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To control numerical errors accumulated over tens of millions of time steps during the integration of a set of
highly coupled equations of motion is not a trivial task. In this paper, we propose a parallel algorithm for spin
dynamics and the newly developed spin-lattice dynamics simulation �P. W. Ma et al., Phys. Rev. B 78, 024434
�2008��. The algorithm is successfully tested in both types of dynamic calculations involving a million spins.
It shows good stability and numerical accuracy over millions of time steps ��1 ns�. The scheme is based on
the second-order Suzuki-Trotter decomposition �STD�. The usage can avoid numerical energy dissipation
despite the trajectory and machine errors. The mathematical base of the symplecticity, for properly decomposed
evolution operators, is presented. Due to the noncommutative nature of the spin in the present STD scheme, a
unique parallel algorithm is needed. The efficiency and stability are tested. It can attain six to seven times
speed up when eight threads are used. The run time per time step is linearly proportional to the system size.

DOI: 10.1103/PhysRevE.79.046703 PACS number�s�: 05.10.�a, 02.60.Cb, 95.75.Pq, 75.10.�b

I. INTRODUCTION

Spin-lattice dynamics �SLD� simulation �1� has recently
been shown to be a viable means of including magnetic ef-
fects in the atomistic study of properties of ferromagnetic
materials. To control the accumulation of numerical errors to
an acceptable level over tens of millions of time steps is
essential but nontrivial. Indeed, Hatano and Suzuki �2�
showed that perturbational integration schemes �e.g., the
standard predictor-corrector method� that are commonly
implemented in molecular dynamics �MD� or spin dynamics
�SD� simulations did not have sufficient accuracy for energy
conservation, particularly for long simulation times, due to
the substantial accumulation of numerical errors. Omelyan et
al. �3–5� and Tsai et al. �6,7� investigated the application of
symplectic integration algorithms for the spin and the lattice
degrees of freedom, respectively. Both were based on the
second-order Suzuki-Trotter decomposition �STD� scheme.
We note that the symplecticity �i.e., the ability to preserve
the phase space volume which is the energy in the present
case� of STD has only been mathematically proven for MD
simulations �2�. To consider the case for SD and SLD is one
of the objectives in the present paper.

In large-scale atomistic simulations that involve millions
of atoms and tens of millions of time steps, experience with
conventional MD has shown that a parallel algorithm �8–13�
is essential. While parallel programming can be readily per-
formed with STD when the spin system is not involved �13�,
its implementation in the spin system is not straightforward
and has not been reported. The situation is even more diffi-
cult when the spin and the atom coordinates are coupled in a
case like SLD. In this paper, the viability of a proposed al-
gorithm that may be adopted in such cases is investigated.
The designed algorithm has been tested in a computer system
with share memory architecture �e.g., using OPENMP�. It is
found to be capable of achieving a gain in speed of six to
seven times with eight threads, while the run time per time

step still maintains its linearity with the system size.
This paper is to supplement our earlier paper �1� in which

the SLD is proposed to provide a viable tool to investigate
the physics of ferromagnetic materials, particularly near and
during the ferromagnetic transition, via large-scale dynami-
cal atomistic simulations. Due to limited space, details cru-
cial to the viability of the scheme have not been discussed.
What is considered in this paper is not just parallel program-
ming nor STD but the method of doing parallel programming
on the STD. This is particularly important within the context
of SLD, in which the dynamics of both the spin and the
lattice systems has to be integrated simultaneously. This is a
crucial step in the practical implementation of the SLD
scheme. Thus, if symplectic integration is not used, one may
have to face a long list of serious problems related to non-
conservation of energy through an integration scheme in-
volving tens of millions of time steps. At the same time,
without a parallel algorithm, large-scale SLD simulations are
impracticable. Within our knowledge, no viable method ca-
pable of tackling this duel problem has been written in the
literature.

II. SYMPLECTICITY

The SLD simulation is structured similar to a conven-
tional MD simulation, but with the intrinsic �classical� spin
degrees of freedom coupled to the lattice subsystem via the
exchange function. The effective classical Hamiltonian is
given by ‎�1,14�

H = �
i

pi
2

2mi
+ U��Rk�� +

1

2�
i,j

Jij��Rk���1 − ei · e j� , �1�

where the ei is a unit vector of the atomic spin direction. U is
the potential energy of the atomic system �Rk� with perfect
spin collinearity, i.e., when ei ·e j =1 for any pair of atoms i
and j. Jij is the exchange coupling function, which also de-
pends on the atomic configuration. The last term in Eq. �1�
accounts for the energy associated with a loss of collinearity,
i.e., ei ·e j �1. The corresponding Hamiltonian equations of*Corresponding author. chung.woo@polyu.edu.hk
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motion can be derived using Poisson brackets �1� and are
given by

dRk

dt
=

�H

�pk
=

pk

mk
,

dpk

dt
= −

�H

�Rk
= −

�U

�Rk
+

1

2�
i,j

�Jij

�Rk
�1 − ei · e j� ,

�k
dek

dt
= ek � Hk, �2�

where Hk=�iJikei and �k=�Sk=�Mk /g�B. The g factor is
taken as a positive quantity. Mk is the magnitude of an
atomic magnetic moment. Hk is the effective exchange vec-
tor field acting on spin k. �k plays the role of moment of
inertia for the dynamics of angular motion of the spin vector.
The above equation shows that the dynamics of the lattice
and spin subsystems are explicitly coupled through the de-
pendence of Jij on the atomic positions �Rk� via the gradient
term �Jij /�Rk in the second equation in Eq. �2� and the Jij
term in the third equation in Eq. �2�.

The set of SLD equation has to be solved simultaneously
by time integration. A suitable algorithm is needed to en-
hance the overall accuracy and performance. Within a small
time step �t, we may assume that there is a Hamiltonian
operator H that operates on the generalized coordinate x,
satisfying the equation of motion,

dx

dt
= Hx , �3�

where x is an element of the direct sum of the coordinate
space R, momentum space P, and spin-direction space S,
i.e., x�R � P � S. Referring to Eq. �2�, H can be decom-
posed into the sum of three operators, representing the
atomic force F, atomic momentum P, and spin precession S,
defined as

F:R � S → P such that Fx 	 −
�U

�R
+

1

2�
i,j

�Jij

�R
�1 − ei · e j� ,

P:P → R such that Px 	
p

m
,

S:R � S → S such that Sx 	 e � �
i

Jiei. �4�

In this equation, F relates an element in R � S to an element
in P; its operation leaves the elements in R and S un-
changed. Similarly, the operation of P relates an element in
P to one in R, leaving the element in P unchanged. The
operation of S is the only one that changes the elements in S
which it operates on. The treatment of S has to be achieved
in a self-consistent way and will be considered as we pro-
ceed. Using these three operators, the equations of motion
�Eq. �2�� can be written as

Hx 	 �P + F + S�x �5�

and

d

dt
R

p

e
� = �P + F + S�x =


p

m

−
�U

�R
+

1

2�
i,j

�Jij

�R
�1 − ei · e j�

e � �
i

Jiei
� .

�6�

If we assume that H is constant within a small time interval
between time t and t+�t, the solution of Eq. �3� can be
formally written as

x�t + �t� = eH�tx�t� . �7�

According to STD �2�,

eH�tx = e�P+F+S��tx = eS��t/2�e�F+P��teS��t/2�x + O��t3� .

�8�

Physically, when one deals with the operation of �F+P�,
only variables related to the lattice, i.e., R and p, are affected
but not the spin directions �ek�. In other words, �ek� are fro-
zen during the operation of �F+P�, and the second equation
in Eq. �2� can be written as

dpk

dt
= −

�U

�Rk
+

1

2�
i,j

�Jij

�Rk
�1 − ei · e j� 	 −

�U�

�Rk
. �9�

With frozen spins, Eq. �2� then reduces to the equation of
motion of conventional MD, for which the symplecticity of
the STD has already been proven �2�.

The operation of the spin precession operators S only
affects the elements of the spin subspace and does not affect
the lattice that can be considered frozen during the evolution
of x under the operation of S. Yet, the operation of S is
complex to implement because the effective field encoun-
tered by a particular spin is a self-consistent field determined
by all the neighboring spins. Indeed, the third equation in Eq.
�2� constitutes a system of coupled first-order differential
equations, and instead of a single equation like the case of
the coordinates and momenta, the spin precession operators
S in Eq. �4� bring changes to itself via its action on S. It is
impractical to solve for the spin precessions of a reasonably
large simulation system taking into account its self-
consistent nature. We can circumvent the problem by decom-
posing the spin subsystem further into a series of single spin
precession, an action that is not needed for the lattice sub-
system. By using the second-order STD, one can transform
this messy problem into a series of single spin rotations.
However, the trade-off is an O��t3� trajectory error. Thus,
the spin directions are further decomposed into a direct sum
of subspaces, each of which only contains the spin direction
of a single atom. The spin precession operator S can then be
written as the sum of a series of single spin precession op-
erators �3�, i.e., S= �S1+S2+ . . . +SN−1+SN�, so that in the
STD scheme we may write
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eS�x = eS1��/2�eS2��/2�
¯ eSN−1��/2�

�eSN�eSN−1��/2�
¯ eS2��/2�eS1��/2�x + O��3� . �10�

Since the rotation of a single spin is analytically solvable
�15� involving no numerical dissipation of the total energy,
this leads to the symplecticity of the method.

III. PARALLEL ALGORITHM

Parallel algorithms of MD are usually designed around
three types of decomposition schemes, i.e., atomic, force,
and spatial �8,12�, designed to redistribute the workload over
a set of processors or threads to speed up the computation by
performing independent procedures simultaneously. Trobec
et al. �13� reviewed several symplectic integration methods
for MD simulations with parallel algorithms. Although the
leap-frog-Verlet �LFV� and split integration symplectic �SIS�
methods are different on how the Hamiltonian is split, both
of them belong to the second-order STD. The LFV �or ve-
locity Verlet� algorithm is indeed equivalent to the STD used
in MD cases, with solution �2�

x�t + �t� = eH�tx�t� = eF�t/2eP�teF�t/2x�t� + O��t3�
�11�

for the operator H= �F+P� and x is the generalized coordi-
nates. Within a single time step, these three evolutionary
steps have to be processed sequentially. Thus, a parallel al-
gorithm of any of the three types of decompositions can only
be implemented within each evolutionary step �13�.

This type of algorithm is effective only when each evolu-
tion operation may involve with a sufficiently large number
of variables simultaneously. However, in SLD simulations,
the evolution of the spin has to be treated sequentially. This
situation may be most easily visualized in the pure spin dy-
namics example of a one-dimensional �1D� spin chain sys-
tem with ten spins, as depicted schematically in the top half
of Fig. 1. The evolution of the spin chain from time t to t
+�t in the STD scheme can be written as

e�t + �t� = eS1�t/2eS2�t/2
¯ eS10�t

¯ eS2�t/2eS1�t/2e�t�

+ O��t3� , �12�

where eSk�t is the evolution operator of ek�t� over the time
interval t→ t+�t and e�t�= �ek�t�� is the system of unit
atomic spin vectors. In Eq. �12�, the evolution of the spin
system is processed from spin 1 to 10, then reversely from
spin 10 to 1. For simplicity, it may be represented as �1, 2, 3,
4, 5, 6, 7, 8, 9, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1�. In other words, the
evolution of spin 1 depends on spin 2, the evolution of which
depends on spin 3 up to spin 10. It is impossible to do any
parallel programming under such circumstances. Omelyan et
al. �4� proposed an iterative method on the spin precession
that is suitable for parallel programming. However, its per-
turbative nature is a lethal cause to the nonconservation of
energy when a large number of time steps are involved even
though the error is only O��t3�.

In most computer simulations, a cutoff distance for the
interatomic potential is used to account for screening effects
and to cut down on unnecessary computation. The dynamics

of an atom and its spin thus only depend on those in a de-
fined neighborhood and are independent of those outside this
neighborhood. In other words, the evolution of an atom and
its spin only depends on information from a selected number
of atoms to which it is linked rather than from the entire
system.

For the 1D spin chain, for example, if the exchange cou-
pling is assumed to extend to the second nearest neighbors
only, the evolution of spin 1 is independent of spins 4 and 7
�the bottom of Fig. 1�. In addition, according to STD,

e�A+B+C��x�t� = eA�/2eB�/2eC�eB�/2eA�/2x�t� + O��3�

= eB�/2eA�/2eC�eA�/2eB�/2x�t� + O��3�

= eC�/2eB�/2eA�eB�/2eC�/2x�t� + O��3� . �13�

Thus, the order of the operation is immaterial if they are
interchanged according to Eq. �13�. This property allows us
to rearrange �1,2 , . . . ,10, . . . ,2 ,1� into �1, 4, 7, 2, 5, 8, 3, 6,
9, 10, 9, 6, 3, 8, 5, 2, 7, 4, 1� or ��1,4,7�, �2,5,8�, �3,6,9�, 10,
�3,6,9�, �2,5,8�, �1,4,7��. Because atoms 1, 4, and 7 in �1,4,7�
are independent, they evolve independently and can be pro-
cessed simultaneously in different threads, followed by the
group �2,5,8�, then �3,6,9�, and so on. For the remaining
atom 10, it is a group on its own. We may use this approach
to formulate a parallel algorithm in which atoms are col-
lected into groups within which members are all independent
and can therefore be processed simultaneously in different
threads. Of course, it is important that before starting any
calculation on a specific group, one must ensure that the
calculation on the previous group is completed. In other
words, a “barrier” directive in the programming code is
needed.

FIG. 1. �Color online� Schematic picture of 1D spin chain con-
taining ten spins, where the Suzuki-Trotter decomposition is �top�
sequential and �bottom� parallelize.
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In two-dimensional �2D� and three-dimensional �3D�
cases, although one may still use the atomic delinking ap-
proach, a spatial delinking approach may be more conve-
nient. As in conventional MD, the simulation box is usually
divided into many smaller boxes, called link cells �16�. Since
the edge of each cell is larger than the cutoff distance�s� of
interatomic potential and/or exchange coupling, the forces on
a particular atom or spin can only come from atoms within
its own cell or surrounding cells. The implementation of link
cells greatly enhances the computation efficiency by reduc-
ing redundant calculations. Figure 2 is an illustration of a 2D
system divided into 25 link cells with periodic boundary con-
dition. Treating each cell as a subsystem, they may be
grouped into groups A–H, so that any atom in a member cell
of a group is independent of any atom in any other cell of the
same group. As a result, cells in the same group can be
processed simultaneously in different threads. For example,
cells �1,3,11,13� constitute group A, �2,4,12,14� group B, etc.
Then, cells 1, 3, 11, and 13 can be processed concurrently.
The working sequence �1,2 , . . . ,25. . . ,2 ,1� can be recast
into a different one �A,B, . . . ,H, . . . ,B ,A�, i.e.,

eL1��t/2�eL2��t/2�
¯ eL25�t

¯ eL2��t/2�eL1��t/2�x�t�

→ eLA��t/2�eLB��t/2�
¯ eLH�t

¯ eLB��t/2�eLA��t/2�x�t� .

�14�

It is to be noted that spins within a link cell have to be
processed sequentially according to STD. The 3D case is
similar to 2D case, but the number of cells in a group is
increased to 26. In practice, a subprogram can be written to
allocate members into groups automatically.

Essentially, the parallel algorithm works to rearrange the
order of the evolutionary operations, without violating the
validity of STD. Then, one can gather them into groups in
which the cells are independent, so that in each group evo-
lutionary step all the cells in the group can be processed
simultaneously in parallel. Of course, the evolutionary opera-
tion of different groups still has to be treated sequentially.

The integrity of the algorithm is established by checking
with Bernstein’s conditions �17� and Lamport’s sequential
consistency model �18�. Bernstein’s condition states that
when there are two program fragments Pi and Pj, with input
Ii�j� and output Oi�j� variables, they can be calculated simul-
taneously if Ii�j��Oj�i�=� and Oi�Oj =�. It means that the
same memory cannot be shared between different threads,
except for inputs only. Otherwise, it causes race condition.
Since each operator only needs information on itself and its
surroundings, they do not need data from other members of
the same group nor alter any of their properties. Therefore, it
satisfies Bernstein’s condition. Moreover, working on the
same group members in sequential or parallel should be the
same, as all processors are just calculating according to the
same set of equations of motion, and each calculation is in-
dependent of the output of its group member. It satisfies
Lamport’s sequential consistency model.

Indeed, the foregoing spatial decomposition scheme can
also be applied to MD simulations. In this case, the use of
protective locks �18� on memory �e.g., the C/C		 directive
“#pragma omp atomic” in OPENMP�, which may slow down
the program in the evaluation of forces, can be saved. Since
forces are calculated in pairs �Newton’s third law�, the out-
puts do not only modify the data within a particular link cell,
they also modify those in surrounding. The present method
cancels the need of a lock within its own link cell. Surely,
there is trade-off between this and the load balance. From the
foregoing example, one may note that idle processors are
unavoidable.

IV. EFFICIENCY AND STABILITY

In the following, the efficiency of the proposed algorithm
will be evaluated. For this purpose, simulations are per-
formed according to the SLD equations of motion �i.e., Eq.
�2�� in a microcanonical �NVE� ensemble of ferromagnetic
iron �1�. We used the Dudarev-Derlet potential �19� as the
potential U. An ad hoc pairwise Jij is obtained by fitting to
ab initio data �1�. In each case, atoms are initially placed in a
regular bcc lattice in �100� directions with lattice constant
a=2.8665 Å. Five different lattice configurations are used.
They are all cubes with edge sizes of 20a, 30a, 40a, 50a, and
80a, with numbers of atoms of 16 000, 54 000, 128 000,
250 000, and 1 024 000, respectively. The velocities of all
the atoms are initially set to zero. All the spins in the left-
hand side of the simulation cell are initialized to point up-
ward whereas those on the right-hand side point downward,
making a 180° domain wall structures. Periodic boundary
conditions are applied along x, y, and z. The edge of each
link cell is larger than the cutoff distance of the interatomic
potential and exchange function for spin-spin interaction.
The same spatial decomposition schemes as mentioned be-
fore are applied to the spin and lattice subsystems.

The actual run time of the foregoing model �i.e., H=F
+P+S� and the one with only the spin part �i.e., H=S only;
a fixed lattice system� is recorded for 10 000 time steps. A
computer with two Intel xeon quad-core X5355 CPU and 4
Gbytes random access memory �RAM� is used. With a total
of eight cores, only the efficiencies of one to eight threads

FIG. 2. �Color online� A two-dimensional system is cut into 25
link cells with periodic boundary condition. Cells are allocated into
group A to group H.
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are measured. Scientific Linux 5.0 and Intel C		 compiler
10.0 with OPENMP package are used. The efficiency is de-
fined as �20�

eff�n� =
T�1�

nT�n�
, �15�

where eff�n� is the efficiency and T�n� is the run time for n
threads. The term efficiency, of course, does not relate di-
rectly to the actual run time.

Figures 3 and 4 show the run time and efficiency of the
spin-only subsystem, while Figs. 5 and 6 show the case in
which a coupled spin and lattice subsystem is treated. In both
cases, the run time decreases with an increasing number of
threads, independent of the size of the systems �ranging from
10 000 to over 106 spins and atoms�. However, they tend to
saturate at about eight threads due to Amdahl’s law �21�,
which states that because of the sequential component, a par-
allelized program cannot be speeded up more than n times.

FIG. 3. �Color online� The actual run time of spin-only system �top� versus number of threads with 16 000, 54 000, 128 000, 250 000,
and 1 024 000 spins, �bottom left� versus number of spins with threads from 1 to 4, and �bottom right� versus number of spins with threads
from 5 to 8.

FIG. 4. �Color online� The efficiency of spin-only system �left� versus number of threads with 16 000, 54 000, 128 000, 250 000, and
1 024 000 spins and �right� versus number of spins with threads from 1 to 8.

PARALLEL ALGORITHM FOR SPIN AND SPIN-LATTICE … PHYSICAL REVIEW E 79, 046703 �2009�

046703-5



Of course, one can always improve on the efficiency by fine
tuning the program, such as eliminating unnecessary sequen-
tial components. Well designed hardware architecture or an
expensive compiler may also help. However, this is out of
the scope of this paper.

Next, we checked whether the run times appear to in-
crease linearly with the systems’ size or not. Because of the
order-N nature of the link-cell system, the total time spent on
force calculations increases only linearly with the number of

atoms. When eight threads are used, a 1 024 000 atoms sys-
tem takes about 2.3 s/time step for the spin-only system and
8.4 s/time step for the spin-lattice systems. If one uses a time
step of 1 fs, it takes about 2.7 and 9.7 days, respectively, to
do a simulation of 100 ps.

As can be seen in Fig. 4, the efficiency generally de-
creases as the number of threads increases due to Amdahl’s
law. However, exceptions do exist because of a higher pro-
portion of idling processors, e.g., the efficiency using three

FIG. 5. �Color online� The actual run time of spin-lattice system �top� versus number of threads with 16 000, 54 000, 128 000, 250 000,
and 1 024 000 spins, �bottom left� versus number of spins with threads from 1 to 4, and �bottom right� versus number of spins with threads
from 5 to 8.

FIG. 6. �Color online� The efficiency of spin and lattice coupled system �left� versus number of threads with 16 000, 54 000, 128 000,
250 000, and 1 024 000 spins and �right� versus number of spins with threads from 1 to 8.
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threads is higher than that using two threads in the case of
1 024 000 spins. This can be understood as follows. Using
the potential cutoff, the system was automatically separated
into 166 375 link cells. They were put into groups so that any
member in a group is not a neighbor of any other member,
i.e., based on the same principle as the 2D case �Fig. 2�. A
spin-only system with 1 024 000 spins �or 166 375 link
cells� was separated into 18 groups—8 groups with 19 683
members �or link cells�, 2 groups with 2783 members, 2
groups with 1431 members, 2 groups with 207 members, 1
group with 31 members, 1 group with 30 members, and 2
groups with 4 members. Suppose the computer time involved
with each link cell is about equal, then the idle processor
time of each group can be calculated from the group size
modulo the number of threads, resulting in 15 units of idle
processor time for the two-thread case and 7 units for the
three-thread case. Of course, there are other factors that dic-
tate the processing speed, such as the computer architecture,
operating system, processor, memory, etc. Moreover, since
link cells are not required to have the same number of atoms,
load balancing is another important issue in this kind of spa-
tial decomposition algorithm.

As a whole, the efficiency decreases roughly linearly from
100% to about 60%–70%, as the number of threads used
increases from 1 to 8. Compared to the efficiency of some
other parallel algorithms, such as certain force decomposi-
tion method �10�, which can attain 98.88%, the current
method are certainly inferior. However, one must remember
that we are dealing with an extreme case of STD, in which
most parallel processing schemes do not apply.

Numerical stability is another important factor to con-
sider. Figure 7 shows that the total energy per atom of the
180° domain wall system with 54 000 atoms and spins as a
function of computation time using, respectively, the
�S ,F ,P ,F ,S� and the �S ,P ,F ,P ,S� algorithms, with the
proposed parallel algorithm already incorporated. The energy
is subtracted by its initial value. The F, P, and S are the

force, momentum, and spin precession operators, respec-
tively, as we defined in Eq. �4�. �S ,F ,P ,F ,S� and
�S ,P ,F ,P ,S� refer to the sequence of operations in the
STD. For example, �S ,F ,P ,F ,S� means eH�t

→eS��t/2�eF��t/2�eP�teF��t/2�eS��t/2�. The total energy per atom
remains constant with error within the order of 10−5 eV and
sometimes even smaller than 10−6 eV. This demonstrates the
stability of our procedure for long runs ��1 ns�. Further-
more, the speed of the �S ,P ,F ,P ,S� SLD algorithm is
found to be approximately half the speed of the velocity
Verlet algorithm when compared with conventional MD.
Moreover, the �S ,F ,P ,F ,S� algorithm is approximately
60% slower than the �S ,P ,F ,P ,S� algorithm. Since evalu-
ating forces includes the time consuming calculations of the
potential, it is obvious that performance can be much im-
proved by calculating it once, instead of twice, per cycle.

V. CONCLUSION

A parallel algorithm is developed for SD and SLD simu-
lations. Since the spin precession operator produces changes
in itself, the set of first-order differential equations has to be
solved via a complex self-consistent procedure. By using the
second-order STD, one can avoid the complexity by trans-
forming this problem into a series of single spin rotations.
Since the rotation of a single spin is analytically solvable
involving no numerical dissipation of the total energy, inclu-
sion of the spin subsystem does not affect the symplecticity
of the method, which has been proven in the MD case. At
first sight, each evolutionary step for the spin subsystem has
to be processed sequentially, one spin at a time, and a paral-
lel algorithm appears difficult. We have shown that, by ar-
ranging the order of the evolution operations in groups and
making sure they are independent of each other within a
group using the cutoff distance, a parallel algorithm for STD
can be designed. The efficiency is about 60%–70% when
using eight threads. The run time per time step is linearly
proportional to the system size. Such algorithms can also be
implemented on conventional MD and SD programs, without
handling complicated mathematics. It can be applied to very
large system �
106 atoms and/or spins�. It also shows good
stability and energy conservation in long runs of 106 time
steps. No iteration or further approximation is needed within
our algorithm. Only the trajectory error with O��t3� from the
STD remains. The proposed method is not mutually exclu-
sive to other decomposition methods. For example, one can
use spatial decomposition twice, which gives two layers of
decomposition. The first layer can be distributed within the
cluster by message passing interface �MPI� and the second
layer is distributed within the machine by OPENMP.
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FIG. 7. The total energy per atom versus time for a microca-
nonical ensemble simulation of the dynamical relaxation of a 180°
domain wall. The energy is subtracted by their initial values. Two
algorithms, the �S ,F ,P ,F ,S� and the �S ,P ,F ,P ,S�, in both of
which the parallel algorithm for STD is incorporated, are compared.
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