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Landauer-Büttiker formula for time-dependent transport through resonant-tunneling structures:
A nonequilibrium Green’s function approach
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A nonequilibrium Green’s-function formalism is employed to study the time-dependent transport through
resonant-tunneling structures. With this formalism, we derive a time-dependent Landauer-Bu¨ttiker formula that
guarantees current conservation and gauge invariance. Furthermore, we apply the formula to calculate the
response behaviors of the resonant-tunneling structures in the presence of rectangular-pulse and harmonic-
modulation fields. The results show that the displacement current plays the role of retarding the tunneling
current.
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The study of semiconductor nanostructures is one of
most active areas in condensed-matter physics. Many
nomena of electrical conduction in the dc situation have b
successfully explained for mesoscopic systems1 since the
pioneering works of Landauer2 and Büttiker et al.3 Recently,
time-dependent transport through mesoscopic systems
aroused much interest and the Keldysh nonequilibri
Green’s functions are widely applied to analyze su
phenomenon.4 However, in many studies, only the tunnelin
current is calculated, while the displacement current indu
by a time-dependent field is ignored. In recent years,
incompleteness has begun to be recognized.5–7

As a matter of fact, the importance of the displacem
current was first noted by Bu¨ttiker and co-workers.8–10 To
analyze the electron transport in the presence of ac fie
they developed a linear, low-frequency theory8,9 based on the
scattering matrix formulation, in which current conservati
and gauge invariance are guaranteed. Very recently, W
et al.7 further studied the ac problem by means of noneq
librium Green’s functions and also derived an expression
the linear dynamic conductance that conserves electric
rent and satisfies the gauge invariance. In the present p
we investigate the time-dependent transport throu
resonant-tunneling structures. We also adopt the nonequ
rium Green’s-function formalism such that far-from
equilibrium situations can be analyzed conveniently. In c
trast to previous works by Bu¨ttiker et al.8,9 and Wanget al.,7

we conduct our calculations directly in the time domain a
a time-dependent Landauer-Bu¨ttiker formula that guarantee
current conservation and gauge invariance is derived. In
approach, the derived time-dependent current formula is
plicable to both small and large bias-voltage situations.
nally, the Landauer-Bu¨ttiker formula is applied to the
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rectangular-pulse and harmonic-modulation cases to re
the response behaviors of the resonant-tunneling structu

We first consider the system described by the Hamilton

H5 (
s,kPL,R

ekscks
† cks1eds~ t !cds

† cds

1 (
s,kPL,R

~Vkscks
† cds1H.c.!. ~1!

The first term describes the leads. The operatorcks
† creates

an electron with momentumk and spins in either the left~L!
or right ~R! lead. The second term models the scattering
gion andcds

† creates an electron with a time dependent
ergy leveleds(t)5e0s1D(t). The third term characterize
the tunneling transfer of electrons between the leads and
scattering region. This Hamiltonian can be used to mo
either a quantum dot with one energy level~in which the
intradot repulsion is not taken into account! or a double-
barrier quantum-well structure.

The time dependence of the energy leveleds(t) in the
scattering region can be introduced by imposing a tim
dependent field. For instance, in a lateral quantum-dot st
ture, it can be realized by applying a time-dependent volt
to the gate above the dot. As a result of the time depende
charge accumulation occurs in the scattering region and
neling current is not conserved. Nevertheless, conserva
of the total current is preserved and one has5,7,11

JsL
c ~ t !1JsR

c ~ t !2e
dNs~ t !

dt
50, ~2!

whereJsL(R)
c (t) is the tunneling current with spins flowing

from the left ~right! lead into the scattering region, an
1978 ©2000 The American Physical Society
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Js
d(t)52edNs(t)/dt is the displacement current. Her

Ns(t)5^cds
† (t)cds(t)& represents the occupation of the lev

eds(t). We will explain later that the displacement curre
can be partitioned into two terms, i.e.,Js

d(t)5JsL
d (t)

1JsR
d (t). Equation~2! can then be rewritten as

JsL~ t !1JsR~ t !50, ~3!

whereJsa(t)5Jsa
c (t)1Jsa

d (t) is the total current with spin
s flowing from the leada into the scattering region.

According to the theory of Jauho and co-workers,11,12 the
tunneling current with spins, flowing from the left~right!
lead into the scattering region, is given by

JsL(R)
c ~ t !52

2e

\ E
2`

t

dt1E de

2p
Im$e2 i e(t12t)Gs

L(R)~e!

3@Gs
,~ t,t1!1 f L(R)~e!Gs

r ~ t,t1!#%, ~4!

where

Gs
L(R)~e!52p (

kPL(R)
uVksu2d~e2eks!

and f L(R)(e) is the Fermi distribution function of the isolate
left ~right! lead. The retarded and Keldysh Green’s functio
Gs

r (t,t1) andGs
,(t,t1), are given, respectively, by

Gs
r ~ t,t1!52 iu~ t2t1!^$cds

† ~ t1!,cds~ t !%& ~5!

and

Gs
,~ t,t1!5 i ^cds

† ~ t1!cds~ t !&. ~6!

Here, we consider the wideband limit11 where the elastic
couplings to the leadsGs

a , are independent of energy. In th
limit, the total current with spin s, Js(t)5JsL(t)
52JsR(t), can be written as

Js~ t !5
1

Gs
L1Gs

R
@Gs

RJsL~ t !2Gs
LJsR~ t !#

5
e

\E de
Gs

LGs
R

Gs
L1Gs

R
@ f L~e!2 f R~e!#rs

(0)~e,t !

1
1

Gs
L1Gs

R
@Gs

RJsL
d ~ t !2Gs

LJsR
d ~ t !#, ~7!

with rs
(0)(e,t) given by

rs
(0)~e,t !52

1

p
Im$as~e,t !%, ~8!

where

as~e,t !5E dt1ei e(t2t1)Gs
r ~ t,t1!. ~9!

The retarded Green’s function is given by

Gs
r ~ t,t1!52 iu~ t2t1!expH 2 i E

t1

t

dt2Fe0s1D~ t2!2
i

2
GsG J ,

~10!
l
t

,

with Gs5Gs
L1Gs

R .
The occupation of the leveleds(t) can be written as

Ns(t)5Im$Gs
,(t,t)% according to the definition of the

Keldysh Green’s function. Following Jauhoet al.,11 it can be
shown that

Gs
,~ t,t !5(

L,R
Gs

L/RE de

p
f L/R~e!As~e,t !, ~11!

where

As~e,t !5
i

2
uas~e,t !u2. ~12!

Therefore, the displacement currentJs
d(t)52edNs(t)/dt

may naturally be cast into the partitioned form

Js
d~ t !5JsL

d ~ t !1JsR
d ~ t !, ~13!

where

JsL(R)
d ~ t !52

e

\E de

p
Gs

L(R) f L(R)~e!ImH dAs~e,t !

dt J .

~14!

In the present situation, the displacement currents vanis
the absence of tunneling, i.e.,JsL(R)

d (t)50 for Gs
L(R)50.

This is because the charge accumulation, only due to
tunneling, is taken into account. Clearly, it can be seen fr
Eq. ~11! that Gs

,(t,t)50 anddGs
,(t,t)/dt50 for both Gs

L

50 andGs
R50, leading toNs(t)50 anddNs(t)/dt50 in

the absence of tunneling. If the charge accumulation due
pure capacitor coupled to a time-varying voltage source8,9 is
also taken into account, the total charge number accumul
in the scattering region is then given byNs(t)1Nsc(t),
whereNsc(t) is induced by the pure capacitor coupled to
time-varying voltage source and its derivative with respec
time,dNsc(t)/dt can be nonzero in the absence of tunnelin
In this case, one needs to further partition the accumula
charge numberNsc(t) in order that the total displacemen
current may be partitioned. However, the present appro
does not concern this case, but focuses on the situation11 that
the charge accumulation in the scattering region results f
tunneling.

Substituting Eq.~14! into Eq. ~7!, we finally obtain the
total current through the resonant-tunneling system

J~ t !5(
s

Js~ t !, ~15!

where

Js~ t !5
e

\E de
Gs

LGs
R

Gs
L1Gs

R
@ f L~e!2 f R~e!#rs~e,t !, ~16!

with

rs~e,t !5rs
(0)~e,t !1rs

(1)~e,t !. ~17!

Herers
(0)(e,t) is given by Eq.~8! andrs

(1)(e,t) by

rs
(1)~e,t !52

1

p
ImH dAs~e,t !

dt J . ~18!
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This is a Landauer-Bu¨ttiker formula2,3 generalized to the
time-dependent case. It satisfies total current conservatio
is evident from the above derivation. The gauge invaria
can also be easily verified by demonstrating that shifting
resonant level and the chemical potentials of the left a
right leads by the same constant, leads to no change in
formula. Obviously, in the equilibrium situation, the di
placement currents have the relation:7 Jsa

d 5(Gs
a/Gs)Js

d .
When the interaction termUnd↑nd↓ , with nds5cds

† cds ,
is included in Eq.~1!, the Hamiltonian is the Anderso
model. This new Hamiltonian is appropriate to model
quantum dot with intradot Coulomb repulsion.13 If the
Kondo effect is not taken into account, one can derive t
the retarded Green’s function is given by

G s
r ~ t,t1!5Gs

r ~e0s ,t,t1!@12Ns̄~ t1!#

1Gs
r ~e0s1U,t,t1!Ns̄~ t1!, ~19!

where Gs
r (e0s ,t,t1) has the same form as the retard

Green’s function given in Eq.~10!. In the steady case wher
eds(t) and Ns̄(t)5^nds̄(t)& are independent of time, th
Fourier transform ofG s

r (t,t1) is

G s
r ~e!5

12^nds̄&
Z2e0s1 iGs/2

1
^nds̄&

Z2~e0s1U !1 iGs/2
, ~20!

whereZ5e1 ih, with h→0. It is identical to the Green’s
function derived by Pals and MacKinnon14 in their scheme
two. The Keldysh Green’s functionG s

,(t,t) has the same
form as in Eq.~11!, i.e.,

G s
,~ t,t !5(

L,R
Gs

L/RE de

p
f L/R~e!As~e,t !, ~21!

but As(e,t) is replaced by

As~e,t !5
i

2
$uas~e0s ,e,t !u22as~e0s ,e,t !@bs~e0s ,e,t !#*

1as~e0s1U,e,t !@bs~e0s1U,e,t !#* %, ~22!

with

as~e0s ,e,t !5E dt1ei e(t2t1)Gs
r ~e0s ,t,t1! ~23!

and

bs~e0s ,e,t !5E dt1ei e(t2t1)Ns̄~ t1!Gs
r ~e0s ,t,t1!,

~24!

whereNs(t) is determined byNs(t)5Im$G s
,(t,t)%. In terms

of the Green’s functionsG s
r (t,t1) and G s

,(t,t), it can be
derived that in the interacting case, the displacement
total currents are also given by the same formulas as in E
~13!–~17!. Here,rs

(0)(e,t) has the same form as in Eq.~8!
andrs

(1)(e,t) as in Eq.~18!, but as(e,t) is given by

as~e,t !5E dt1ei e(t2t1)G s
r ~ t,t1! ~25!

andAs(e,t) by Eq. ~22!.
as
e
e
d
ur

t

d
s.

The total current,Ja(t)5(sJsa(t), flowing from leada
into the scattering region can be written as

Ja~ t !5E dvJa~v!e2 ivt, ~26!

where the total current in the frequency domainJa(v) can
be expanded in a series form in terms of bias voltages
plied to the leads,

Ja~v!5(
b

Gab~v!Vb1(
bg

Gabg~v!VbVg

1(
bgd

Gabgd~v!VbVgVd1•••. ~27!

When the bias voltages are very small, the linear expres
Ja(v)5(bGab(v)Vb can be used approximately. As fo
large bias voltages, nonlinear dynamic conductanc
Gabg(v),Gabgd(v), . . . , have to be derived in order to ob
tain accurateJa(v) andJa(t). In Refs. 7 and 8, technique
are developed to derive the linear dynamic conducta
Gab(v), but no nonlinear dynamic conductance is obtain
Actually, it is a complicated and onerous task to derive
nonlinear dynamic conductances. Nevertheless, the cur
formulas derived in our approach are applicable to b
small and large bias-voltage situations and the response
havior of the structures in the presence of time-varying fie
can be studied directly in the time domain.

In the following, we employ the time-depende
Landauer-Bu¨ttiker formula to study the response of th
resonant-tunneling structure to a rectangular pulse and a
monic modulation, respectively. Here, only the nonintera
ing system is considered. In Fig. 1, we show the occupa
N(t)5Ns(t) of the resonant level~solid curve! and the total

FIG. 1. Occupation of resonant level~solid curve! and total
current through a resonant-tunneling structure~dashed curve! as a
function of time, where the chemical potentials of the left and rig
leads are kept atmL520 andmR50. For t,0 andt.3, the reso-
nant level is ate0s530, while it is shifted down toe0s2D510 by
a rectangular pulse during the period of 0,t,3. In this figure and
the following ones, the temperature iskBT50.1, the elastic cou-
plings to the leads areGs

L5Gs
R5

1
2 G, and the energy, current, an

time are in units ofG, 2eG/\, and\/G, respectively.
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current, J(t)5(sJs(t), through the resonant-tunnelin
structure~dashed curve! in response to a rectangular-pul
potential. The temperature is chosen to bekBT50.1 and the
chemical potentials of the left and right leads are maintai
to bemL520 andmR50. The rectangular pulse begins att
50 by shifting abruptly the resonant level frome0s530 to
e0s2D510 and lasts for a duration ofs53. At t53, the
pulse ends and the resonant level shifts back toe0s530.
Figure 1 reveals that the occupation of the resonant level
the total current have the same behavior in response to
rectangular-pulse potential. Whent,0, the energy level
eds(t) is above the chemical potential of the left lead as w
as that of the right lead. As expected, the occupation of
level and the total current are constant and close to zer
this time region. During the period of 0,t,s, the energy of
the resonant level is located in between the chemical po
tials of the leads. Both the occupation of the resonant le
and the total current increase monotonously. Finally, w
the ending of the pulse att53, the occupation of the energ
level and the total current decay back toward zero.

The time-dependent tunneling~dashed curves! and dis-
placement~dotted curves! currents are shown in Fig. 2 fo
the rectangular-pulse case. In Fig. 2~a!, we present the tun
neling and displacement currents,

FIG. 2. ~a! Time-dependent total~solid curve!, tunneling
~dashed curve!, and displacement~dotted curve! currents flowing
from the left lead into the scattering region and~b! those flowing
from the scattering region into the right lead in the rectangu
pulse case.
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JL
c~ t !5(

s
JsL

c ~ t !

and

JL
d~ t !5(

s
JsL

d ~ t !,

flowing from the left lead into the scattering region. It
clear that the tunneling currentJL

c(t) displays ringing
structures12 for both 0,t,s andt.s, but becomes negative
for t.s, revealing that the tunneling current turns to flo
from the scattering region into the left lead as the pulse en
The displacement currentJL

d(t) exhibits similar oscillatory
behaviors and its flowing direction is, however, opposite
that of the tunneling current. This feature implies that t
displacement current tends to retard the tunneling curr
The tunneling and displacement currents,

2JR
c ~ t !52(

s
JsR

c ~ t !

and

2JR
d~ t !52(

s
JsR

d ~ t !,

flowing from the scattering region into the right lead a
given in Fig. 2~b!. Interestingly, both of them have oscilla
tions of much smaller amplitude and their oscillatory beha
iors are drastically different from those presented in F
2~a!. Nevertheless, the total currents, which are obtained
summing the corresponding tunneling and displacement
rents, are the same@see the solid curves in Figs. 2~a! and
2~b!, which are identical to the dashed curve in Fig. 1#. Also,
it can be seen that the displacement current2JR

d(t) plays the
retarding role as well.

The harmonic-modulation case is studied below, wh
the energy of the resonant level varies aseds(t)5e0s

1D0cos(vt). Here, we choosee0s55 and v52, and the
chemical potentials of the left and right leads are kept
mL510 andmR50. Figure 3~a! presents the occupations o
the resonant level forD055 ~solid curve! and 10~dashed
curve! and the corresponding total currents are given in F
3~b!. The results show that the occupation of the reson
level and the total current are periodic but not harmonic;
occupation of the resonant level has the same frequenc
the harmonic potential applied to the level, while the fr
quency of the total current doubles. Furthermore, one can
that the shoulders on the curves of both the occupation of
resonant level and the total current become dim as the
plitude of the applied harmonic potential is strengthened
sharp contrast to the rectangular-pulse case, the total cu
does not exhibit the same response behavior as the occ
tion of the resonant level in the harmonic-modulation cas

In Fig. 4, we show the time-dependent tunneling~dashed
curves! and displacement~dotted curves! currents forD0
510. The tunneling current flowing from the left lead in
the scattering region and that from the scattering region
the right lead have analogous ringing structures as the
neling current shown in Fig. 2 of Ref. 12, but there exists
phase difference between them. The displacement curren

-
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cillates similarly like the tunneling current and flows in a
opposite direction, indicating that it plays the role of reta
ing the tunneling current. Furthermore, it can be seen that
tunneling~displacement! current becomes negative~positive!
in a certain part of each period. The solid curves in Figs. 4~a!
and 4~b! are obtained by summing the corresponding tunn
ing and displacement currents. These solid curves are i
tical to the total current denoted by the dashed curve in F
3~b!. It is interesting to note that the frequency of the to
current becomes doubled, though the tunneling and displ
ment currents have the same frequency as the applied
monic potentialD0 cos(vt).

In conclusion, we have studied the time-dependent tra
port through resonant-tunneling structures. The Keld
nonequilibrium Green’s-function approach is employed a
the transport problem is treated directly in the time doma
A time-dependent Landauer-Bu¨ttiker formula is derived
in the wideband limit, which guarantees current conserva
and gauge invariance. As typical examples, this form
is applied to the rectangular-pulse and harmonic-modula
cases to demonstrate the response behaviors of the reso

FIG. 3. ~a! Occupation of resonant level versus time forD0

55 ~solid curve! and 10 ~dashed curve!; ~b! the corresponding
time-dependent total current. The energy of the resonant level
ies harmonically aseds(t)5e0s1D0cos(vt) and the chemical po-
tentials of the left and right leads are kept atmL510 andmR50.
Here, we choosee0s55 andv52, and the frequencyv is in units
of G/\.
-
e

l-
n-

g.
l
e-
ar-

s-
h
d
.

n
a
n
ant-

tunneling structures. It is found that the displaceme
current plays the role of retarding the tunneling current.

In addition to Eq.~14!, there is another natural way o
partitioning the total displacement current by choosing

JsL~R!
d ~ t !52

e

\E de

p
Gs

R~L ! f R~L !~e !ImH dAs~e,t !

dt J .

For these two natural partitions, which is superior needs
be determined by experiments.
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