chen et al. �17�. The
present values of k�� f� are qualitatively close to those of the
DNS study by Chen et al. �17�, where k=1.56 and 1.47 for
n=2 and 4, respectively, were obtained. It can also be seen
that k�� f� decreases with the increase of n. The values of
k��iso� obtained using ��r

n�	���iso�r
n�k increases with n, a re-

verse trend to that of k�� f�. In addition, the fact that the
values of k��iso� obtained using ��r

n�	���iso�r
n�k are much

smaller than that of k�� f�, especially for n=1 and 2, suggests
that the intermittency of the dissipation rate based on isotro-
pic relations is stronger than that of the full enstrophy, which
is consistent with the results shown in Table II. The result
also indicates that for the energy dissipation rate, the one-
dimensional surrogate field is more intermittent than the full
dissipation field, which is consistent with that reported by
Wang et al. �12�. The differences in intermittency between
�iso and � f may be due to the fact that the full energy dissi-
pation rate involves all nine velocity derivatives while �iso
involves only one �i.e., �u1 /�x1�. The full dissipation rate can
be considered roughly as an average of nine intermittent
structures, each of which is either as large as �iso or slightly
larger than �iso. The averaging tends to reduce the degree of
intermittency of individual structures �12�.

VI. CONCLUSION

Different approximations to energy dissipation rate and
enstrophy have been made using a four-wire probe and an
eight-wire probe in the far field of a cylinder wake at Re
=2060. There exists satisfactory agreement among the mean
energy dissipation rates, regardless of the approximations
used. However, spectral analysis shows that there is large
departure of the spectrum of �iso from that of either �ap or � f

at low wave numbers, indicating that the use of the instanta-
neous values of �iso as a substitute of the instantaneous val-
ues of �, as usually used in experimental studies, may cause
significant errors, at least in the spectral domain. The spatial
correlation between � �represented either by �iso, �ap, or � f�
and � �represented either by Eq. �12� or Eq. �13�� has been
qualified using conditional analysis. Compared with �ap and
� f, there is a much weaker correlation between � and � when
�iso is used to represent �. When �ap or � f is used, the con-
ditional expectations ��r

n+ � �� f�r
+� �n=1 and 2� agree well

with y=cxn in the scaling range, further confirming the
strong correlation between energy dissipation rate and en-
strophy. This result is consistent with that reported previ-
ously by Chen et al. �17� using DNS. The inertial range
scaling exponents of the energy dissipation rate and enstro-
phy suggest that the energy dissipation rate based on isotro-
pic relation is more intermittent than that of the true values,
supporting the previous study by Wang et al. �12�, while the
isotropic enstrophy is more intermittent than the full enstro-
phy. It is also found that the full energy dissipation rate is
less intermittent than the full enstrophy. The present study
suggests that using �iso as a substitute of the true values for
� should be re-examined, especially for the instantaneous
values.
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