
PHYSICAL REVIEW E JUNE 1998VOLUME 57, NUMBER 6

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PolyU Institutional Repository
Anomaly in numerical integrations of the Kardar-Parisi-Zhang equation

Chi-Hang Lam and F. G. Shin
Department of Applied Physics, Hong Kong Polytechnic University, Hung Hom, Hong Kong

~Received 20 January 1998!

We demonstrate that conventional finite difference schemes for direct numerical integration donot approxi-
mate the continuum Kardar-Parisi-Zhang equation. The effective diffusion coefficient is found to be inconsis-
tent with the nominal one. This is explained by the existence of microscopic roughness in the resulting
surfaces.@S1063-651X~98!11106-6#

PACS number~s!: 64.60.Ht, 05.40.1j, 05.70.Ln, 64.60.Ak
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I. INTRODUCTION

The Kardar-Parisi-Zhang~KPZ! equation @1# has been
very successful in describing a class of dynamic nonlin
phenomena. It is applied to a wide range of topics includ
vapor deposition, bacterial colony growth, directed po
mers, and flux lines in superconductors@2,3#. Computational
studies have mostly concentrated on simulations of disc
models such as ballistic deposition models, solid-on-so
models, Eden model, directed polymer simulations, and
on. They allow very efficient simulations by capturing on
the essential features in the physical processes. Another
portant approach is direct numerical integration. This in g
eral involves more intensive computations. Amar and Fam
first conducted large-scale numerical integrations of the K
equation and verified the universality with discrete mod
@4#. The accuracy was further improved by the subsequ
works of Moseret al. @5,6#. Properties of various numerica
integration approaches are still being investigated@7–10#.
Similar techniques are not only applied to the KPZ equat
but also to many related nonlinear phenomena such
growth with correlated noise@11# or quenched noise in an
isotropic media@12#, reaction-diffusion systems with multi
plicative noise @13#, Kuramato-Shivashisky equation fo
flame front propagation@14,15#, epitaxial growth@9,16#, etc.

Numerical integration is in general considered to be
more direct approach for the investigation of growth eq
tions. Ideally, it should allow full control on the precise for
of the equation to be investigated. The parameters invol
may also be chosen at will. Unfortunately, many obsc
properties of the conventional numerical integration sche
are reported. For example, Newman and Bray@8# identified
an unphysical fixed point and an associated instability in
deterministic version of the discrete equation used in
numerical integration of the KPZ equation. They further
gue that the stochastic discrete equation and hence the
ventional integration method cannot capture the strong c
pling behavior of the continuum equation. In another wo
Dasgupta, Das Sarma, and Kim@9# reported that numerica
instability can occur even for very small time steps used
the numerical integration. They suggest that the instabilit
an intrinsic property and inferred that the discretized K
equation may have very different behavior from that of t
continuum version. In an earlier work, Amar and Family@17#
integrated a related equation with a generalized nonlin
term. Contrary to predictions from the continuum equati
571063-651X/98/57~6!/6506~6!/$15.00
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they quite surprisingly found KPZ scaling behavior in mo
cases. They explained their observation by the generatio
the characteristic KPZ nonlinear term due to the combin
effects of noise and nonlinearity. It is thus evident that
sults from direct numerical integration may not always ag
with predictions from the continuum equations.

In this work, we provide a detailed study of the conve
tional direct numerical integration approach for the KP
equation in 111 dimensions. We aim at studying quantit
tively differences between properties of the continuu
growth equation and those of its discretizations. In Sec. II
review the conventional numerical integration techniqu
used in this study. Section III discusses numerical results
surface width and correlation function measurements on
faces simulated by numerical integration. Section IV p
sents results on the coarse-grained dynamics of the surf
extracted using an inverse method. We conclude in Sec
with some further discussions.

II. DIRECT NUMERICAL INTEGRATION

The KPZ equation gives the local growth rate of t
height profileh(x,t) of a surface at substrate positionx and
time t @1#:

]h

]t
5c1n¹2h1

l

2
~¹h!21h~x,t !, ~1!

wheren andl are the diffusion coefficient and the nonline
parameter, respectively, andc is related to the averag
growth rate. There is an implicit lower wavelength cutoff
that fluctuations of shorter length scales are truncated.
noiseh has a Gaussian distribution and mean 0 and a c
relator

^h~x,t !h~x8,t8!&52Dd~x2x8!d~ t2t8!. ~2!

Euler’s method is the most widely used approach for
rect numerical integration of the KPZ equation@4–6,9#. It is
based on the finite difference equation:

hi
n115hi

n1
Dt

Dx2
@n0~hi 11

n 1hi 21
n 22hi

n!

1~l0/8!~hi 11
n 2hi 21

n !2#1A2D0Dt

Dx
j i

n , ~3!
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57 6507ANOMALY IN NUMERICAL INTEGRATIONS OF THE . . .
wherehi
n approximates the surface heighth(xi ,tn) at thei th

lattice point and thenth time step. The constantsDx andDt
are the spatial and temporal step size, respectively. The
scripted parametersn0, l0, and D0 denote nominal values
used in the discrete equation to be distinguished from
continuum values in Eq.~1!. We have set the nominal valu
of c to be zero for convenience. Everyj i

n is an independen
random variable with zero mean and unit variance follow
a uniform distribution. Using Gaussian deviates will not al
the result. The spatial discretization implies thatDx becomes
effectively the lower wavelength cutoff.

Accurate numerical integration involving finite differen
ing in general requires small values of bothDt andDx. For
the current problem, one ensures thatDt is sufficiently small
by verifying that further decreasing its value will not alt
the results. In contrast,Dx is usually fixed at 1, very often
after some trivial rescaling of the equation@4,5,9#. In fact,
decreasingDx is not a valid way to improve the accuracy b
is simply equivalent to diminishing the nonlinear parame
l. This is because any value ofDx can be rescaled back to
through the transformationx→(Dx)21x, t→(Dx)22t,
h→(Dx)21/2h which leaves Eq.~1! invariant except thatl is
now replaced bylDx. In general, maintaining sufficien
nonlinearity of the system is essential to exhibit any relev
properties of the KPZ class. It is most convenient to fixDx
51 and adjust the nonlinearity usingl, although tuning the
nonlinearity withDx has also been done@6#.

In the main computation in this work, we follow the con
ventional approach of takingDx51 and a smallDt. We will
focus mostly on the casen05D051 andl053. This value
of l0 corresponds to a moderate nonlinearity. It is lar
enough to drive the system quickly into the characteris
nonlinear KPZ scaling regime without much crossover eff
while it is also sufficiently small for reasonable numeric
stability.

III. SURFACE WIDTH AND CORRELATION
MEASUREMENTS

A widely used approach to investigate the scaling prop
ties of rough surfaces is to measure the rms surface widtW
defined as

W5K 1

L (
i 51

L

~hi2h̄!2L 1/2

, ~4!

whereL is the lattice size used in the numerical integrati
and h̄ is the mean surface height given by

h̄5
1

L (
i 51

L

hi . ~5!

The brackets^ & denote ensemble averaging, which
equivalent to averaging over time when steady state is b
considered. Consider growth from an initially flat surface.
small timet, W is independent ofL and scales with time a
W;tb. At larget, W saturates and scales with the lattice s
asW;La. The exponentsa andb are called the roughnes
and the early time exponent, respectively@18#. In 111 di-
mensions, they are given exactly bya51/2 andb51/3 @19#.
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In addition, the probability distribution functional of the su
face at steady state is also known exactly@2#. In particular,
the surface width is given by@20#

W5S A

12D
1/2

La, ~6!

whereA is the scaling amplitude defined asA5D/n. Peri-
odic boundary conditions are assumed. Note thatW and in-
deed the full distribution of the steady state surface are b
independent of the nonlinear parameterl @2#.

We first tested Euler’s method of numerical integration
Eq. ~3! for the linearl050 case so that Eq.~1! reduces to
the Edward-Wilkinson equation@2,3#. We set n05D051
and the nominal value ofA is thusA05D0 /n051. The time
step was taken to beDt50.01. Starting from an initially flat
surface, the height profile at later time was obtained by it
ating Eq.~3!. After steady state was attained, we measu
the surface widthW averaged over a long period of time
Figure 1 showsW as a function of the lattice sizeL in a
log-log plot. It shows good agreement with the expected
lation in Eq. ~6! with A5A051 anda51/2 which is also
shown in Fig. 1.

We then applied the conventional integration sche
similarly to the KPZ equation withl053 andn05D051.
We measuredW for L in the range from 32 to 1024. ForL
51024 the computation was most intensive and we obser
that the surface width had long been saturated att523105.
The valueW reported is averaged over the period 23105

&t&106 involving about 108 iterations sinceDt50.01. The
result is also plotted in Fig. 1. Recall that according to t
exact results for the continuum equation, a different value
l0 should not alter the surface widthW. However, the values
of W clearly deviate from the expected relation in sharp co
trast to the linear case. The slope in the log-log plot is 0.4
in agreement with the expected valuea51/2. A fit to Eq.~6!

FIG. 1. Log-log plot of saturated surface widthW against lattice
sizeL from the Edward-Wilkinson equation (l050) and the KPZ
equation (l053) numerically integrated with time stepDt. The
data are respectively compared to the two lines in the formW
5(A/12)1/2L1/2.
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6508 57CHI-HANG LAM AND F. G. SHIN
with a fixed at 1/2, also shown in Fig. 1, givesA.0.879.
This estimate is significantly different from the nomin
valueA051.

We have repeated the simulation at a much smaller t
stepDt50.001 forL from 32 to 256. The result, also show
in Fig. 1, is indistinguishable from the previous one with
our numerical precision. Therefore the discrepancy betw
the measuredA and the nominalA0 is not due to a finite time
step. Furthermore, one cannot improve the method by
creasingDx as has been explained in Sec. II.

To further confirm our result, we calculated the amplitu
A independently from the correlation function

C~r !5^@h~x1r !2h~x!#2&. ~7!

It follows from the KPZ equation in 111 dimensions that
@20#

C~r !5Ar2a ~8!

for Dx!r !j. The correlation lengthj specifies the scale
below which fluctuations have saturated and its value is l
ited either by time or the system size. We integrated the K
equation similarly using Eq.~3! with the same parameter
l053, n05D051, andDt50.01 starting from flat surface
of size L565 536 until t.5200. The correlationC(r ) was
then calculated and averaged over seven independent re
tions. The result is shown in Fig. 2 in a log-log plot. We on
show data points corresponding tor well within the correla-
tion length so that the values have become time independ
The slope of the linear region at 9<r<32 when compared to
Eq. ~8! givesa.0.480. It is slightly smaller than the exa
valuea51/2, probably due to the rather smallr considered.
The same data were fitted to Eq.~8! with a fixed at 1/2 and
are shown in Fig. 2. We obtainedA.0.876 in good agree
ment with the previous estimate from surface width measu
ments. Figure 2 also shows the result for the linearl050
case in whichA5A051 as expected from the continuu
equation.

FIG. 2. Log-log plot of correlation function of surfaces from th
Edward-Wilkinson equation (l050) and the KPZ equation (l0

53). The data are compared to the two lines in the formC(r )
5Ar.
e

n

e-

-
Z

iza-

nt.

e-

IV. INVERSE METHOD RESULTS

We have shown numerically that the measured value
the amplitudeA differs from the nominalA0. This implies
that at least one of the continuum parametersn andD must
disagree with their nominal values. To measuren and D
independently, we apply an inverse method proposed
Lam and Sander@21#. This approach computes all the param
eters in the KPZ equation from realizations of simulated s
faces. The parameters are those which enable the gro
equation to give the best prediction on the evolution o
surface.

Our procedure follows from Ref.@21#. We consider the
KPZ equation coarse grained up to lengthl and discretized
with a time stept:

Dh~x,t !

t
.a•H~x,t !1h~x,t !, ~9!

where the parameter vectora and the surface derivative vec
tor H are given, respectively, by

a5Fc,n,
l

2G , ~10!

H~x,t !5F1,
]2h

]x2
,S ]h

]xD 2G . ~11!

Unlike Ref.@21#, we do not consider any higher order term
To calculateH(x,t), the surface at timet is first coarse
grained by truncating the Fourier components with wa
length smaller thanl . Subsequent differentiations and mult
plications are carried out in the Fourier and the real spa
respectively. An additional coarse graining is then carr
out to maintain the cutoff which is shifted by the nonlinea
ties. We then grow the surface further for a periodt to obtain
h(x,t1t). The surface advanceDh(x,t) is computed by
similarly coarse grainingh(x,t1t)2h(x,t) up to lengthl . It
can be shown easily that the noise correlator follows from

D5
t

2K FDh~x,t !

t
2a•H~x,t!G2L ~12!

oncea is computed as to be explained below. The averag
can be performed over bothx andt. Minimizing this expres-
sion of D with respect toa gives the main equation of th
inverse method, from whicha can be solved:

Aa5b, ~13!

where the matrixA and the vectorb are defined, respec
tively, by

A5^H~x,t ! ^ H~x,t !&, ~14!

b5 K Dh~x,t !

t
H~x,t !L . ~15!

The symbol ^ denotes the vector outer product. All th
growth parametersc, n, l, andD thus obtained depend o
both the spatial and temporal resolutionsl and t, respec-
tively.
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We focus on steady state surfaces generated using Eu
integration method with the same parametersn05D051,
l053, and Dt50.01 on a lattice of sizeL532 768. To
speed up the simulation, a steady state surface is obtaine
successively magnifying smaller ones anisotropically uti
ing the self-affine property with the known exponenta
51/2. Specifically, a fully relaxed surface on a lattice of s
L is mapped onto another one of size 2L. The height is
rescaled by a factor 2a and proper interpolation has to b
carried out. The resulting surface is then evolved into ste
state before another step of magnification. AtL532 768, the
surface is evolved further for a period of 100 before data
collected. We have checked that using surfaces relaxed
longer periods does not alter our results.

We then computedA andb using Eqs.~14! and ~15! for
various values ofl andt. The results were averaged over
period of about 43104 corresponding to 43106 iterations.
The parameter vectora and hence its componentsc, n, and
l/2 are solved from Eq.~13! andD is then computed from
Eq. ~12!. The results which are qualitatively similar to tho
in Ref. @21# are shown in Fig. 3, where the continuum p
rametersl, n, andD are plotted as functions of the resol
tions l andt. We now examine the values at largel which
should be equivalent to the smallt regime in which the
temporal discretization in Eq.~9! is valid. We obtained the
nonlinear parameterl.3.04 which agrees reasonably we
with l053. This parameter is known to admit no renorm
ization @19# and is thus independent of bothl and t for
sufficiently largel . For any givent, the parametersn andD
renormalize at first asl increases corresponding to the elim
nation of the fast evolving short wavelength Fourier comp
nents. Subsequently they converge at largerl since the long
wavelength modes with time scales longer thant evolve too
slowly to contribute to any renormalization@21#. The con-

FIG. 3. Inverse method results of the continuum parameterl,
n, andD as functions of the spatial and temporal resolutionsl and
t. The dotted lines arel53.04 andn51.14.
r’s
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verged values depend only ont which now dictates the ex
tent of the renormalization. At smallt, there is hardly any
renormalization. We can thus obtain the ‘‘bare’’ continuu
parameters which have not been renormalized by the dyn
ics although effects due to spatial coarse graining are alre
taken into account. We foundn.1.14 andD.1.01 at the
smallestt50.01 we investigated. Within our numerical a
curacy, we conclude that the bare parameters satisfyl5l0
andD5D0 but nÞn0. It is known thatn andD renormalize
in the same way due to a fluctuation dissipation theorem
that A5D/n is a constant@19#. This is confirmed by our
results and we obtainedA.0.877 independent oft.

V. DISCUSSIONS

We have investigated the conventional approach for dir
numerical integration of the KPZ equation using Eule
method. We performed the numerical integration with nom
nal parametersn05D051 andl053. The scaling amplitude
A5D/n is measured from the resulting surfaces. Measu
ments taken from saturated surface width, correlation fu
tion, and the inverse method calculation all give consist
results of A.0.879, 0.876, and 0.877, respectively. The
estimates are distinctly different from the expected nomi
value A05D0 /n051. Using the inverse method, we foun
that the unrenormalized continuum noise correlatorD5D0
and also the nonlinear parameterl5l0 as expected. How-
ever, quite surprisingly the diffusion coefficient is given b
n.1.14Þn0.

We thus conclude that the continuum diffusion coefficie
which actually describes the dynamics of the surface is
compatible with the nominal value used in the discrete eq
tion. We have shown that this occurs only for the KPZ equ
tion but not for the linear Edward-Wilkinson version. Ou
results show that it is an intrinsic property of the meth
since it cannot be rectified by altering the spatial or tempo
discretization steps used in the numerical integration.

There are other discretization methods for the KPZ eq
tion. For example, Beccaria and Curci investigated a num
cal integration approach based on the Hopf-Cole transform
KPZ equation in order to achieve improved numerical sta
ity @7#. Newman and Bray also proposed a related discr
zation which is claimed to be capable of better capturing
strong coupling behavior of the KPZ equation. We ha
simulated surfaces in 111 dimensions with the same param
eters using these discretizations and obtainedA.0.79 and
0.49, respectively. To arrive at the results, we have c
ducted both surface width measurements and the inv
method which give consistent results. The discrepancy
tweenA and A0 is also a consequence ofnÞn0. Therefore
the anomaly seems to be a common feature of discretiza
schemes for the KPZ equation. Recently, we have succ
fully constructed a class of discretizations for the KPZ eq
tion such thatn5n0 is followed exactly. This will be re-
ported elsewhere.

The reason behind the anomaly in the diffusion coeffici
will be apparent when we examine the geometry of surfa
resulting from direct numerical integration. Figure 4 sho
the details of a surface generated using Eq.~3!. We have
again setn05D051, l053, andDt50.01. A smallerDt
and even a vanishing nonlinear parameterl0 will not alter
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6510 57CHI-HANG LAM AND F. G. SHIN
the qualitative features. We see that the surface is rough
only at macroscopic scales but all the way down to the lat
level. In general, for a finite difference equation in the fo
of Eq. ~3!, one would expect anO(Dx2) error due to the
discretization provided thath(x,t) were smooth. With such a
rough solution, the approximation is indeed uncontroll
For the linear case, it is easy to show explicitly that t
discrete equation does agree exactly with the continu
counterpart in the long length scale limit. However, for t
KPZ equation there is noa priori reason to believe Eq.~3! is
a valid approximation.

The anomaly in the diffusion coefficientn or the scaling
amplitudeA in our knowledge has not been reported pre
ously even though numerical integration has been routin
applied to the KPZ equation for nearly a decade. This
probably because the study of the scaling exponents ins
of the amplitude is predominantly the main focus in mo
works. The scaling exponents obtained in general ag
nicely with the exact values from the continuum KPZ equ
tion available in 111 dimensions. However, this is not ne
essarily because the discrete equation genuinely app
mates the continuum one, which is indeed not true accord
to our findings. Instead, we believe that the agreemen
solely due to universality. The discrete equations are th
selves nonlinear local growth equations with translatio
symmetry. In many cases, this is already sufficient for
discrete equations to be in the KPZ universality class as
been argued for many discrete models@1#. Therefore, al-
though the conventional approach does not provide a ge
ine numerical integration of the KPZ equation, we have
doubt about the validity of the scaling exponents measu
previously because of universality.

For measurements other than the scaling exponents,
tion must be taken when applying direct numerical integ
tion. For example, when computing the coupling const
l̄2(t)5@(l4D2/n5)t#2/35@(l4A2/n3)t#2/3 using the inverse
method@21#, which actually motivated this work, it must b

FIG. 4. Snapshots of a segment of an interface generate
numerical integration. The time between two consecutive snaps
is 0.2 corresponding to 20 iterations.
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noted that the continuumA is different from the nominal one
used in the discrete equations.

Newman and Bray@8# suggested that a discretizatio
mentioned earlier better capture the strong coupling phy
of the KPZ equation. We do not agree with this point. Rec
that the scaling amplitude we found with their approach
A.0.49, which is very different fromA051. Neither this
discretization nor the conventional one approximate the c
tinuum equation genuinely. However, both of them are d
crete equations in the KPZ class and should exhibit the s
physics at long length scales. Therefore, as far as unive
properties are concerned, both are equally valid discret
tions and their numerical stability may be the only conce
when choosing between them for certain applications.

Since there is no guarantee that the parameters in a
crete equation can be inherited directly from the origin
continuum equation, the same reasoning also implies tha
presence or absence of a whole term may not be straigh
wardly controlled except under certain symmetry constrain
Amar and Family@17# investigated an equation with a gen
eralized nonlinear term which in one case reduces to

]h

]t
5n¹2h1l~“h!41h~x,t !. ~16!

The (¹h)4 term is irrelevant at long length scales and t
equation is expected to be in the Edward-Wilkinson univ
sality class. However, they found KPZ exponents. The
thors suggested that a (“h)2 term is induced by the com
bined effects of noise and nonlinearities. From our point
view, which is consistent with theirs, microscopic roughne
of the surfaces implies that the discrete equation used in
@17# does not faithfully approximate Eq.~16!. Since the
equation is nonlinear and there is no special symmetry
forbid a (“h)2 term, it is quite natural that the term shou
exist and the equation should be in the KPZ universa
class.

In conclusion, we have explained that the conventio
Euler method doesnot provide a genuine direct numerica
integration of the KPZ equation. The continuum diffusio
coefficient is indeed incompatible with the nominal one
the discrete equations due to microscopic roughness of
surfaces. Although the scaling exponents are not affected
to universality, caution must be taken when inferring oth
properties of the continuum equation from their discretiz
counterparts. Direct numerical integration is also routin
applied to growth in higher dimensions and other rela
growth equations@9–17#. Analogous anomalies might als
exist.
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