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ABSTRACT 

Container ports are a major component of international trade and the global supply 

chain.  Hence, the improvement of port efficiency can have a significant impact on the 

wider maritime economy.  This paper deconstructs a representation in the existing 

literature that neglects the heterogeneity of individual and group-specific terminal 

operators.  In its place, we present a hierarchical model to make a connection between 

efficiency and terminal operator group characteristics.  The paper develops a 

stochastic frontier model that controls not only individual heterogeneity but also 

group-specific variations.  The model decomposes the total stochastic derivation from 

the frontier into inefficiency, individual heterogeneity, group-specific variations, and 

noise components, with the estimation being performed using Markov chain Monte 

Carlo simulations.  The validity of the model is tested with a panel of container 

terminal operator data from 1997-2004.  Our findings show that terminal operator 

groups are important in promoting terminal efficiency at the global level, and that the 

operators with stevedore backgrounds show a higher efficiency than carriers. 
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Highlights 

• We decompose individual and group-specific variations in frontier analysis. 

• This study is at the terminal level rather than port level. 

• Inefficiency is overestimated by a homogeneous frontier analysis.   

• Terminal operator groups generate more terminal throughput. 

• Terminal operator groups are more efficient than individual operators. 

 

1.  Introduction 

1.1.  Background 

In recent years, operational research methods have gained considerable importance in 

econometrics.  The production and cost theories in economics make it possible to 

estimate production and cost functions empirically, and thus to investigate changes in 

both the productivity and technology of a firm.  The conventional stochastic frontier 

method for estimating a frontier assumes that all firms are successful in reaching the 

efficient frontier (and only deviate randomly).  If, however, firms are not always at 

the frontier, then the conventional estimation method will not reflect the efficient 

production or cost frontier against which to measure efficiency.  Empirical 

estimations for the port production function have been performed by Chang (1978) 

and Tongzon (1993), whereas Kim and Sachis (1986), Martínez-Budría et al. (2003), 

Martínez-Budría et al. (1999), and Jara-Díaz et al. (2002) estimated the cost functions 

of ports for both single-output and multiple-output cases.  Using a single frontier 

function, Liu (1995), Notteboom et al. (2000), and Estache et al. (2002) estimated 

production frontiers or cost frontiers while recognising that some ports may not be at 

the efficient frontier. 

 

Today, the port industry has a hierarchical structure.  Each port has many terminals, 

which are operated by one or several operators.  For example, the Hong Kong Port 

has 9 terminals operated by six operators.  From Table 1, there are 1.8 operators and 

5.0 terminals in a port on average.  The operators are the firms to operate the 

terminals for their own objectives.  Obviously, container terminal operators are the 

decision making units (DMU).  As a DMU, each operator in a port makes his own 

operation and technical decisions.  At the terminal level, the efficiency level should be 

different between different operators in a port.  At the port level, different operators in 

a port should have certain similarity in production efficiency because they share the 
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same water depth and other natural conditions.  At the country level, the operators 

from different ports within the same country should also have certain similarity in 

production efficiency because they are subject to the same government regulations 

and legal systems.  At the global level, most terminal operators in the world today 

belong to several major terminal operator groups such as HIT, DP world, and PSA 

(Figure 1).  Two operators, even from different countries, should have certain 

similarity in production efficiency if they belong to the same terminal operator group.  

 

However, despite the efforts of the aforementioned studies, three fundamental issues 

remain unaddressed.  First, existing literature on efficiency does not address the 

group-specific effects over time, providing our motivation to examine the efficiency 

advancement of both groups and individuals.  Instead of treating ports as the decision 

making unit (DMU), this paper treats container terminal operators as the DMU, which 

represents a divergence from previous port efficiency studies (e.g., Gonzalez and 

Trujillo, 2009).  Second, heterogeneity is generally ignored in port efficiency studies 

but is mistakenly included in the stochastic error term.  Unlike other industries, ports 

are characterised by their geographical and operational settings.  Terminal operators 

from different groups, different locations, and different times are assumed to have 

different characteristics.  We attempt to separate the group and individual 

heterogeneity from stochastic errors and this attempt leads to a substantial simulation 

effort.  

 

Third, the group-specific effect has not been studied in port efficiency studies. 

Seaports are characterised by global competition in a number of dimensions.  They 

have sought to exploit network effects in the containerisation era, and terminal 

operators have attempted to expand their line of activities through vertical and/or 

horizontal integrations along the transport chain (Figure 2).  Currently, several 

terminal operator groups having derived competitive advantages are coming up 

against one another.  However, despite the importance of the port industry, there has 

been little attention paid to the underlying motives of terminal operator grouping from 

a scientific perspective.  The aim of this paper, therefore, is to explore the efficiency 

motives of globalisation of terminal operation. 

 

1.2.  Terminal operator group (TOG) 
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The structure of the container terminal industry has changed since port privatisation 

started in the 1990s. Governments contract out the ownership and management of 

ports and terminals, and today container terminals are run for commercial objectives.  

The port industry has a particularly global structure, and global and multinational 

players, TOGs (terminal operator groups), are becoming increasingly dominant.  

There are two generic globalisation strategies in the globalisation of terminal 

operation: (1) Horizontal merger initiated by leading stevedores; and (2) Vertical 

integration initiated by global carriers (shipping lines). 

 

There are many reasons for the dominance of TOG, and the discussion of 

multinational behaviour brings together a number of economic theories (e.g., Caves, 

2007).  Studies of multinational service industries have received increased attention 

from researchers, e.g., multinational banks (Chang et al., 1998), hotels (Shang et al., 

2008), insurance companies (Fenn et al., 2008), and airports (Oum et al., 2008).  

There has, to date, been no efficiency study concerning TOG.  One reason for this is 

that existing port studies are based on port data, not terminal data, while terminal 

operator groups operate in several countries.  Our terminal-based data collection 

makes a study into terminal operation globalisation feasible.  However, more 

fundamentally, we argue that TOGs are more efficient because operators actually 

create terminal globalisation in order to improve the efficiency of their operations. 

 

In summary, the port industry is different from other service industries.  The clients of 

terminal operators are shipping lines (carriers), and container handling is highly 

standardised worldwide.  Terminal operators provide more-or-less the same container 

handling services to carriers.  In particular, operator groups prefer market 

standardised services worldwide so as to reap maximum benefits from the economies 

of scale that underlie their learning curve. Within this context, in this paper we 

develop a rigorous econometric model to test the effects of globalisation on the 

efficiency of terminal operation. 

 

2.  Literature Review 

A deep knowledge of port firms’ productivity results is essential not only to decide 

where, when, and how much to invest, but also to suggest optimal tariff structures. 

There have been numerous productivity or efficiency studies of ports.  Wanhill (1974) 
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suggested that the productivity of ports depends on the right trade-off between the 

costs of providing infrastructure (berth) and the time costs of the ship’s stay in the 

port. The manual on port planning prepared by the UNCTAD (1978) for developing 

countries followed the same line of work as Wahnill’s (1974) study. It relied on 

Monte-Carlo simulation techniques to calculate the costs of different types of 

terminals according to terminal features and ships’ stay in port. Similar works include 

Jansson and Shneerson (1982), Shneerson (1981, 1983), and Fernández et al. (1999), 

all of whom adopted a queuing model as the basic form of port service production 

function and assumed ships’ arrival is random and follows a Poisson distribution.  

Such studies are helpful for individual port planning.    

 

As logistics and supply chains have evolved into the artery of the global economy, the 

efficiency of ports has become an important factor affecting a nation's international 

competitiveness.  Thus, monitoring and comparing one’s ports with others in terms of 

overall efficiency has become an essential part of many countries’ microeconomic 

reform programs.  The pressure to boost port competitiveness has triggered an 

increasing number of port benchmarking studies, especially for leading container 

ports. 

 

In all efficiency studies, efficiency is measured by comparing observed and optimum 

costs, production, revenue, or whatever parameter the organisation is assumed to 

pursue, subject to the constraints on quantities and prices.  The optimal quantity is 

termed the frontier, and the efficiency is then calculated as the distance between the 

observed quantity and the frontier.  In empirical research, two methods are widely 

used to calculate or estimate the frontier functions and thereby measure efficiency: 

data envelope analysis (DEA) and stochastic frontier analysis (SFA). DEA is a 

deterministic method based on linear programming and was first introduced by 

Charnes et al. (1978). In contrast, SFA is an econometric method accounting for 

random shocks and measurement errors, and was first proposed by Aigner et al. (1977) 

and Meeusen and van den Broeck (1977).  Cullinane et al. (2006) compared the 

results from DEA and SFA on port efficiencies and found high correlations between 

the results from the two approaches.  In port literature, Hung, Lu, and Wang (2010) 

introduced scale efficiency into DEA analysis, and Sharma and Yu (2010) studied 

container terminals using the DEA model.  Dowd and Leschine (1990) and Talley 
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(1994) used index number approaches, which allow comparisons to be made of the 

efficiency among various ports and throughout time for a single port, in order to study 

ports’ productivity.  Index number procedures generally construct a ratio-type 

productivity/efficiency measure, without the need for statistical estimation of a 

production or cost function.  Many studies which have used these two methods to 

study port efficiency assume the homogeneity of the global port industry.  Instead, we 

consider the heterogeneity of terminal operators and examine factors that explain why 

terminal operator groups play their leading role in the port industry. 

 

Heterogeneity of DMUs often exists in the presence of geographical features.  Banker 

et al. (1986) first discussed the idea of categorical variables which is a clustering 

technique to solve the heterogeneity variations in DMUs.  Cook et al. (1998) pointed 

out that clustering of DMUs may appear at different levels.  Doyle and Green (1994) 

introduced the cross efficiency evaluation method to address the heterogeneity of 

DMUs.  Recently, Lee (2010) attempted the group effect with parametric models. 

 

Previous studies have compared the temporal variations between ports (e.g., Gonzalez 

and Trujillo 2009).  The terminal operators should be treated as independent decision-

makers, but the existing literature considers ports as the decision-makers.  Previous 

efficiency studies are at the port level, but this one is at terminal level since port 

globalisation exists due to terminal operators rather than port operators. 

 

3.  Methodology 

3.1.  Empirical analysis 

In container terminals, the output is the number of containers handled, and the input is 

the equipment and manpower used to handle the containers.  The level of terminal 

output is an important indicator of a terminal’s efficiency.  As the data for container 

throughputs at terminals are reliable and well documented, throughput in TEU 

(twenty-foot equivalent unit) is the most frequently used indicator for container 

terminals, although there are alternative indicators.  The model we use incorporates 

the necessary physical characteristics of container terminals, such as quay cranes, 

yard equipment, and the number of berths, as inputs to container terminal production 

(Table 1).   
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The production frontier of terminal operator i  at time t  is parameterised as the Cobb-

Douglas function: 

 

ititititit BXy εα +∆−+=  (1) 

 

iiit trtr ναα +++ΘΠ+= 2

21 , (2) 

where 

=ity the logarithm of observed output (herein Container Throughput in TEUs) of the 

i-th operator at year t  

=itX the matrix of the logarithm of observed inputs (e.g., cargo handling, terminal 

infrastructure, and storage facilities) 

=∆ it  the positive random deviation from the frontier (which means inefficiency) 

=itε the time-varying measurement error. It represents the measurement error with a 

normal distribution independent of both operator and year, i.e., ( )2,0~ εσε Nit
.  Thus, 

itε  is the time-varying error. 

=Π i the matrix of observed terminal characteristics (e.g., terminal factors, port 

factors, and country factors)  

=t time 

=α constant 

 

Equation (2) shows that the intercept of the logarithm production frontier varies 

across both individual terminal operators and time (with time trend terms).  Part of the 

variation across individual operators can be explained by individual profiles denoted 

as iΠΠΠΠ  and part of the variation is unobserved and is thus modelled as random denoted 

as iν , whose distribution is parameterised in as normal with zero mean, i.e., 

( )2,0~ νσν Ni . 

 

Our special feature is to measure the efficiencies after controlling for the individual 

heterogeneity.  We achieve this by randomising the intercept of the log production 

frontier and letting the distribution be conditional on observable individual profiles.  
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In the port industry, three levels of individual profiles can be observed -- terminal, 

port and country. The unobserved factors are specified by random component iν  to 

the intercept.  Ignoring iν  will bias the estimates of parameters, because the 

uncontrolled individual effects will cause observations from the same individual to be 

correlated. 

 

Under our model specification, the efficiency level of an individual i  at time t  is 

defined as ( )itith ∆−= exp , which can be understood as the percentage achieving the 

production frontier.  In our case, we not only want to know the inefficiency, but also 

want to investigate the determinants of productivity.  Many authors have previously 

presented a two-step method (Zheng et al., 1998; Shao and Lin, 2002).  In the first 

step, the productivity measure is computed by SFA or DEA.  In the second step, 

analysis is conducted to examine the relationship between inefficiency and various 

influential factors.  However, such a method will be statistically biased since 

efficiency is also an estimator.  Our specification augments efficiency as a function of 

determinants by )exp( iitit gZ=∆ , where itZ  are the vectors of variables measuring 

port observable characteristics including terminal operator group, and ig  are 

coefficients of inefficiency parameters. ig  are distributed with ),( ΣgN , where 

( )22

1 ,..., gNgdiag σσ=Σ  is the diagonal matrix of variances.  We thus use one step to 

estimate this hierarchical model.  

 

In contrast to previous models, our model is enhanced to quantify the effects of 

operator globalisation by adding dummy variables in order to control operator group 

effects (see Table 1).  A recent trend in the container port industry is that global 

stevedore and global carriers are investing in several terminals in the same country 

and also in different countries.  The operator group effects are observable only if the 

individual units are container terminals, rather than ports.  For the specification of our 

model, the key feature is that the distribution of it∆  is conditional on itZ , the vector of 

variables measuring observable port characteristics and time affecting the production 

inefficiency.  To analyse the two generic globalisation strategies in the port industry, 

we use two dummy variables which refer to a terminal operator’s background as 

carrier or stevedore.  We therefore create a connection between inefficiency and 
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terminal characteristics.  Therefore, the model contains a linear trend t, quadratic 

trend 2
t , carrier dummy, and stevedore dummy.  We include linear and quadratic time 

trends in our model in order to account for technological change over time. 

 

A typical criticism of port efficiency studies is that there are no credible data on the 

labour inputs of the port or of terminal operators.  Tongzon (2001) counted the 

number of stevedores and other employees that work in terminals.  However, because 

the direct counting of labour inputs is not possible in most terminals, Yan et al. (2009) 

ignored labour inputs by assuming little variation across terminal operators.  Hui et al. 

(2010) used housing price as a proxy variable of local labour costs of port operation.  

In our study, because of the difficulty in collecting labour cost data, we include the 

GDP per capita at the country level to proxy the labour costs of terminal operations. 

 

3.2.  Estimation procedure with MCMC simulation 

The Markov chain Monte Carlo (MCMC) simulation is used to determine the 

unknown parameters.  The MCMC approach is a class of algorithms for sampling 

from probability distributions based on constructing a Markov chain that has the same 

desired distribution as its equilibrium distribution.  The state of the chain after a large 

number of steps is then used as a sample from the desired distribution, with the 

quality of the sample improving as a function of the number of steps.  Usually it is not 

difficult to construct a Markov chain with desired properties.  A more difficult 

problem is to determine the number of steps needed to converge to the stationary 

distribution within an acceptable error.  A good Markov chain will have rapid mixing, 

where the stationary distribution is reached quickly starting from an arbitrary state.  

The MCMC simulation can augment and filter imperfect panel data of differential 

characteristics.  One application of this critical feature is to interpolate and extrapolate 

statistically missing and censored diffusion data.  It is inevitable that panel data 

collected from industry contain missing and erroneous data entries, which must be 

augmented and corrected, respectively. 

 

Our estimation is performed based on the MCMC estimator developed in Bayesian 

statistics.  The unknown parameters can be represented as 

( )22

21 ,,,,,,,, εν σσγγα ΣΒΘ≡Ψ g .  The MCMC estimator draws from the joint posterior 
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distribution { }( )Datagp
iii ,, νΨ , with { }

iii g,ν  representing the instruments of 

endogenous individual effects in stochastic frontier equations.  The data posterior is 

expressed as: 

{ }( ) ( ) ( ) ( ) ( )∏ ∏
= = 








ΒΘ⋅⋅Σ⋅Ψ∝Ψ
N

i

T

t

iiitiiiii

i

gyggDatagp
1 1

22 ,,,,,,;;,;,, νσταφσνφφρν εν . (3) 

 

Since the functional form of the data augmented posterior in Eq. (3) is complicated, it 

is impossible to derive analytical properties of it.  We use the Monte Carlo simulation 

to take random draws from the posterior and the empirical properties of the draws will 

be used to approximate the theoretical ones.  Appendix of the paper presents the 

details of the MCMC algorithm to take random draws from the augmented posterior 

in Eq. (3). 

 

3.3.  Data collection 

We consider a panel data set for the terminal operators which come from the container 

ports ranked in the top 100 in 2005, with the period covered being from 1997 to 2004.  

For each container terminal operator of these ports, we collected data on output, 

terminal inputs, port characteristics and country features (Table 1).  Most of the 

information can be found in the Containerisation International Yearbooks.  We also 

used a subscription database, Containerisation Intelligence Online, to obtain the 

addresses of the websites of each terminal from which further information was gained. 

Additional useful information was also obtained from the websites of port authorities 

and government agencies. The country data is obtained from the World Bank. 

 

After we removed some missing data, a set of unbalanced panel data was created with 

597 observations in total.  The data covered 141 terminal operators from 78 container 

ports. 

 

3.4.  Model Validation 

In implementation, we employ non-informative priors on the parameters.  As shown 

in Figure 3, the variance of the posterior is smaller than that of prior.  To confirm the 

convergence, we run the Gibbs sampler from different starting values of the 

parameters.  For each of the runs, we plot the time-series of the generated variables 
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such as Figure 4.  The draws for parameters converge very fast and have much better 

mixing properties compared with these second-layer parameters. In general, the Gibbs 

draws converge after about 10,000 draws.  Performing many different runs from 

diverse starting points and changing priors had certain but not substantial effects on 

estimates of inefficiency. 

 

4.  Empirical results and discussion 

In Table 2, we show posterior means and standard deviations of coefficients of the 

stochastic production frontier.  The heterogeneous model is based on our model 

specification and estimated by MCMC.  The conventional model is that all the 

operators face all the common frontiers and to ignore their heterogeneity. 

 

4.1.  Homogeneous versus heterogeneous frontiers 

A conventional model does not distinguish individual heterogeneity and inefficiency.  

The wide variation in terminal operation across countries introduces a considerable 

amount of terminal heterogeneity.  Conventional models (Figure 5) then overestimate 

inefficiency by including heterogeneity in inefficiency.  In our model whose results 

are showed in Figure 6, we randomise the intercept of the production frontier to 

account for individual heterogeneity (the so-called true random effects model in 

Greene, 2008).  When the operators differ in their adopted technologies, and such 

differences are not well controlled, the estimated inefficiency absorbs both the 

heterogeneity and inefficiency and the estimation is thus inevitably biased.  Unlike the 

conventional model using a convenient one-parameter distribution form (such as a 

half-normal or exponential distribution) to model random inefficiency, we used a 

more flexible log-normal distribution with two parameters.  This specification enabled 

us to interact some observable managerial inputs with inefficiency, in order to seek 

policy implications. 

 

Figures 5 and 6 plot the estimated distribution of efficiency level in different years for 

the two models, respectively.  Figure 5 refers to Eq. (1) by assuming the operators are 

homogeneous (i.e., =itα constant), while Figure 6 is based on Eq. (1) and (2) in which 

the operators are heterogeneous.  The different patterns of Figure 5 and Figure 6 are 

due to the different assumptions of homogeneous versus heterogeneous frontiers.  



Yip, T. L., Sun, X. Y., & Liu, J. J. (2011). Group and individual heterogeneity in a stochastic frontier model: Container terminal 
operators. European Journal of Operational Research, 213(3), 517-525 

 12

Inefficiency is significantly overestimated by a conventional SFA, as shown in Figure 

5 in which the individual heterogeneity in production frontiers is controlled only by 

the observables.  This suggests that the estimated inefficiency from the conventional 

model does not allow for individual heterogeneity across terminals.  In fact, the 

conventional model absorbs the individual heterogeneity in the production frontier, 

and thus the distribution of individual level efficiency shifts to the left.  All the 

terminals are measured against “the most efficient terminal” in terms of efficiency 

when using the conventional model. 

 

After controlling for the observed heterogeneity, the estimated value of 2

νσ  is still 

significant with large magnitude, indicating the heterogeneity in the adopted 

technologies caused by many unobserved or omitted variables.  The range of iv is 

from -2.04 to 9.04 to show there is significant heterogeneity in operators in Figure 7.  

Obviously the homogeneous stochastic frontier model cannot meet the situation of the 

port industry.  Every operator should have its own frontier to reveal its real 

inefficiency.   

 

Figure 8 shows four examples of individual efficiency change of the heterogeneous 

model and conventional model.  The efficiency in the heterogeneous model is higher 

than that in the conventional model.  But the difference is not constant.  The 

efficiency difference in Singapore PSA terminal and Hong Kong ModernTerminals 

terminal is very small compared with other two terminal comparisons.  This is 

because Singapore and Hong Kong terminals are well known due to their efficiency.  

In the conventional model, the efficiency is measured based on the most efficient 

terminals such as Singapore and Hong Kong.  Therefore, the efficiency difference is 

huge between poorly performing terminal operators in the heterogeneous model and 

conventional model. 

 

4.2.  Trend effect 

Modelling time varying inefficiency is also possible based on the model specification 

used. The sign of the estimated coefficient of the linear trend effect t is negative 

(Table 2); i.e., there is a declining linear effect on terminal operator throughput over 

time.  This reflects the fact that the productivity of equipment and technologies 
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declines as time passes.  However, as the sign of the quadratic trend t
2 is positive, 

there is a non-linear inference of terminal productivity over time.  Within the global 

port market, there is constant pressure to enhance the efficiency of terminal operation.  

Effective use of technology enhances efficiency and technological advancement is 

significant in terminals.  New equipment is purchased, and methods of cargo handling 

are changed to effectively handle the increased amount of throughput.  The linear and 

quadratic effects together suggest that the large productivity enhancement is a result 

of the effect of the non-linear component of the trend. 

 

4.3.  Horizontal merger and vertical integration 

As shown in Table 2, the heterogeneous model identifies that the terminal operator 

group, Carrier Group ( 4g ) and Stevedore Group ( 5g ), in general improves terminal 

efficiencies.  The model provides strong evidence to explain why terminal operators 

are moving towards globalisation.  The model further shows that a global stevedore 

background is more efficient than that of a global carrier. This is because there are 

inevitable conflicts of interests between terminal and carrier operations.  It is well 

known that the most efficient terminal operation occurs at a higher economic scale of 

throughput than that of carrier operation (e.g., McConville 1999, Chapter 13).  If the 

terminal is operated by a carrier, terminal efficiency will likely be compromised.  

Findings show that global-carrier-based terminal operators on average outperform 

local operators, while there are no negative impacts of the involvement of carriers in 

the terminal business. 

 

Small or local terminal operators, however, do not enjoy the same advantages as 

terminal operator groups.  As operator groups increase their market share, the small 

operators are losing some of the container traffic that used to flow through them. 

 

 

4.4.  Group versus individual 

Our model shows that group operators (Carrier Group 4g  and Stevedore Group 5g ), 

are advancing in efficiency more rapidly than individual operators.  A possible reason 

behind this observation is that groups may learn more quickly than individuals, 

because experience could be shared within the group and efficiency improved by 
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benchmarking performance against multiple terminals.  However, further research is 

needed into the relation of efficiency to learning curve effect. 

 

Another important feature newly identified by the model is that Stevedore Groups 

show a steady improvement in efficiency, while the Carrier Groups present a higher 

fluctuation in efficiency.  The stevedore operators serve multiple carriers, while 

carrier operators are dedicated to one particular carrier.  Thus, the stevedore operators 

can easily develop a portfolio of operation for different carriers so that efficiency is 

steadily improved.  In contrast, carrier operators streamline their operations according 

to their carriers and efficiency inevitably depends on particular carriers’ operations.  

Although carrier operators can still take advantage of multiple terminal operations and 

perform better than individual operators, carrier operators face a more fluctuating 

efficiency.  As carrier operators are more sensitive to the market, they may quit the 

terminal market and later re-enter the terminal market depending on the carrier’s 

strategy. 

 

4.5.  Other implications  

The results of the study contribute to the quest for multiple terminal management 

concepts in port research, in line with the integration that has been taking place at the 

global level, and the integration of port management into the carrier. The study 

identifies certain parameters perceived to be instrumental in the integration of ports in 

global supply chains.  Further research is required to ratify the development of a 

measurement instrument for assessing vertical and horizontal integrations in 

globalisation, since the lack of such an instrument has hindered research in the area.  

Without a valid and reliable instrument measuring port integration in supply chains, 

generalisable implications and strategies are difficult to generate. 

 

This study identifies a positive relationship between terminal integration in the supply 

chain and terminal performance.  It is important for this association to be replicated 

empirically using different ports and different contexts and performance measures.  It 

is also important for measures of competitiveness to be incorporated into the 

measurement of terminal performance.  The privatisation of ports and terminals, 

together with the quest for competitiveness, means that conventional performance 

measures such as market share, sales growth, and even profitability have become 
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legitimate performance measures for ports.  A container terminal with high efficiency 

indicators may not be necessarily competitive due to the higher costs involved in 

becoming more efficient. 

 

It is likely the market share of the terminal operator groups will increase, as the port 

sector is particularly sensitive to economies of scale.  Container terminals are part of a 

capital-intensive industry and require a volume business to sustain their business 

investment. 

 

5.  Concluding remarks 

In this paper, we considered a stochastic frontier model that allows for group-specific 

temporal patterns, which assumes that container terminal operators from the same 

operator group have the same group-specific parameter.  We further studied how 

operator groups compete with other groups on the basis of productivity efficiency.  

The results contribute to an understanding of general group-based competition, such 

as multinational companies and supermarket groups.  The involvement of 

international companies in the operation of container terminals has been a major 

factor in boosting productivity.  As the port sector becomes more internationalised, 

improvements in efficiency are expected to continue. 

 

This paper is one of the first attempts to appear in the literature to empirically 

investigate whether terminal operator groups are more efficient than individual 

terminal operators.  As the heterogeneity of terminal operation cannot be ignored, the 

heterogeneous model is developed to separate the heterogeneity from inefficiency.  

The results confirm that terminal operator groups generate 35.9% and 45.4% more 

throughput for carrier groups and stevedore groups, respectively.  The results also 

confirm the improvement of efficiency due to global grouping, and the efficiency 

advancement should be a strong motive behind observed globalisation of terminal 

operation.  By confirming the efficiency of terminal operator groups, this study not 

only highlights the contribution to terminal grouping, but also provides empirical 

evidence to policy makers who design and seek to implement more efficient terminal 

operation.  By presenting the terminal efficiency associated with different operator 

backgrounds, the study emphasises the importance of establishing regulatory actions 

to regulate the globalisation of terminal operator groups. 
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In the era of globalisation, governments have found it necessary to open up terminal 

services to terminal operator groups.  In general, this has resulted in increased 

throughput and efficiency of container handling.  Terminal operator groups have 

advanced their efficiency faster than individual operators.  Between the two types of 

terminal operator groups, stevedore operators show more steady advancement than 

carrier operators.  However, to sustain and encourage efficiency achievements, further 

research is needed to sustain the terminal efficiency improvements.  Regarding the 

economic policies, this study should be extended to consider the terminal concession 

effect and how the regulations shape terminal efficiency.  
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Appendix - MCMC algorithm 

 

In order to conduct the Bayesian inference, we need to complement the likelihood 

function in (3) with a prior distribution on the parameters.  We choose a proper prior 

distribution with the following product structure: 

( ) ( ) ( ) ( ) ( ) ( )22

21,,,, εν σρσρρρρρ ⋅⋅Σ⋅⋅Θ=Ψ grrBa .  (A1) 

 

We briefly specify the priors for parameters.  ( ) ( )ΛΛΘ VNrrB ,~,,,, 021α , 

( )
gVgNg ,~ 0 , ( )rSrIW ,~ΣΣΣΣ , 











2
,

2
~

2
2 ννν

νσ
cdd

IG , and 










2
,

2
~

2
2 εεε
εσ

cdd
IG , where 

( )rSrIW ,  and 










2
,

2

2
ννν cdd

IG denote the inverted Wishart distribution and scaled 

inverted Chi square distribution, respectively. 

 

We separate several blocks to sample, ( )21,,,, rrBΘα , 2
εσ , { }

iig , { }
iiν , g , ΣΣΣΣ , and 2

νσ . 

Firstly, we sample iν  and ig  for each operator: 
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(a).  Sampling iν  for each i  from 
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where  ( )iititititit gZBXyy expˆ +−−= α . 

(b).  Sampling ig  for each i  from 
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  (A2) 

where { }
titiititi BXyY −−−= να .  We cannot directly draw a sample from Eq. (A2), 

being non-standard distributions.  From our experience, a simple random walk 

Metropolis-Hastings algorithm works very well and we choose it for our applications.  

Other parameters are sampled for all operators once. 

(c).  Sampling ( )21,,,, rrBΘ≡Λ α  from ( )DDdN , , with

1
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In our hierarchical model, the above parameters are upper level in our model. 

However, g  and ΣΣΣΣ  are the lower level parameters since they are sampled based on 

the high level parameters. 
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(f).  Sampling g  from ( )DDdN , , with ( ) 111 −−− +Σ= gVND , 0

1

1

1
gVgd g

N

i

i

−

=

− +Σ=∑ . 

(g).  Sampling ΣΣΣΣ   from ( )( ) 




 ′

−−++ ggggrSNrIW ii, . 

The MCMC simulation is implemented by a Metropolis sampling within Gibbs 

algorithm. The above steps (a) to (g) are repeated many times after the “burn-in” 

period, and the draws from the convergent distribution are used to construct the 

estimates for the unknown parameters.  Although we do not model directly the 

individual heterogeneity across terminal operators in their cost functions, the MCMC 

method is flexible enough to incorporate individual heterogeneity in the parameters.  

For example, we can easily extend the model by modelling Ψ  to vary across terminal 

operators following a joint normal distribution, which is conditional on the ports’ 

characteristics.  To estimate the extended model, we only need modify steps (a) to (b) 

to draw for each port. Then, conditional on the draws of Ψ , we can estimate the 

hyper-parameters governing the conditional distribution of Ψ  as a simple 

multivariate regression model.  This kind of hierarchical Bayesian approach has 

already shown flexibility and computational advantages in estimating models with 

random parameters in recent econometrics literature. 
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Table 1:  Summary of Variables 

 
Variables Mean Std. Dev. Minimum Maximum 

A. Terminal Output 

TEU: Container Throughput in TEUs (000’s) 
B. Terminal Inputs 

1. Cargo Handling Equipment: 

Cargo handling capacity at quay in tonnage a 

Cargo handling capacity at yard in tonnage b 

2. Terminal Infrastructure: 

Number of berths  
Length of quay line in meters 
Terminal area in squared meters (000’s) 

3. Storage Facilities:   

Storage capacity in number of TEUs (000’s) 
Number of electric reefer points 

C. Individual Characteristics 

1. Terminal and port level: 

EDI (in fraction of total sample)         Depth of water in meters         Number of liners calling at the terminal         Number of operators in port         Number of terminals in port 
2. Operator group dummies (in fraction of total sample):  

Global Carrier         Global Stevedore 
Other: not belong to any of above groups 

3. Country Characteristics: 

 GDP in current US$ (billion) c 
 Goods exports in US$ (billion) c 

 Goods imports in US$ (billion) c 

GDP per capita in current US$ c 
4. Continental Distribution (in fraction of total sample): 

 Asia 
 Europe  
 North America 
 Latin America  
 Oceania  
 Africa  

 
Period 
Number of Countries 
Number of Ports 
Number of Terminal Operators  
Number of Terminals 
Number of Observations 

 
936.4 
 
 
385.0 
5,116.5 
 
5.1 
1,361.3 
604.9 
 
23.2 
480.6 
 
 
0.3 
13.2 
16.2 
3.7 
6.8 
 
0.09 
0.15 
0.76 
 
2,240 
271 
308 
18,654.9 
 
0.37 
0.27 
0.17 
0.06 
0.09 
0.04 
 
1997-2004 
39 
78 
141 
397 
597 

 
1,741.7 
 
 
470.7 
7,060.9 
 
5.2 
1,181.6 
844.6 
 
72.4 
539.7 
 
 
 
3.5 
14.5 
2.6 
6.2 
 
 
 
 
 
3,270 
249 
365 
12,367.8 
 
 
 
 
 
 
 
 
 
 
 

 
4.6 
 
 
23.9 
38.6 
 
1 
200 
7.7 
 
0.6 
4 
 
 
 
4.5 
1 
1 
1 
 
 
 
 
 
5.4 
0.4 
1.8 
405 
 
 
 
 
 
 
 
 
 
 
 

 
20,600 
 
 
5,416.2 
62,731.8 
 
37 
9,000 
8,092 
 
1,200 
3,768 
 
 
 
32.0 
114 
10 
31 
 
 
 
 
 
12,500 
972 
1,670 
37,651 
 
 
 
 
 
 
 
 
 
 
 

aAn aggregate of (1) Quay cranes and (2) Ship shore container gantries. 
bAn aggregate of (1) Gantry cranes, (2) Yard cranes, (3) Yard gantries, (4) Reachstackers, (5) Yard tractors, (6) Yard chassis trailers, (7) Forklifts, (8) Straddle carriers, (9) 
Container lifters,  and (10) Mobile cranes. 
c The country data can be found at the World Bank website:  http://devdata.worldbank.org/dataonline/old-default.htm 
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Table 2:  Posterior means and standard deviations of coefficients of the 

Stochastic Production Frontier 

Variable Heterogeneous model Conventional Model  

1. Log inputs   

Quay superstructure ( 1β ) 0.1815 (0.0725)  0.2142 (0.0581) 

Yard equipment ( 2β ) 0.0200 (0.0361) 0.0527 (0.0315) 

Berth number ( 3β ) 0.0953 (0.0509) 0.0290 (0.0576) 

Quay length ( 4β ) 0.0802 (0.0507) 0.1228 (0.0589) 

Terminal area ( 5β ) 0.0268 (0.0582) 0.0912 (0.0444) 

Storage capacity ( 6β ) 0.0087 (0.0229)  -0.0406 (0.0274) 

Reefer points ( 7β ) 0.1400 (0.0355)  0.2125 (0.0320) 

2. Individual intercept   

Constant ( 0θ ) -0.7063 (0.3121) 0.8267 (0.3495) 

2.1 Port characteristics   

Water depth ( 1θ ) 0.4184 (0.2770)  0.6644 (0.2626) 

Ship calls ( 2θ ) 0.1322 (0.0369)  0.1550 (0.0399) 

Number of operators ( 3θ ) -0.0520 (0.0985)  -0.3789 (0.0761) 

Number of terminals ( 4θ ) -0.0219 (0.0886)  0.1992 (0.1039) 

2.2 Country characteristics   

GDP ( 5θ ) -0.3815 (0.0872)  0.2437 (0.0972) 

 Goods exports ( 6θ ) 0.0660 (0.1024)  -0.1715 (0.0719) 

Goods imports ( 7θ ) 0.3088 (0.1114)  -0.0023 (0.0697) 

GDP per capita ( 8θ ) -0.7931 (0.2498)  -0.4889 (0.1123) 

2.3 Operator Group   

Carrier ( 9θ ) 0.3594 (0.2344)  0.3780 (0.1626) 

Stevedore ( 10θ ) 0.4538 (0.1874)  1.6053 (0.3623) 

2.4 Time trend   

Time ( 1r ) -0.0719 (0.0870)  -0.5350 (0.2197) 

Time squared ( 2r ) 0.1031 (0.0430)  0.1553 (0.0996) 

3. Variance of the constant (
2

Vσ ) 0.4437 (0.0650)   

4. Inefficiency parameters   

Coeff. of Constant ( 1g ) -1.8584 (0.3797)  0.3517 (0.1554) 

Coeff. of Time ( 2g ) -0.5967 (0.4785)  -0.4790 (0.1711) 

Coeff. of Time squared ( 3g ) -1.1674 (0.2398)  -0.0812 (0.0913) 

Coeff. of Carrier ( 4g ) -0.3961 (0.4313)  0.7357 (0.3945) 

Coeff. of Stevedore ( 5g )  -1.0024 (1.0824)  -0.1368 (0.2601) 

Variances ( 11Σ ) 2.2743 (0.7468)  0.3327 (0.0838) 

Variances ( 22Σ ) 2.0274 (0.8271)  0.2680 (0.0688) 

Variances ( 33Σ ) 1.4244 (0.4569)  0.1736 (0.0386) 

Variances ( 44Σ ) 1.5650 (0.9784)  0.7158 (0.4536) 
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Variances ( 55Σ ) 1.9605 (1.1155)  0.5996 (0.2482) 

5. Other parameters   

Variance of noise (
2

εσ ) 0.0321 (0.0029)  0.0371 (0.0034) 

Numbers in parentheses are the posterior standard deviations. 
All the input and output variables are normalised with respect to their sample means before taking log. 
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Figure 1: Market share of the leading terminal operator groups (2004 ranking) 
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Remarks: Dubai Port World acquired P&O Ports in 2006. 
PSA acquired 20% of HPH in 2006. 
 
 
 
Figure 2: Container terminals, stevedores, and carriers 

 
 

               
                 (a)                                                                    (b) 
 

Remarks: T in the circle means Terminal. (a) represents the original structure of port industry. The 

Stevedore handles the cargo on the terminal and Carrier transports them from Terminal to Terminal. (b) 

reveals the current tendency.  Some Carrier Group can integrate the stevedore function. In the 

meanwhile, Stevedore Group purchase many terminals to operate. Eventually, there are Carrier Group, 

Stevedore Group and individual operators in terminal running.  
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Figure 3: Distributions of Prior and Posterior of variable 1β  
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Figure 4:  The converge analysis of variable 1β  

-1
0

-8
-6

-4
-2

0
B

e
ta

1

0 5000 10000 15000 20000
Gibbs Draws



Yip, T. L., Sun, X. Y., & Liu, J. J. (2011). Group and individual heterogeneity in a stochastic frontier model: Container terminal 
operators. European Journal of Operational Research, 213(3), 517-525 

 26

Figure 5: Conventional Stochastic Frontier Analysis Model 

 
 

 
Figure 6: Heterogeneous Stochastic Frontier Analysis Model 
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Figure 7: The distribution of random variable iv  
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Figure 8: Examples of individual efficiency change of heterogeneous model and 

conventional model 
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Legend: square represent heterogeneous model, triangle represent conventional model 

 




