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Anomalous transport in lattice and continuum percolating systems
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Anomalous diffusion is studied on a certain class of percolation models in which the diffusion

properties arise both from the underlying network and from the singular distribution of transfer
rates. Scaling arguments parallel to those of Kogut and Straley lead to nonuniversal modifications
of the dynamical exponents. The scaling results are demonstrated in a Sierpinski honeycomb and in

the effective-medium theory and explicit values for the exponents are obtained. The diffusion-
coefficient exponent and the spectral dimension are found to be 2/(1 —a) and 2(1—a)/(2 —a),
respectively, (0&a~1) in the effective-medium theory, with values being significantly different
from the corresponding ones in ordinary percolation. As a concrete example, the frequency-
dependent conductivity has been calculated for a three-dimensional cubic network and several in-

teresting crossover behaviors are obtained.

I. INTRODUCTION

In a recent paper, Halperin, Feng, and Sen' considered
a class of "random-void" continuum percolation models,
where spherical holes are randomly placed in a uniform
medium. A map ing (Fig. 1) of this model onto a discrete
random network shows that the resulting network con-
tains a large number of narrow channels, which are weak
links and can be realized as a distribution consisting of a
large probability of small but finite conductances. As for
the usual discrete-lattice percolation models, the conduc-
tance for each bond is either zero or finite with probabili-
ty 1 —p and p, respectively. It has been found that the ex-
ponent governing the behavior of network conductivity
near the percolation threshold can be quite different from
the corresponding one in the discrete-lattice models. 'i'4
On the other hand, the static exponents for geometrical
properties of percolation, such as the correlation length
exponent v, the order parameter exponent P, and the frac-
tal dimension of the infinite percolating cluster d, have
been confirmed by simulations to be the same for these
models as for usual percolation.

Halperin, Feng, and Sen' explicitly calculated the ex-
ponents for conductivity, elasticity, and fiuid permeability
for these continuum models and concluded that the values
of the exponents are significantly larger than those of the
corresponding ones in the discrete-lattice percolation
models. These studies lead us to consider dynamical
properties such as diffusion and lattice vibrations on these
random-void models. The exponent governing diffusion
and lattice phonons on percolation clusters is known as
the spectral dimension d, first proposed by Alexander and
Orbach, which is also closely related to the diffusion
coefficient exponent 8 (Refs. 6 and 7) by the relation
d=2d/(2+8). Anomalous diffusion occurs at short
times or small length scales for diffusion on percolating
clusters; it also occurs when the transfer-rate distribution
is statistically self-similar. ' While the singular [class (c)]

distribution of transfer rates is known to give rise to
anomalous diffusion on a one-dimensional chain, ' "the
physical origin of this distribution can be thought of as
resulting from a mapping of the random-void model onto
a discrete random network. '

In this paper, we study a continuous-time random
walk' on a percolating network whose transfer-rate dis-
tribution has the following form

P( W) =(1—p)5( W)+ph, ( W),

where

=0 otherwise,

p (0 &p & 1) being the percolation probability and
Oga ~1.

The introduction of a singular distribution of finite
transfer rates is arbitrary but it is shown to have relevance

broken

linked

FIG. 1. Mapping of a random-void continuum percolation
model onto a discrete-lattice model.
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to the continuum percolation models. We shall calculate
the frequency-dependent conductivity to extract spectral
properties on this model. The paper is organized as fol-
lows. In Sec. II, we study the model on an exact fractal
lattice. The static conductivity is calculated as of Gefen
et a/. ' A singular distribution of conductance is intro-
duced so as to calculate the nonuniversal exponent for
conductivity. In Sec. III, we give a brief account of the
results of frequency-dependent conductivity from calcula-
tions of the effective-mediuin theory. A general scaling
form for the results of conductivity is suggested to inter-
polate the effective-medium theory. In Sec. IV, numerical
calculations of the effective conductivity are shown. The
results are in good accord with scaling predictions.

highly ramified but not quasi one-dimensional. ' Figure 1

suggests an interesting relation between the honeycomb
and the random-void model. Let us write the conduc-
tance g —(p —p, )~. Since g =erg, we find that
t =(d —2)v+g. The percolation correlation length
behaves as (p —p, ) ", we find g-g ~~". If we increase
the length scale by a factor of 2, the number of units will
increase by a factor of 3, and we obtain the fractal dimen-
sion d =ln3/ln2. In the case R =1, we recover the usual
fractal model. '~ By the star-triangle transformation, we
increase the length by a factor of 2 and change the con-
ductance g by a factor of —', , we thus find that
g/v=ln(5/3)/in2. These considerations are readily gen-
eralized to a d-dimensional honeycomb:

II. SIERPINSKI HONEYCOMB d =d —P'/v=ln(d+1)/ln2, (2.2)

The static limit at the percolation threshold can be easi-
ly studied by examining a Sierpinski honeycomb, which is
obtained by a dual transformation of the Sierpinski gas-
ket. ' As iQustrated in two dimensions (2D), a basic
tetrahedral unit is started out. Three basic units form a
larger unit which in turn serves as a building block, again
three of which form an even larger unit. The procedure is
repeated to infinity. As shown in Fig. 2, the assignment
of conductance for each link is g =1, R, R, R', etc.,
(0& R &1) at the lowest, next, third, fourth, etc., level,
respectively. If one specifies f(g)-g ' for the distribu-
tion of conductance, one finds

g/v= in[(d +3)/(d + 1)]/in2,

and the spectral dimension

d =21n(d +1)/ln(d+3) .

(2.3)

(2.4)

For R being different from unity, the star-triangle
transformation gives us a renormalization (RG) equation:

R'=R(3+2R)/(3+2R ) (2D) . (2.5)

An asymptotic scaling form can be obtained for R «1
(or a~ 1 ). A change of g by a factor R results, and one
finds

a =1—in3/~ lnR
~

. (2.1) g'/v=
~

lnR
~

/ln2=d/(1 —a) .

The condition for nonuniversal contribution to anomalous
diffusion is when 0 & R &R, = —,', or 0 & a & l.

Using the decimation method, '2 we increase the length
scale by a factor of 2 and examine the change of conduc-
tance. The Sierpinski honeycomb is believed to serve as a
model of percolation backbone at the percolation thresh-
old. Monte Carlo simulations and experimental results
suggest that percolation backbone at p, is finitely and

R

For R not small, numerical iterations of the RG equation
can be performed. We suggest

t'/v=t/v+ad/(1 —a) .

Since 8=(t —P)/v, one finds

8'=8+(t' t)/v=8+ad/—(1—a) .

(2.6)

(2.7)

The random walk dimensionality is known to be d~ =2
for normal diffusion, now becomes d„=2+8. One finds
the change

d' —d =8' —8=ad/(1 —a), (2.8)

R

R

1 1

R2

1 1
(2 9)

which we shall call the fractal dimensionahty of the dis-
tribution of transfer rates, in the same spirit of Ref. 8.
These results support our previous statement that the
anomalous diffusion arises both from the underlying net-
work and from the distribution of transfer rates. The
spectral dimension has a corresponding change

d ' '=d '+a/2(1 —a) .

FIG. 2. Construction of a Sierpinski honeycomb in two di-
mensions. The assignment of conductance for each link is dis-
cussed in text.

For R &R, =l/(d+1), the parameter a becoines nega-
tive, and the model crosses over to usual results.

Kogut and Straley who considered a similar model for
a random resistor network, suggested t'=t+a/(1 —a),
from the double considerations of the effective-medium
theory and the Cayley tree. This is in accord with our re-
sults because in both cases dv= l. This distribution-
induced change in exponents is nonuniversal and depends
explicitly on the parameter a describing the singular dis-
tribution.
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III. EFFECTIVE-MEDIUM THEORY
AND THE FREQUENCY-DEPENDENT

CONDUCTIVITY

As an implementation of our results Eqs. (2.6), (2.7),
and (2.9), we shall calculate the exponents for a 1-
dimensional hypercubic network using the effective-
medium approximation (EMA) (Refs. 14 and 15). We
solve the model described by Eq. (1.1) for a continuous-
time random walk in EMA. The random percolating net-
work is replaced by a homogeneous effective network, in

(3.1)

f=(1 sP—O)/1, (3.2)

and Po(s) is the zero-site probability as a function of the
Laplace transform variable s:

which the random transfer rates W are replaced by a sin-
gle homogeneous value W, which is to be determined by
self-consistency. The EMA transfer rate W satisfies the
following equation (see the Appendix):

(p f)—/f = (1—a)K(a)[ W(1 —f)/f]"
where

2m' 2n'

Pp(s) =
(2~)' dg( ' ' '

ding d
s +28' g (1—cosq:}

(3.3)

(T(ai) = W(s =ico) . (3.5)

In the static limit ~=0, f=1/d =p„one finds im-
mediately

(P P )i/(i —a) (3.6}

which is consistent with t'=1/(1 —a) (Ref. 3). At p =p„
one can approximate f by p, —Bs/W for d &2, where B
is a constant dependent on dimension. Thus one finds

~(~) i/(2 —a) (3.7a)

And yet for 1 ~ d ~ 2, f=p, —B'(s/IV) /, where B' is a
constant dependent on dimension, one finds

and E(a) is a real number:

"X dXE(a)= =ir/sin(ma), 0&a ~1 . (3.4)
0

One can solve for W from Eqs. (2.1}—(2.3) as a function
of (p —p, ) and s, then the frequency-dependent conduc-
tivity is obtained by an analytic continuation of s into /co

(Ref. 15):

co' '2 ' for d &2,cr(co)— a)"(~+2()-'} for 1(d (2.
(3.11a)

(3.11b}

These results are siI),nificantly different from the one-
dimensional results' ' o(co)-co'/(2 ", indicating that
the infinite percolating cluster at the percolation threshold
is not quasi one-dimensional. ' In addition, we have also
calculated numerically the conductivity as a function of
frequency and (P —p, ) for a three-dimensional cubic per-
colating network. To this end, we note that an interesting
crossover behavior in the conductivity is observed from
normal to anomalous diffusion, arising both from the
underlying percolation network and from the singular dis-
tribution of transfer rates. The frequency-dependent con-
ductivity obeys a scaling form'4

d/[d+ 2( l —u)] (3.7b)

The general results from EMA can be summaried as
follows:

t'=1/(1 —a) for d &1,
8'=2/(1 —a) for d & 2,

(3.8)

(3.9)

Usual
Pereo

a=0.

d '=2(1—a)/(2 —a) for d &2, (3.10) 0.
in contrast with the corresponding values t =1, 8=2, and
1= 1 in the usual percolation model.

These results are in accord with the corresponding scal-
ing predictions. The spectral dimension d also describes
the density of states in the fraction region. Our result
shows that d ' becomes smaller for the model suggesting a
modification of the Alexander-Orbach result for the den-
sity of phonon states in the continuum percolation model.
At the same time, we calculate the frequency-dependent
conductivity at the percolation threshold for small fre-
quencies. %'e find

1Q

FIG. 3. The dc conductivity plotted as a function of the per-
colation probability for several singular distributions
parametrized by a. A linear relationship obtained in the small
(p —p, ) limit suggests scaling behavior, with exponent increases
as a increases, in accord with analytic results. The results for
usual percolation are plotted for comparison.
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o(~)=(p p—, )" ~'y(~/(p —p, )"+ '") . (3.12)

This relation suggests a crossover frequency from normal
to anomalous diffusion

)(2+elm (3.13)

The numerical calculations are presented in the next sec-
tion.

IV. NUMERICAL CALCULATIONS

For a three-dimensional cubic network, the dc conduc-
tivity is calculatei as a function of (p —p, ) for several
values of a. As shown in Fig. 3, the general results indi-
cate that a~ is a monotonic increasing function of
(p —p, ). For small (p —p, ), o~ shows scaling behavior
cr~-(p —p, )', with t' being very different from the re-

suit of usual percolation, which is also calculated for com-
parison. This is in quantitative accord with the analytic
result t'=t+a/(1 —a) as suggested by Kogut and Stra-
ley. As an example, we consider the case a =0.8, where
we find that t'=1/(1 —a) =5, which is exactly the slope
of the a =0.8 curve in Fig. 3. For larger (p —p, ) the re-
sults begin to deviate from usual percolation. A discon-
tinuity between the a ~0 result and the usual percolation
result indicates that there is indeed a singularity. ' The
results for a~1 become steeper, indicating that singular
distribution alters the exponent in a nontrivial way. In
Fig. 4, the real (oa ) and imaginary (ol ) parts of the con-
ductivity are calculated as a function of frequency for
several values of (p —p, ) and for fixed values of a. One
can see that for small a, the results for o(co) are not very
different from those of usual percolation. ' However, as p
approaches p„scaling behavior o(co)-co'~' ' is ob-
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FIG. 4. The real and imaginary parts of the frequency-dependent conductivity plotted as a function of frequency for several values
of percolation probability close to the percolation threshold. {a) Real part of the conductivity plotted as a function of frequency vrith
a =0.50. The dc conductivity has been subtracted off from the real part for exhibiting scaling behavior. (b) Imaginary part of the
conductivity plotted as a function of frequency ~ith a =0.SO. {c)Same as (a), but with a =0.70. (d) Same as (b), but with a =0.70.
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tained, in good accord with the analytic expression for fi-
nite frequency expansion at p =p, . For large (p —p, ),
one recovers the normal diffusion behavior, namely,
o.~-co and oq-m', the singular distribution is ir-
relevant.

In conclusion, we have studied anomalous diffusion on
a class of percolation model in which the diffusion prop-
erties arise both from the underlying network and from
the singular distribution of transfer rates. Decimation
methods on the Sierpinski honeycomb as well as effective
medium theory provide a powerful tool of extracting im-
portant results from the model. Explicit calculations for
the dynamic exponents strongly suggest that the distribu-
tion of transfer rates alters the transport properties near
the percolation threshold in a nonuniversal way. Finite-
frequency conductivity were also calculated in EMA and
results thus obtained are found in accord with the scaling
arguments. These EMA results should be compared to
direct numerical simulations of Eq. (1.1) in a future publi-
cation.

Note added in proof. A recent paper of J. Machta, R.
A. Guyer, and S. M. Moore [Phys. Rev. 8 (to be pub-
lished)] gives a result for the conductivity exponent which
cannot be obtained from our Eq. (2.6). Their results are
based on a numerical simulation on hierarchical lattices
which mimic percolation clusters.
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APPENDIX: EFFECTIVE-MEDIUM
APPROXIMATION

Here we wish to solve W from the following self-
consistency equations

(A 1)

where Q=(1 sP&)/—dW is the EMA impedance and

PQ(s) is given by Eq. (3.3). The brackets denote an aver-

age over the distribution of transfer rates given by Eq.
(1.1}. Upon an explicit evaluation of the average, one
finds

(1—p) W/( I —QW') =p(( W —W)/[1+Q( W —W)])a,
(A2)

where the brackets denote an average over h, (W) only.
Let Q =f/W and h = W(1 f)/f, —and thus

f=(1 sPu)/d. —Upon a change of variable W =hg, Eq.
(A2) becomes

I thank P. M. Hui for initial discussions which have led
to the consideration of this problem, and Professor

(p f)/f = (1——a)K(a)[ W(1 —f)/f]"

which is exactly Eq. (3.1}.

(A3)
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