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Anomaly in numerical integrations of the Kardar-Parisi-Zhang equation
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We demonstrate that conventional finite difference schemes for direct numerical integratiohagroxi-
mate the continuum Kardar-Parisi-Zhang equation. The effective diffusion coefficient is found to be inconsis-
tent with the nominal one. This is explained by the existence of microscopic roughness in the resulting
surfaces[S1063-651X98)11106-9

PACS numbgs): 64.60.Ht, 05.40tj, 05.70.Ln, 64.60.Ak

[. INTRODUCTION they quite surprisingly found KPZ scaling behavior in most
cases. They explained their observation by the generation of

The Kardar-Parisi-ZhangKPZ) equation[1] has been the characteristic KPZ nonlinear term due to the combined
very successful in describing a class of dynamic nonlineagffects of noise and nonlinearity. It is thus evident that re-
phenomena. It is applied to a wide range of topics includingsults from direct numerical integration may not always agree
vapor deposition, bacterial colony growth, directed poly-With predictions from the continuum equations.
mers, and flux lines in superconduct§?s3]. Computational In this work, we provide a detailed study of the conven-
studies have mostly concentrated on simulations of discretdonal direct numerical integration approach for the KPZ
models such as ballistic deposition models, solid-on-soliceduation in 1 dimensions. We aim at studying quantita-
models, Eden model, directed polymer simulations, and sévely differences between properties of the continuum
on. They allow very efficient simulations by Capturing On|y grOWth equation and those of its discretizations. In Sec. Il we
the essential features in the physical processes. Another ini€view the conventional numerical integration techniques
portant approach is direct numerical integration_ This in genused in this Study. Section Il discusses numerical results on
eral involves more intensive Computations_ Amar and Famibﬁurface width and correlation function measurements on sur-
first conducted large-scale numerical integrations of the KPZaces simulated by numerical integration. Section IV pre-
equation and verified the universality with discrete modelsS€nts results on the coarse-grained dynamics of the surfaces
[4] The accuracy was further improved by the SubsequerﬁxtraCtEd USing an inverse method. We conclude in Sec. V
works of Moseret al. [5,6]. Properties of various numerical With some further discussions.
integration approaches are still being investigaf@e 10].
Similar techniques are not only applied to the KPZ equation Il. DIRECT NUMERICAL INTEGRATION
but also to many related nonlinear phenomena such as . .
growth with correlated noisgl1] or quenched noise in an- 1€ KPZ equation gives the local growth rate of the
isotropic medig12], reaction-diffusion systems with multi- "€ight profileh(x,t) of a surface at substrate positigrand

plicative noise [13], Kuramato-Shivashisky equation for fimet [1]:
flame front propagatiofil4,15, epitaxial growth9,16], etc. oh N

Numerical integration is in general considered to be a — =c+vV2h+ = (Vh)2+ p(x,t), (1)
more direct approach for the investigation of growth equa- at 2

tions. Ideally, it should allow full control on the precise form h he diffusi ffici h i
of the equation to be investigated. The parameters involvey€rév andx are the diffusion coefficient and the nonlinear

may also be chosen at will. Unfortunately, many obscurd®@rameter, respectively, and is related to the average
properties of the conventional numerical integration schem@rowth rate. There is an implicit lower wavelength cutoff so
are reported. For example, Newman and Bi@yidentified tha_lt fluctuations of shorter Ie_ngth scales are truncated. The
an unphysical fixed point and an associated instability in th&10iS€ 7 has a Gaussian distribution and mean 0 and a cor-
deterministic version of the discrete equation used in th&®lator
numerical integration of the KPZ equation. They further ar-

gue that the stochastic discrete equation and hence the con-

ventional integration method cannot capture the strong cou- £ 1ar's method is the most widely used approach for di-

pling behavior of the continuum equation. In another Work’rect numerical inte . . -
; gration of the KPZ equatiph-6,9. It is
Dasgupta, Das Sarma, and Ki®] reported that numerical _based on the finite difference equation:

instability can occur even for very small time steps used in

the numerical integration. They suggest that the instability is At

an intrinsic property and inferred that the discretized KPZ hMl=h"+ —[vo(hM, ,+h" ,—2hM")
. . . i i o LYoV +1 i—1 i

equation may have very different behavior from that of the X

continuum version. In an earlier work, Amar and Fanpily]

integrated a related equation with a generalized nonlinear

term. Contrary to predictions from the continuum equation,

(D7 1) =2D8(x—x")5(t~t"). (2

2DoAt
AXx

+()\o/8)(hin+1_hir11)2]+ f.na (3)
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whereh!" approximates the surface heidi(ix; ,t,,) at theith O T — T
lattice point and thath time step. The constanfsx andAt ! X
are the spatial and temporal step size, respectively. The suk
scripted parametersy, Ao, and Dy denote nominal values - X
used in the discrete equation to be distinguished from the g
continuum values in Eql). We have set the nominal value
of ¢ to be zero for convenience. Eveg) is an independent
random variable with zero mean and unit variance following w
a uniform distribution. Using Gaussian deviates will not alter
the result. The spatial discretization implies that becomes
effectively the lower wavelength cutoff.

Accurate numerical integration involving finite differenc- g ho=8, AE0.01 oo A=0.879
ing in general requires small values of bath andAx. For Ag=3, 4#=0.001
the current problem, one ensures thatis sufficiently small
by verifying that further decreasing its value will not alter e . — el
the results. In contrast\x is usually fixed at 1, very often
after some ftrivial rescaling of the equatip$,5,9. In fact, L
decreasing\x is not a valid way to improve the accuracy but g1 1 | og-log plot of saturated surface widtthagainst lattice
is simply equivalent to diminishing the nonlinear parametergj e | from the Edward-Wilkinson equation\f=0) and the KPZ
. This is because any value Ak can be rescaled back to 1 equation §,=3) numerically integrated with time stefpt. The
through the transformationx— (Ax) “*x, t—(AX) "%,  data are respectively compared to the two lines in the fovm
h— (Ax) ~Y2h which leaves Eq(1) invariant except that is = (A/12)42.12
now replaced byAAXx. In general, maintaining sufficient

nonlinearity of the system is essential to exhibit any relevan, aqgition, the probability distribution functional of the sur-
properties of the KPZ class. It is most convenient oA 506 ot steady state is also known exa¢fly. In particular,
=1 and adjust the nonlinearity using although tuning the  ihe surface width is given bj20]
nonlinearity withAx has also been dorjé].

In the main computation in this work, we follow the con-
ventional approach of takingx=1 and a smalit. We will W—( A ) 1/2La ®)

%=0, A=0.01 —— A=t

x

focus mostly on the case,=Dy=1 and\y=3. This value 12

of Ny corresponds to a moderate nonlinearity. It is large

enough to drive the system quickly into the characteristic ) ) ) i )
nonlinear KPZ scaling regime without much crossover effectvhereA is the scaling amplitude defined &s=D/v. Peri-

while it is also sufficiently small for reasonable numerical °dic boundary conditions are assumed. Note Waand in-
stability. deed the full distribution of the steady state surface are both

independent of the nonlinear paramexef2].

We first tested Euler’s method of numerical integration in
Eq. (3) for the linearay=0 case so that Ed1) reduces to
the Edward-Wilkinson equatiofi2,3]. We setvy=Dy=1

A widely used approach to investigate the scaling properand the nominal value dk is thusAq=Dy/vo=1. The time
ties of rough surfaces is to measure the rms surface Witith step was taken to b&t=0.01. Starting from an initially flat

Ill. SURFACE WIDTH AND CORRELATION
MEASUREMENTS

defined as surface, the height profile at later time was obtained by iter-
ating Eq.(3). After steady state was attained, we measured
1t _\e the surface widthW averaged over a long period of time.
W= Ei—El (hi—h?) (4)  Figure 1 showsW as a function of the lattice size in a

log-log plot. It shows good agreement with the expected re-
lation in Eq.(6) with A=Ay=1 and = 1/2 which is also
shown in Fig. 1.

We then applied the conventional integration scheme

wherelL is the lattice size used in the numerical integration
andh is the mean surface height given by

L similarly to the KPZ equation withhg=3 andvy=Dy=1.
el Ez h. 5) We measuredV for L in the range from 32 to 1024. Far
L =1024 the computation was most intensive and we observed

that the surface width had long been saturated=a2 X 10°.
The brackets{ ) denote ensemble averaging, which is The valueW reported is averaged over the periotk 20°
equivalent to averaging over time when steady state is beingt=<10° involving about 16 iterations sinceA\t=0.01. The
considered. Consider growth from an initially flat surface. Atresult is also plotted in Fig. 1. Recall that according to the
small timet, W is independent of and scales with time as exact results for the continuum equation, a different value of
W~t#, At larget, W saturates and scales with the lattice size\, should not alter the surface width. However, the values
asW~L“. The exponents and g are called the roughness of W clearly deviate from the expected relation in sharp con-
and the early time exponent, respectivEl8]. In 1+1 di- trast to the linear case. The slope in the log-log plot is 0.491,
mensions, they are given exactly by=1/2 andg=1/3[19]. in agreement with the expected valwe 1/2. A fit to Eq.(6)
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T ) X IV. INVERSE METHOD RESULTS

- We have shown numerically that the measured value of
X the amplitudeA differs from the nominalA,. This implies
X that at least one of the continuum parametendD must
or % ] disagree with their nominal values. To measurend D
cir) } X ] independently, we apply an inverse method proposed by
[ X ] Lam and Sand€gR1]. This approach computes all the param-
eters in the KPZ equation from realizations of simulated sur-
faces. The parameters are those which enable the growth
" h=0 e A=1 ] equation to give the best prediction on the evolution of a
X =8 ——A=0.876 | surface.
Our procedure follows from Ref21]. We consider the
KPZ equation coarse grained up to lengtand discretized
1 : e : . with a time stepr:

r Ah(xlt)
=a-H(x,t)+ n(x,t), 9
FIG. 2. Log-log plot of correlation function of surfaces from the T
Edward-Wilkinson equationNy=0) and the KPZ equation\(

—3). The data are compared to the two lines in the fa2(r) where the parameter vectarand the surface derivative vec-

—Ar. tor H are given, respectively, by

, , - , A
with « fixed at 1/2, also shown in Fig. 1, gives=0.879. a= C’V’E , (10
This estimate is significantly different from the nominal
valueAy=1. ) )

We have repeated the simulation at a much smaller time H(x,t)= ﬂ (ﬂ (11)
stepAt=0.001 forL from 32 to 256. The result, also shown ' "ox2 "\ ox

in Fig. 1, is indistinguishable from the previous one within

our numerical precision. Therefore the discrepancy betweebnlike Ref.[21], we do not consider any higher order terms.
the measured and the nominak, is not due to a finite time To calculateH(x,t), the surface at timeé is first coarse
step. Furthermore, one cannot improve the method by degrained by truncating the Fourier components with wave-

creasingAx as has been explained in Sec. II. length smaller thath. Subsequent differentiations and multi-
To further confirm our result, we calculated the amplitudeplications are carried out in the Fourier and the real spaces,
A independently from the correlation function respectively. An additional coarse graining is then carried
out to maintain the cutoff which is shifted by the nonlineari-
C(r)={([h(x+r)—h(x)]?. (7)  ties. We then grow the surface further for a perioi obtain

h(x,t+ 7). The surface advancAh(x,t) is computed by
It follows from the KPZ equation in +1 dimensions that similarly coarse graining(x,t+ ) —h(x,t) up to lengthl . It

[20] can be shown easily that the noise correlator follows from
_ @ Ah X,t 2
C(r)=Ar? 8 D= %< Sl —a-H(x) > (12

for Ax<r<<¢. The correlation length specifies the scale oncea is computed as to be exolained below. The averagin
below which fluctuations have saturated and its value is lim- : pu xplal W- veraging

ited either by time or the system size. We integrated the kpZan be perf(_)rmed over both:_:mdt. M|n|m|_z|ng th|s_ Expres-
equation similarly using Eq(3) with the same parameters sion of D with respect tog gives the main (.aquatlon of the
No=3, ro=Do=1, andAt=0.01 starting from flat surfaces "Verse method, from which can be solved:

of size L=65 536 untilt=5200. The correlatiolc(r) was Aa=b (13)
then calculated and averaged over seven independent realiza- ’

tions. The result is shown in Fig. 2 in a log-log plot. We only \yhere the matrix4 and the vectob are defined, respec-
show data points correspondingrtavell within the correla-  tjvely, by

tion length so that the values have become time independent.

The slope of the linear region at <32 when compared to A=(H(X,t)®@H(x,1)), (149
Eq. (8) gives a=0.480. It is slightly smaller than the exact

value a=1/2, probably due to the rather smaltonsidered. Ah(x,t)

The same data were fitted to E&) with « fixed at 1/2 and b:< T H(X’t)>' (15)

are shown in Fig. 2. We obtaineti=0.876 in good agree-

ment with the previous estimate from surface width measurethe symbol® denotes the vector outer product. All the
ments. Figure 2 also shows the result for the linege0 growth parameters, v, A, andD thus obtained depend on
case in whichA=Ay;=1 as expected from the continuum both the spatial and temporal resolutiohsind 7, respec-
equation. tively.
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" verged values depend only enwhich now dictates the ex-
A3OE b3 tent of the renormalization. At smafl, there is hardly any

renormalization. We can thus obtain the “bare” continuum
parameters which have not been renormalized by the dynam-
=0.04 = ics although effects due to spatial coarse graining are already
taken into account. We found=1.14 andD=1.01 at the
smallest7=0.01 we investigated. Within our numerical ac-
curacy, we conclude that the bare parameters satisfi
andD =D but v# v,. It is known thatr andD renormalize

in the same way due to a fluctuation dissipation theorem so
that A=D/v is a constan{19]. This is confirmed by our
results and we obtainefl=0.877 independent of.

25

¥ X + &6 4 p 0o 0O

V. DISCUSSIONS

Lo feserl ks

We have investigated the conventional approach for direct
numerical integration of the KPZ equation using Euler's

\

:x/ E . . . . .
1.2 E. + . method. We performed the numerical integration with nomi-
L0 fe——3 2 X % 7 23 nal parametersy=Dy=1 and\,= 3. The scaling amplitude
e T R | y 3 A=D/v is measured from the resulting surfaces. Measure-
10 100 ments taken from saturated surface width, correlation func-
l tion, and the inverse method calculation all give consistent

results of A=0.879, 0.876, and 0.877, respectively. These
estimates are distinctly different from the expected nominal
value Ag=Dg/vy=1. Using the inverse method, we found
that the unrenormalized continuum noise correlddsr D
and also the nonlinear parameter\, as expected. How-
We focus on steady state surfaces generated using Eulelgger, quite surprisingly the diffusion coefficient is given by
integration method with the same parametegs=Dy=1, v=1.14%# v,
Ao=3, and At=0.01 on a lattice of siz&. =32768. To We thus conclude that the continuum diffusion coefficient
speed up the simulation, a steady state surface is obtained Qyhich actually describes the dynamics of the surface is in-
successively magnifying smaller ones anisotropically utiliz-compatible with the nominal value used in the discrete equa-
ing the self-affine property with the known exponeat tion. We have shown that this occurs only for the KPZ equa-
=1/2. Specifically, a fully relaxed surface on a lattice of sizetion but not for the linear Edward-Wilkinson version. Our
L is mapped onto another one of siz&.2The height is  results show that it is an intrinsic property of the method
rescaled by a factor 2and proper interpolation has to be since it cannot be rectified by altering the spatial or temporal
carried out. The resulting surface is then evolved into steadgiscretization steps used in the numerical integration.
state before another step of magnification LAt 32 768, the There are other discretization methods for the KPZ equa-
surface is evolved further for a period of 100 before data argion. For example, Beccaria and Curci investigated a numeri-
collected. We have checked that using surfaces relaxed fasal integration approach based on the Hopf-Cole transformed
longer periods does not alter our results. KPZ equation in order to achieve improved numerical stabil-
We then computedd andb using Egs(14) and (15 for ity [7]. Newman and Bray also proposed a related discreti-
various values of and r. The results were averaged over a zation which is claimed to be capable of better capturing the
period of about &« 10* corresponding to 4 1(° iterations.  strong coupling behavior of the KPZ equation. We have
The parameter vecta and hence its components v, and  simulated surfaces in#1 dimensions with the same param-
N2 are solved from Eq(13) andD is then computed from eters using these discretizations and obtaiAe0.79 and
Eq. (12). The results which are qualitatively similar to those 0.49, respectively. To arrive at the results, we have con-
in Ref. [21] are shown in Fig. 3, where the continuum pa-ducted both surface width measurements and the inverse
rametersk, v, andD are plotted as functions of the resolu- method which give consistent results. The discrepancy be-
tions| and 7. We now examine the values at larbevhich  tweenA and A, is also a consequence of- v,. Therefore
should be equivalent to the smatl regime in which the the anomaly seems to be a common feature of discretization
temporal discretization in Eq9) is valid. We obtained the schemes for the KPZ equation. Recently, we have success-
nonlinear parametex=3.04 which agrees reasonably well fully constructed a class of discretizations for the KPZ equa-
with Ay=3. This parameter is known to admit no renormal-tion such thatv=1y, is followed exactly. This will be re-
ization [19] and is thus independent of bothand = for  ported elsewhere.
sufficiently largel. For any givenr, the parameters andD The reason behind the anomaly in the diffusion coefficient
renormalize at first akincreases corresponding to the elimi- will be apparent when we examine the geometry of surfaces
nation of the fast evolving short wavelength Fourier compo-esulting from direct numerical integration. Figure 4 shows
nents. Subsequently they converge at lafggince the long the details of a surface generated using B). We have
wavelength modes with time scales longer thagvolve too  again setvg=Dg=1, A ;=3, andAt=0.01. A smallerAt
slowly to contribute to any renormalizatid21]. The con- and even a vanishing nonlinear parametgrwill not alter

FIG. 3. Inverse method results of the continuum parameters
v, andD as functions of the spatial and temporal resolutibasd
7. The dotted lines are =3.04 andv=1.14.
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noted that the continuur is different from the nominal one
used in the discrete equations.

Newman and Bray[8] suggested that a discretization
mentioned earlier better capture the strong coupling physics
of the KPZ equation. We do not agree with this point. Recall
that the scaling amplitude we found with their approach is
A=0.49, which is very different fromAy=1. Neither this
discretization nor the conventional one approximate the con-
tinuum equation genuinely. However, both of them are dis-
crete equations in the KPZ class and should exhibit the same
physics at long length scales. Therefore, as far as universal
properties are concerned, both are equally valid discretiza-

i tions and their numerical stability may be the only concern

FIG. 4. Snapshots of a segment of an interface generated byhen choosing between them for certain applications.
numerical integration. The time between two consecutive snapshots Since there is no guarantee that the parameters in a dis-
is 0.2 corresponding to 20 iterations. crete equation can be inherited directly from the original

o ] continuum equation, the same reasoning also implies that the
the qualitative feat_ures. We see that the surface is rough.”?}resence or absence of a whole term may not be straightfor-
only at macroscopic scales but all the way down to the latticgyardly controlled except under certain symmetry constraints.
level. In general, for a finite difference equation in the form omar and Family[17] investigated an equation with a gen-
of Eq. (3), one would expect a®(Ax?) error due to the  eralized nonlinear term which in one case reduces to
discretization provided thdt(x,t) were smooth. With such a

rough solution, the approximation is indeed uncontrolled. dh
Forgthe linear case, i?pis easy to show explicitly that the Ez'”vzh+)‘(Vh)4+ 7(X1). (16)
discrete equation does agree exactly with the continuum
counterpart in the long length scale limit. However, for the The (Vh)* term is irrelevant at long length scales and the
KPZ equation there is na priori reason to believe E(qg) is equation is eXpeCted to be in the Edward-Wilkinson univer-
a valid approximation. sality class. However, they found KPZ exponents. The au-
The anomaly in the diffusion coefficient or the scaling thors suggested that &f)? term is induced by the com-
amplitudeA in our knowledge has not been reported previ-bined effects of noise and nonlinearities. From our point of
ously even though numerical integration has been routinelyi€W, which is consistent with theirs, microscopic roughness
applied to the KPZ equation for nearly a decade. This i<of the surfaces implies that the discrete equation used in Ref.
probably because the study of the scaling exponents instead?/] does not faithfully approximate Eq(16). Since the
of the amplitude is predominantly the main focus in mostéquation is nonlinear and there is no special symmetry to
works. The scaling exponents obtained in general agreforbid a (Vh)? term, it is quite natural that the term should
nicely with the exact values from the continuum KPZ equa-eXist and the equation should be in the KPZ universality
tion available in & 1 dimensions. However, this is not nec- class.
essarily because the discrete equation genuinely approxi- In conclusion, we have explained that the conventional
mates the continuum one, which is indeed not true accordinfuler method doesiot provide a genuine direct numerical
to our findings. Instead, we believe that the agreement igitegration of the KPZ equation. The continuum diffusion
solely due to universality. The discrete equations are themcoefficient is indeed incompatible with the nominal one in
selves nonlinear local growth equations with translationathe discrete equations due to microscopic roughness of the
symmetry. In many cases, this is already sufficient for thesurfaces. Although the scaling exponents are not affected due
discrete equations to be in the KPZ universality class as hd® universality, caution must be taken when inferring other
been argued for many discrete modgld. Therefore, al- Properties of the continuum equation from their discretized
though the conventional approach does not provide a genounterparts. Direct numerical integration is also routinely
ine numerical integration of the KPZ equation, we have noaPplied to growth in higher dimensions and other related
doubt about the validity of the scaling exponents measure@rowth equationg9-17. Analogous anomalies might also
previously because of universality. exist.
For measurements other than the scaling exponents, cau-
tion must be taken when applying direct numerical integra-
tion. For example, when computing the coupling constant \ve thank L.M. Sander and J. Li for interesting commu-
N2(7)=[(N*D?v°) 712P=[ (\*A?/1%) 7] using the inverse nications. This work was supported by RGC Grant No. 0354-
method[21], which actually motivated this work, it must be 046-A3-110, and PolyU Grant No. 0353-003-A3-110.
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