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The effect of group-delay ripples in dispersion-managed soliton communication systems that use chirped fiber
gratings for dispersion compensation is studied. Using both a reduced model and direct numerical simulation,
we find that dispersion-managed solitons exist even in the presence of large dispersion variation caused
by group-delay ripples. The dispersion-managed solitons suppress the growth of intersymbol interference
induced by the group-delay ripples. © 2001 Optical Society of America
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Recently, dispersion management has emerged as
an important technology in high-bit-rate long-haul
optical soliton communication systems. Dispersion-
managed (DM) solitons exhibit many advantages.
One of them is their robustness to f luctuations in
system parameters such as local dispersion.1,2 Among
the many dispersion-compensation techniques, the
use of chirped fiber gratings (CFGs) is particularly
effective because of their high figure of merit,3 capa-
bility to compensate for higher-order dispersion, and
low insertion loss and the absence of nonlinear effects.
It has been shown that solitons exist in DM systems
that use CFGs for dispersion compensation.4

In real chirped fiber gratings, the group-delay
response oscillates as a result of residual multiple
ref lections owing to imperfections in the manufactur-
ing processes. In linear systems, these group-delay
ripples lead to intersymbol interference (ISI) and
degrade system performance.5 The group-delay
ripples can degrade the intensity noise reduction
provided by the gratings in subcarrier multiplexed
systems.6 The group-delay ripples cause large
f luctuations of the lumped grating dispersion as a
function of wavelength. For example, the average
lumped dispersion of the grating studied in Ref. 5 is
�50 ps2, whereas the dispersion f luctuation can be as
large as 4375 ps2. In this Letter we investigate the
effect of group-delay ripples on two-step DM soliton
communication systems that use CFGs for dispersion
compensation. We model the group-delay ripples by
a sinusoidal function and assume that the ref lectivity
bandwidth of the gratings is much larger than the
signal bandwidth. We find that DM solitons exist
even in the presence of the large dispersion variation
induced by the group-delay ripples. The formation of
DM solitons suppresses the growth of ISI.

The evolution of a pulse propagating in an optical
fiber under the inf luence of Kerr nonlinearity and pe-
riodically varying dispersion is given by the nonlinear
Schrödinger equation
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where q�z, t� is the normalized envelope of the electric
field and z and t represent the normalized distance
and time, respectively. The effects of loss and gain are
neglected in this study. Dispersion coeff icient s�z� is
d�jdj for z fi �n 1 1�2�L, where n is an integer, d is the
group-velocity dispersion coefficient of the f iber, d is
the average group-velocity dispersion of the map, and
L is the map period. The gratings are located at z �
�n 1 1�2�L, and their actions are given by the trans-
fer function F �v� such that q̃out�z, v� � F �v�q̃in�z, v�,
where v is the angular frequency and q̃in and q̃out are
the pulse spectra before and after the gratings, respec-
tively. The filter transfer function is modeled as
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where g is the average lumped dispersion of the
grating and d � �dL 1 g��L. The parameters
G, 2p�T0, and u are the amplitude, period, and
phase, respectively, of the dispersion ripples. The
lumped dispersion of the grating is therefore given
by g 1 G cos�vT0 1 u�. Equations (1) and (2) can
be solved by the variational method. We choose an
ansatz

q�z, t� � A
p
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where h, b, V, C, and f depend on z and correspond
to the amplitude, the quadratic phase chirp, the center
frequency, the center position, and the phase, respec-
tively, of the pulse. Parameter A is the energy en-
hancement, which is independent of z. The evolution
of the amplitude and chirp parameters in the optical
fiber is given by the following coupled equations:
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The effect of the CFG can also be determined by use of
the variational method as
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where xin and xout represent the values of parameter x
at the input and the output of the grating. Parameter
g is given by
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where c � �u 2 VT0� is the relative phase between
the center frequency of the pulse and the ripples.
Equations (5) are identical to those of an ideal grating
with g as the lumped dispersion. From Eq. (6), the
effect of the sinusoidal variation of the group-delay
ripples is to modify the average lumped dispersion
of the grating from g to g. Because the bandwidth
of the chirped Gaussian pulse ansatz Bgrat equals
2�2 ln2�h2 1 b2�h2��1�2 (FWHM) and the ripple period
Prip � 2p�T0, the exponent on the right-hand side of
Eq. (6) is equal to 2�p2�4 ln2� �Bgrat�Prip�2. When
the input pulse’s bandwidth is much larger than the
ripple period, the input pulse sees many periods of
group-delay variation. The effect of the group-delay
variation is averaged out, and the contribution of the
group-delay variation to the effective grating disper-
sion is small. When the input pulse’s bandwidth is
smaller than the ripple period, the contribution of
the ripples to the effective grating dispersion is large.
The ripples may increase or decrease the average
lumped dispersion of the grating, depending on the
relative phase c between the ripples and the input
pulse. The maximum contribution from the ripples
to the grating dispersion is 6G.

From Eqs. (5), the grating will reverse the chirp of
the soliton without changing the soliton’s amplitude if

bin 2 g�hin
4 1 bin

2� � 0 . (7)

Equation (7) is a transcendental equation that relates
the amplitude and the chirp coefficient of the pulse
at the input of the grating. Figure 1 plots the solu-
tions of Eq. (7). The normalized average grating dis-
persion is chosen to be g � 21. The thick solid curve
gives the phase-reversal condition for an ideal grat-
ing, i.e., G � 0, and also for the case c � p. We note
that b # 0 �$0� for the phase-reversal curve of an
ideal anomalous (normal) CFG. The thin solid curves
correspond to the phase-reversal conditions for G � 6.
The labels on the solid curves are the values of T0.
T0 � 0 represents ideal gratings with lumped disper-
sion equal to g 6 G cos�c�.

The thick solid curve divides the amplitude chirp
plane into two regions. The thin solid curves in Re-
gion I correspond to a phase angle c of p, and those
in Region II correspond to c � 0. We observe that for
each value of h there are two or more values of b for
phase reversal. In Region I �c � p�, the center fre-
quency of the soliton is aligned with one of the minima
of the dispersion ripples. The effective grating dis-
persion is always anomalous, i.e., b # 0, because we
have chosen g , 0. When T0 is large, the dispersion
varies rapidly in a pulse bandwidth. The pulse sees
only the average dispersion value. The phase-rever-
sal curves approach those for an ideal grating. When
T0 decreases, the pulse now sees local variation of the
dispersion ripples. The effective grating dispersion
becomes more anomalous and approaches that of an
ideal grating with lumped dispersion g 2 G.

In Region II �c � 0�, the center frequency of the
pulse is aligned with one of the maxima of the dis-
persion ripples. The behavior of the phase-reversal
curves as a function of T0 is qualitatively similar to
that in Region I. However, parts of the phase-rever-
sal curves are in the upper half-plane. In other words,
the grating can behave as a normal or as an anoma-
lous-dispersion grating, depending on the amplitude
and the chirp coefficient of the input pulse.

The dashed curve in Fig. 1 is the phase-space tra-
jectory of pulse evolution along the fiber according to
Eqs. (4). An initial chirp-free pulse begins at �h, b� �
�1, 0� and moves into the lower half of the amplitude
chirp plane as the pulse propagates along the fiber.
For a given fiber length and fiber dispersion coeffi-
cient, the curve terminates on one of the phase-rever-
sal curves. If a corresponding grating is placed at the
end of the f iber, the grating will reverse the chirp coef-
ficient b of the pulse without changing its amplitude.
A similar piece of f iber placed after the grating will re-
turn the pulse to its initial point in the amplitude chirp
plane at the end of the f iber. A periodic orbit is thus
formed. Figure 1 shows that DM solitons are possible
even if the amplitude of dispersion ripples G is much
larger than the average grating dispersion. The re-
sults are qualitatively the same in the presence of loss.

Although reduced models are quite useful in the
study of DM systems, their results are only quali-
tatively correct. Direct numerical simulations are
necessary for determining the periodic DM soliton
solutions. We apply a numerical averaging method7

Fig. 1. Phase-reversal curves for chirped fiber gratings
with sinusoidal group-delay variation. The average
lumped dispersion is g � 21. The thick solid curve rep-
resents the ideal grating case with G � 0. Solid curves in
Region I represent G � 6 and c � p. The solid curves in
Region II represent G � 6 and c � 0. The dashed curve
is the phase-space trajectory of pulse evolution along a
fiber according to Eqs. (4).
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Fig. 2. DM solitons in presence of dispersion ripples:
(a) the time intensity profile, (b) the corresponding
spectrum, (c) the spectrum of a DM soliton with the
same energy but with its center frequency aligned with
a dispersion maximum. Parameter G is the lumped
dispersion of the grating.

to solve Eqs. (1) and (2). We then propagate the
numerical solutions obtained for 100,000 km to de-
termine whether these solutions are true periodic
solutions. We find that numerical solutions of the
nonlinear Schrödinger equation in general agree
with the predictions of the reduced models. If the
input pulse’s energies are sufficiently large that the
bandwidths of the resultant solitons are much larger
than the ripple period, the relative phase between the
center frequency of the soliton and the ripples does not
affect the results. However, when the bandwidths
of the solitons are comparable with or less than the
ripple period, numerical DM solitons are obtained
for c � 0 and c � p only. In this case, the center
frequency of the DM solitons may be shifted up to
one-quarter ripple period from the center of a channel
in wavelength-division multiplexing applications. If
the soliton bandwidth is comparable with or larger
than the ripple period, the time intensity profile of
the solitons at the midpoint of the fiber consists of
a central Gaussian peak and multiple side peaks.
However, if the soliton bandwidth is less than the
ripple period, the time intensity profile of the solitons
at the midpoint of the f iber consists of a single pulse
that resembles a hyperbolic secant.

Figure 2 shows the DM solitons for the following
DM system: The map length is 100 km, the aver-
age dispersion is 20.1 ps2�km, the f iber dispersion
coeff icient is 1.9 ps2�km, and the average lumped
grating dispersion is 2200 ps2. We assume that the
amplitude of the group-delay ripples is �10 ps and
that the ripple period is 125 ps.5 The amplitude
of the dispersion ripples is therefore 1300 ps2, or
6.5 times the average lumped dispersion of the grat-
ing. Figure 2(a) shows the pulse intensity profile in
the time domain taken at the midpoint of the fiber.
The soliton consists of a Gaussian-shaped central
peak and multiple side peaks located T0 apart with
decreasing amplitude. The FWHM is about 15 ps.
Figure 2(b) is the spectrum of the DM soliton shown in
Fig. 2(a). The dispersion and the average dispersion
of the grating are shown as a dashed curve and as
a dotted–dashed line, respectively. The spectrum
also has multiple peaks located at the minima of the
dispersion variations where the dispersion is more
anomalous. The center of the spectrum is a local
maximum because it is aligned with a dispersion
minimum, i.e., c � p. Figure 2(c) shows the spec-
trum of a DM soliton with the same energy but with
its center frequency aligned with a maximum of the
dispersion variation �c � 0�. The spectrum now has
a local minimum at the center. The time intensity
profiles for the DM solitons shown in Figs. 2(b) and in
Fig. 2(c) are the same. The normalized pulse energy
is 12.5. We found that DM solitons also exist if fiber
loss is included. Recall that a sinusoidal group-delay
variation in CFGs induces ISI because of the forma-
tion of multiple side peaks at intervals of T0.5 In the
absence of a nonlinear effect, the amplitudes of the
side peaks increase with the number of gratings that
the pulse passes through. In fact, without dispersion,
nonlinearity, and loss, the group-delay ripples will
redistribute �30% of the pulse’s energy to its side
peaks after they pass through 10 of the gratings used
in the numerical example. Whereas DM solitons in
the presence of group-delay ripples still have side
peaks that contribute to ISI, the amplitudes of these
side peaks decrease exponentially and do not change
as the solitons propagate. For example, the intensity
of the f irst side peaks in Fig. 2(a) is 20 dB less than
that of the central peak. Thus DM solitons reduce
the effect of ISI induced by the group-delay ripples to
a minimum.

In conclusion, we have studied the effect of group-
delay ripples in DM soliton communication systems,
using CFGs for dispersion compensation. We found
that DM solitons exist in the presence of sinusoidal
group-delay ripples. The effect of the ripples is to
modify the effective lumped dispersion of the grating.
The DM solitons suppress the growth of ISI induced
by the group-delay ripples in the CFGs.
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