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Landauer-Buttiker formula for time-dependent transport through resonant-tunneling structures:
A nonequilibrium Green’s function approach
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A nonequilibrium Green's-function formalism is employed to study the time-dependent transport through
resonant-tunneling structures. With this formalism, we derive a time-dependent LandatilegrBormula that
guarantees current conservation and gauge invariance. Furthermore, we apply the formula to calculate the
response behaviors of the resonant-tunneling structures in the presence of rectangular-pulse and harmonic-
modulation fields. The results show that the displacement current plays the role of retarding the tunneling
current.

The study of semiconductor nanostructures is one of theectangular-pulse and harmonic-modulation cases to reveal
most active areas in condensed-matter physics. Many phéhe response behaviors of the resonant-tunneling structures.
nomena of electrical conduction in the dc situation have been We first consider the system described by the Hamiltonian
successfully explained for mesoscopic systemsisice the

pioneering works of Landaueand Biitiker et al._ Recently, H= E EkaCLeroJf Edg(t)CQGCdo
time-dependent transport through mesoscopic systems has oKeL,R

aroused much interest and the Keldysh nonequilibrium

Green's functions are widely applied to analyze such + 2 (VieCl,CaptH.C). (1)
phenomenofi.However, in many studies, only the tunneling okel,R

current is calculated, while the displacement current induceq_he first term describes the leads. The o eraﬁgrcreates
by a time-dependent field is ignored. In recent years, this ' P

incompleteness has begun to be recognizéd. an electron with momentuand spino in either the left(L)

As a matter of fact, the importance of the displacemeno.r right (R) lead. The second term models the scattering re-

T i i -
current was first noted by Biiker and co-worker&2° To gion andcg,, creates an electron W|t_h a time depende_nt en
analyze the electron transport in the presence of ac fieldS, 2. level eq,(t) = o, + A(L). The third term characterizes

y . P P The tunneling transfer of electrons between the leads and the
they developed a linear, low-frequency théttpased on the

tter: rix lation. in which ¢ i scattering region. This Hamiltonian can be used to model
scattering matrix formulation, in which current conservationgy o o quantum dot with one energy lev@ which the
and gauge invariance are guaranteed. Very recently,

5 7 Wa_r\ﬂtradot repulsion is not taken into accoumr a double-
et al.” further studied the ac problem by means of nonequiygrier quantum-well structure.

librium Green’s functions and also derived an expression for The time dependence of the energy lewgl(t) in the

the linear dynamic conductance that conserves electric CUkcattering region can be introduced by imposing a time-
rent and satisfies the gauge invariance. In the present papgfependent field. For instance, in a lateral quantum-dot struc-
we investigate the time-dependent transport throughure, it can be realized by applying a time-dependent voltage
resonant-tunneling structures. We also adopt the nonequiliio the gate above the dot. As a result of the time dependence,
rium Green’s-function formalism such that far-from- charge accumulation occurs in the scattering region and tun-
equilibrium situations can be analyzed conveniently. In conneling current is not conserved. Nevertheless, conservation
trast to previous works by Biiker et al®®and Wanget al,”  of the total current is preserved and one®Has

we conduct our calculations directly in the time domain and
a time-dependent Landauer4iker formula that guarantees
current conservation and gauge invariance is derived. In our
approach, the derived time-dependent current formula is ap-
plicable to both small and large bias-voltage situations. Fiwherle,,_(R)(t) is the tunneling current with spiar flowing
nally, the Landauer-Btiker formula is applied to the from the left (right) lead into the scattering region, and

dN, () _

o () +I5R(D)—e at

0, @
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J?,(t)z—edN,,(t)/dt is the displacement current. Here, with F,,:F(L,Jrl“('f.

N, (t)=(cl, (t)cq,(t)) represents the occupation of the level ~ The occupation of the leveky,(t) can be written as
€4-(1). We will explain later that the d|splacement current N (t)=1m{G; (t,t)} according to the definition of the
can be partitioned into two terms, i.ed%(t)=J9 (t) Keldysh Green’s function. Following Jauleo al,** it can be

J9(t). Equation(2) can then be rewritten as shown that
= de
oD Jr(DZ0 © Gr(t0=3, TR [ St aaen, v
whered, (t)=J°_(t)+J9_(t) is the total current with spin LR m
o flowing from the leadx into the scattering region. where

According to the theory of Jauho and co-workEr&? the
tunneling current with spirr, flowing from the left(right)

i
— _ 2
lead into the scattering region, is given by Aqet)= 2 |as(e,t)]". (12)
2e [t de et Therefore, the displacement curremi(t)=—eng(t)/dt
Yo =" ff_mdtlf 5 Imie™ O ®(e) may naturally be cast into the partitioned form
X[GZ(t,ty) + fL e (€)GL(LEN T}, (4) I =J9L(1) + I%(D), (13)
e [ de dA,(e,t)
rt®e)= ; IVio|28(e— €4y) JgL(R)(t)I—gI ?FI(;(R)fL(R)(E)lm(T}-
(14

andf (g (e) is the Fermi distribution function of the isolated
left (right) lead. The retarded and Keldysh Green'’s functions
Gl (t,t;) andG; (t,t,), are given, respectively, by

In the present situation, the displacement currents vanish in
the absence of tunneling, i.eJg, g (t)=0 for I',®=0.
This is because the charge accumulation, only due to the

G (t,t;)=—i6(t—t,) CTG t1),Can(t 5 tunneling, is taken into account. Clearly, it can be seen from
(Lt (1) ({Co(t) Canlt)]) ® Eq. (1) that G=(t,t)=0 anddG_ (t,t)/dt=0 for bothT':
and =0 andI'?=0, leading toN,(t)=0 anddN,(t)/dt=0 in
. the absence of tunneling. If the charge accumulation due to a
< _i/at
Gy (t,t1) =i{Cay(t1)Ca(1))- ©6) pure capacitor coupled to a time-varying voltage sotitée

Here, we consider the wideband litditwhere the elastic also taken into account, the total charge number accumulated

couplings to the leadE®, are independent of energy. In this in the scattering region is then given BY,(t)+N,(t),

limit, the total current with spino, J,(t)=J,.(t) vyhereN(,q(t) is induced by the pure capacitor (_:oupled to a

=—J,&(t), can be written as time-varying voltage source and its derivative with respect to
time, dN,.(t)/dt can be nonzero in the absence of tunneling.
In this case, one needs to further partition the accumulated

J, ()= ——— [F () — FLL,JUR(t)] charge numbeN,.(t) in order that the total displacement

L R
I'o+T, current may be partitioned. However, the present approach
does not concern this case, but focuses on the sitdatioat
f de——2_[f, (&) —fr( ]p(o)(e,t) the ch_arge accumulation in the scattering region results from
tunneling.
Substituting Eq.(14) into Eq. (7), we finally obtain the
Rd L d total current through the resonant-tunneling system
+ 1_,|_+FR[F¢rJ0L(t)_FGJUR(t)]: (7)
= 1
with p{9(e,t) given by 2(;‘ Io(1), (19
o 1 where
pO(e,t)=—=Im{a,(e1)}, (8)
m e rirr
where Jg(t)=gf de—FL+FR[fL(e)—fR(e)]pg(e,t), (16)
_ ie(t—ty) r with
aU(E,t)— dtle 1 Gu_(t,tl). (9)
t)=p(e,t) + p (e t). 1
The retarded Green'’s function is given by polet)=pg (e Fpo(et) an
_ Here p9)(e,t) is given by Eq.(8) andp(!)(e,t) by
t i
. Y . !
G(,-(tyt]_)_ | 0(t tl)ex% | J; dtz 600."‘ A(tz) 2 F(T:H ’ (1) 1 dAo-(G,t)
1 (e,t)=——Im{ ———. (18
(10) T dt
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This is a Landauer-Btiker formule® generalized to the AL B B L
time-dependent case. It satisfies total current conservation a 96
is evident from the above derivation. The gauge invariance — N
can also be easily verified by demonstrating that shifting the I
resonant level and the chemical potentials of the left and
right leads by the same constant, leads to no change in ou
formula. Obviously, in the equilibrium situation, the dis-
placement currents have the relatiod? = (I'“/T,)J9. -
When the interaction terng,ngy, , with ndg=cg(rcdo,
is included in Eq.(1), the Hamiltonian is the Anderson
model. This new Hamiltonian is appropriate to model a
quantum dot with intradot Coulomb repulsibh.If the
Kondo effect is not taken into account, one can derive that
the retarded Green’s function is given by

g:r(trtl) = G:r( €00 ’titl)[l_ N;(tl)]
+G:r(EOU+U!tvtl)N;(tl)v (19)

Jualng

FIG. 1. Occupation of resonant levédolid curve and total
where G| (e, .t,t;) has the same form as the retardedcurrent through a resonant-tunneling struct(dashed curveas a
Green’s function given in Eq10). In the steady case where function of time, where the chemical potentials of the left and right
€40(t) and N (t)=(n4,(t)) are independent of time, the leads are kept at, =20 andur=0. Fort<0 andt>3, the reso-

Fourier transform of7! (t,t,) is nant level is at,,= 30, while it is shifted down te&,,— A=10 by
a rectangular pulse during the period 6£6<3. In this figure and
1-(ngy) (Nge) the following ones, the temperature kgT=0.1, the elastic cou-

g:r(f): 7—en +il /2+Z—(e +U)+il, /2 (20 plings to the leads arEb:FE: %F, and the energy, current, and
0o = "o 0o 7 time are in units o, 2el'/#, and#/T, respectively.
whereZ=e+in, with »—0. It is identical to the Green'’s
function derived by Pals and MacKinntnin their scheme The total current],(t) =% ,J,.(t), flowing from leada
two. The Keldysh Green’s functiog (t,t) has the same into the scattering region can be written as
form as in Eq.(11), i.e.,

de Ja(t)=f dwd, (w)e ' (26)

Go(t=> TF f —fr(OALe), (21 _ |
LR ™ where the total current in the frequency domdjj{w) can

be expanded in a series form in terms of bias voltages ap-

but A,(e,t) is replaced by plied to the leads

i
A D=5 o o it 2— o o 1 o o 1 * —
o(€1) 2{|a (€05:€ )| a,( €0y, €[ Bo(€0y € 1)] Ja(w)_é Gaﬁ(w)vﬁ_i_% Gaﬁ'y(w)vﬁvy
+a(r(Eo(,+U,6,t)[B,,.(60,,.+U,E,t)]*}, (22)
with +/§5 Gapys VgV Vgt - -. 27)

When the bias voltages are very small, the linear expression
J(0)=245G,4(w)Vs can be used approximately. As for
large bias voltages, nonlinear dynamic conductances,
and Gup®),Gapys(®), . .., have to be derived in order to ob-
tain accuratel ,(w) andJ,(t). In Refs. 7 and 8, techniques
Ba(foa,f-t)=f dtleif(t_tl)Nthl)GL(Eog,t,tl), are developed to derive the linear dynamic conductance
(24 G,p(w), but no nonlinear dynamic conductance is obtained.
Actually, it is a complicated and onerous task to derive the
whereN,(t) is determined b)NU(t)=Im{g§(t,t)}. Interms  honlinear dynamic conductances. Nevertheless, the current
of the Green’s functiong;’ (t,t;) and G (t,t), it can be formulas derived in our approach are applicable to both
derived that in the interacting case, the displacement angMall and large bias-voltage situations and the response be-
total currents are also given by the same formulas as in Eq§iavior of the structures in the presence of time-varying fields
(13)—(17). Here, p{9(¢,t) has the same form as in E6B) ca||1 betr?tUd:‘eﬂ directly in the tlmle dor:;am.t_ -
(1) ; I n the following, we employ the time-dependen
andp;“(e,t) as in Eq.(18), buta,(e,t) is given by Landauer-Bttiker formula to study the response of the
' resonant-tunneling structure to a rectangular pulse and a har-
ag(e,t):f dt,e'<t"Wg" (1,t,) (25  monic modulation, respectively. Here, only the noninteract-
ing system is considered. In Fig. 1, we show the occupation
andA,(e,t) by Eq.(22). N(t)=N,(t) of the resonant levekolid curve and the total

ao(GOUIEat)Z J dtleiE(titl)Grg(EOa'atytl) (23)
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Current

1981

F(M)=2 I (1)

and

FH=> 3.,

flowing from the left lead into the scattering region. It is

\ i clear that the tunneling currendf(t) displays ringing
04 i — J(® | structure¥ for both 0<t<s andt>s, but becomes negative
-r v _____. J5t) for t>s, reveall_ng tha’g th(_a tunneling current turns to flow
_________ JfLi(t) from the scattering region into the left lead as the pulse ends.
061 L 1 The displacement currer!(t) exhibits similar oscillatory
' ' ' ' — behaviors and its flowing direction is, however, opposite to
0.6 r T T T . T that of the tunneling current. This feature implies that the
b : displacement current tends to retard the tunneling current.
0.4} ( ) - The tunneling and displacement currents,

—d&0=—§J;ﬁ>

and

Current

—ﬁm=—§J%m,

flowing from the scattering region into the right lead are
given in Fig. Zb). Interestingly, both of them have oscilla-
t tions of much smaller amplitude and their oscillatory behav-
iors are drastically different from those presented in Fig.
2(a). Nevertheless, the total currents, which are obtained by
(dashed curve and displacementdotted curve currents flowing ~ Summing the corresponding tunneling and displacement cur-
from the left lead into the scattering region afiil those flowing  rents, are the samjesee the solid curves in Figs(& and
from the scattering region into the right lead in the rectangular-2(b), which are identical to the dashed curve in Fig.Also,
pulse case. it can be seen that the displacement curredg(t) plays the
retarding role as well.

The harmonic-modulation case is studied below, where
the energy of the resonant level varies ag,(t)=eq,
+Aycos(t). Here, we chooseq,=5 and w=2, and the
&hemical potentials of the left and right leads are kept at
m =10 andug=0. Figure 3a) presents the occupations of
the resonant level foA,=5 (solid curve and 10(dashed
. curve and the corresponding total currents are given in Fig.
€0, —A=10 and lasts for a duration @‘_:3' At t=3, the 3(b). The results shoF\)/v thatgthe occupation of 'the resona%lt
pulse ends and the resonant level shifts backedp=30.  |eyel and the total current are periodic but not harmonic; the
Figure 1 reveals that the occupation of the resonant level a”@ccupation of the resonant level has the same frequency as
the total current have the same behavior in response to th@e harmonic potential applied to the level, while the fre-
rectangular-pulse potential. Wher<0, the energy level quency of the total current doubles. Furthermore, one can see
€4,(t) is above the chemical potential of the left lead as wellthat the shoulders on the curves of both the occupation of the
as that of the right lead. As expected, the occupation of theesonant level and the total current become dim as the am-
level and the total current are constant and close to zero iplitude of the applied harmonic potential is strengthened. In
this time region. During the period of<0t<s, the energy of sharp contrast to the rectangular-pulse case, the total current
the resonant level is located in between the chemical poterdoes not exhibit the same response behavior as the occupa-
tials of the leads. Both the occupation of the resonant levetion of the resonant level in the harmonic-modulation case.
and the total current increase monotonously. Finally, with In Fig. 4, we show the time-dependent tunnelidgshed
the ending of the pulse &t 3, the occupation of the energy curves and displacementdotted curves currents forA,
level and the total current decay back toward zero. =10. The tunneling current flowing from the left lead into

The time-dependent tunnelinglashed curvgsand dis- the scattering region and that from the scattering region into
placement(dotted curvelscurrents are shown in Fig. 2 for the right lead have analogous ringing structures as the tun-
the rectangular-pulse case. In Figa2 we present the tun- neling current shown in Fig. 2 of Ref. 12, but there exists a
neling and displacement currents, phase difference between them. The displacement current os-

FIG. 2. (a8 Time-dependent totalsolid curve, tunneling

current, J(t)=2,J,(t), through the resonant-tunneling
structure(dashed curvein response to a rectangular-pulse
potential. The temperature is chosen tokad =0.1 and the
chemical potentials of the left and right leads are maintaine
to be u, =20 andugr=0. The rectangular pulse beginstat
=0 by shifting abruptly the resonant level froeg, =30 to
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FIG. 3. (@) Occupation of resonant level versus time fig
=5 (solid curve and 10 (dashed curve (b) the corresponding FIG. 4. (@) Time-dependent totaksolid curve, tunneling
time-dependent total current. The energy of the resonant level vafdashed curve and displacemenfdotted curve currents flowing
ies harmonically a4, (t) = €y,+ Aocost) and the chemical po- from the left lead into the scattering region a¢ig) those flowing
tentials of the left and right leads are keptat=10 andug=0. from the scattering region into the right lead fap=10 in the
Here, we choose,,=5 andw=2, and the frequency is in units ~ harmonic-modulation case.

of I'/h.

tunneling structures. It is found that the displacement

cillates similarly like the tunneling current and flows in an current plays the role of retarding the tunneling current.
opposite direction, indicating that it plays the role of retard- In addition to Eq.(14), there is another natural way of
ing the tunneling current. Furthermore, it can be seen that thpartitioning the total displacement current by choosing

tunneling(displacementcurrent becomes negatiygositive
in a certain part of each period. The solid curves in Figa) 4
and 4b) are obtained by summing the corresponding tunnel- e de dA. (e.0)
ing and displacement currents. These solid curves are iden- I m(D)= _,f . FR(L)fR(L)(6)|m[ ‘T]
tical to the total current denoted by the dashed curve in Fig. it W) w7 dt
3(b). It is interesting to note that the frequency of the total
current becomes doubled, though the tunneling and displace-
ment currents have the same frequency as the applied hator these two natural partitions, which is superior needs to
monic potentialA, cos(t). be determined by experiments.

In conclusion, we have studied the time-dependent trans-
port through resonant-tunneling structures. The Keldysh
nonequilibrium Green’s-function approach is employed and ACKNOWLEDGMENTS
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