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Fluid Invasion in Porous Media: Viscous Gradient Percolation
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We suggest that the dynamics of stable viscous invasion fronts in porous media depends on the
volume capacitance of the media. At high volume capacitance, our network simulations provide
numerical evidence of a scaling relation between the front width and its velocity. In the low volume
capacitance regime, we derive a new effective scaling supported by network simulations and that is in
agreement with previous experiments on imbibition in paper and collections of glass beads.
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Percolation theory has contributed much to our under-
standing of immiscible fluid displacement in porous me-
dia [1,2]. For slow flow, randomness in capillary forces
dominates and invasion percolation applies. In the pres-
ence of gravity, the local percolation probability is spa-
tially nonuniform and gradient percolation is the standard
description [3]. Alternatively, when a viscous fluid dis-
places a nonviscous one, the pressure gradient also in-
duces a gradient in the local percolation probability. The
invasion front is hence expected to follow percolation
geometry as well. However, the pressure field is not
known a priori. This problem is therefore much more
challenging and not well understood.

Applying percolation theory, Xu, Yortsos, and Salin
suggested that the width of a viscous invasion front w
depends on its propagation velocity v according to

w~ v )

where k =~ (0.38 in two dimensions [4]. This result is
identical to that from a Buckley-Leverett—type theory
of Wilkinson [5] although there have been other sugges-
tions [6,7]. Previous network simulations lead to incon-
clusive results due to the limited network sizes used [4,8].
In this paper, we report simulations at much larger scales
using the simplest possible network models. Surprisingly,
we observe two distinct scalings depending on the volume
capacitance of the network defined as the volume of liquid
that can be extracted from the porous medium locally per
unit decrease in pressure [9]. At high capacitance, our
simulations support the theory in Refs. [4,5]. At low
capacitance, we obtain a different scaling in agreement
with two interesting experiments on imbibition in paper
[10] and collections of glass beads [11].

Our models are based on a simple pipe network in
Ref. [12] simulating the wetting of two-dimensional po-
rous media with the bottom immersed into a liquid res-
ervoir. We adopt a square lattice with spacing a and
periodic boundary conditions in the lateral direction. We
define an in-plane bond population p, which is the proba-
bility that a bond on the square lattice is occupied by a
cylindrical pipe of radius r = 0.25a. A fraction 1 — p, of
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the bonds are left vacant. Given a pressure gradient VP
along a pipe, the liquid flows according to Poiseuille’s law
for viscous flow with a flux 7r*VP/8u where u is the
viscosity [1]. The atmospheric pressure is assumed to be
zero without loss of generality. Nodes at the bottom row
are directly connected to the liquid source and are also
maintained at zero pressure. The pipes are simplified
models of complicated fluid channels. Without strictly
following the properties of realistic pipes, we assume
that the capillary pressure for an advancing meniscus
inside a pipe follows a uniform random distribution in
the interval [0, I'y] with Iy being a constant. The liquid
pressure behind a meniscus hence varies from —I'j to 0.
All nodes are volumeless and gravity is neglected. Air
flow as well as trapping is not considered. A simple
system of units in which a = I'y = u = 1 is assumed.
Two variants of the model are considered. They differ
in the volume capacitance defined as the volume of liquid
extracted from the porous medium locally per unit de-
crease in pressure [9]. We first define a low-capacitance
network [Fig. 1(a)]. In this case, we forbid any receding
meniscus by assuming an ideally hysteric capillary pres-
sure withstanding any tendency of dewetting. The liquid

FIG. 1. Snapshots of fluid invasion for networks with low (a)
and high (b) volume capacitances at in-plane pipe population
po = 0.53. Wetted (dry) regions are shaded in dark (light) gray.
Radii are rescaled by a factor 0.5 for clarity. Only connected
pipes are shown. Arrows indicate instantaneous directions of
menicus movements. Dewetting is forbidden in (a). In (b), one
menicus recedes due to suction by other invaded pipes with
stronger capillary forces.

© 2004 The American Physical Society 254503-1


https://core.ac.uk/display/61022429?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

VOLUME 92, NUMBER 25

PHYSICAL REVIEW LETTERS

week ending
25 JUNE 2004

surface is rigid and the volume capacitance is indeed zero.
We also consider a high-capacitance network [Fig. 1(b)]
in which receding menisci are allowed and are nonhys-
teric. Furthermore, an extra dangling pipe perpendicular
to the lattice is connected to every node. They all have
length a and radius r = 0.5a. The capillary pressure takes
a random value uniformly distributed in [0, 0.31°,]. This
enhances the volume capacitance at pressure around
—0.3I' to 0 which is the relevant range since it coincides
with typical local pressures measured in wetted regions
in our simulations. An increase (decrease) in the local
pressure within this range activates the filling (draining)
of many of these pipes resulting in the strong capacitance
enhancement. We have checked that further increasing of
the capacitance by adding even more dangling pipes or
increasing their radii gives similar results. For simplicity,
no new menisci can be generated by breaking any con-
tinuous column of liquid during dewetting.

We simulate fluid invasion using Euler’s method. For
both models, the pressure field is first computed at the
beginning of each iteration. Specifically, Poiseuille’s
law and fluid conservation at all nodes leads to
Kirchoff’s equations coupling the pressure at neighboring
nodes. We also apply the boundary conditions that the
pressure at moving and stationary menisci follows from
the capillary pressure and the no flow condition, respec-
tively. Kirchoff’s equations are then solved using a suc-
cessive overrelaxation method. For the low-capacitance
model with ideally hysteric capillarity, meniscus in a
partially filled pipe may start or stop advancement de-
pending on the calculated pressure. This alters the bound-
ary conditions and the whole calculation is repeated until
the states of motion of all menisci are consistent with the
pressure field. For both models, we speed up the calcu-
lation by directly computing only the pressure at the
percolation backbone. We require that the liquid influx
from the source agrees with the total outflux at the mov-
ing menisci within 1%. From the pressure, the velocities
of all moving menisci are found. Their positions are then
advanced over a short period in which all displacements
are less than 0.1a.

Figure 2 plots the front width w against its velocity v
for both models at pipe population p, = 0.50, 0.53, and
0.56. The lateral width of the lattice used is L = 1000a
and all results have been averaged over 60 independent
runs. Results are extracted from surface height profiles
h(x) measured from the liquid source which mark the
highest invaded node at lateral coordinate x. The time
derivative of the spatial and ensemble average & gives v
while the rms fluctuation gives w. The data fall nicely
into straight lines in the log-log plot and verify Eq. (1).
Contrary to conventional belief, there are two distinct
sets of slopes averaging to k = 0.47(2) and 0.36(2) for the
low and high volume capacitance networks, respectively.

To attain better insights into the problem, we now
examine closely the geometry of the invasion fronts.
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FIG. 2. Log-log plot of the invasion front width w against
velocity v. The slopes of the dashed lines are —0.47 and —0.36,
respectively. Inset: log-log plot of w against v Inw. The dashed
line has a slope —0.53.

Fronts at various locations and widths will be compared.
We hence define a rescaled distance z from the center of a
front by z = (y — h)/w where y is the vertical coordinate.
An important quantity is the local saturation S(y) defined
as the fraction of in-plane pipes which are completely
invaded at height y. Figure 3(a) plots S(y)/w”~? against z
using the same data as in Fig. 1 where D = 91/48 is the
fractal dimension [2]. Values recorded near the beginning
and the end of each set of simulations are plotted.
Specifically, time ¢ goes from 1.8 X 10° to 2.5 X 108
corresponding to w in between 3.1 and 32. All 12 curves
collapse nicely into a single curve implying the scaling
form

S(y) = wP2fs(2), 2

where f is a rescaled function. This verifies the percola-
tion geometry of the fronts with w being the correlation
length [2]. Similarly, we define the local percolation
probability p(y) as the probability that an in-plane pipe
connected to an invaded node is completely filled.
Figure 3(b) plots [p(y) — p.]/w™!/" against z where v =
4/3 and p, = 1/2 are, respectively, the correlation length
exponent and the percolation threshold. Good data col-
lapse is again observed supporting

p) = pe=wV"f,(2). 3)

Data collapses for pressure in Fig. 3(c) are most inter-
esting and will be explained after examining the relation
between the local pressure and the local percolation
probability. During invasion, the percolation probability
at any point increases as pipes with ever lower capillary
pressure are filled. Given a local percolation probability

254503-2



VOLUME 92, NUMBER 25

PHYSICAL REVIEW LETTERS

week ending
25 JUNE 2004

07 T T T T T T T -
o (@)
B A 5O . a a
06 &o,
A
05 | Q’: ]
o o Lol\;v vo(l).;gp. ok .
4L o py=0. A
% a pg=053 l?&
= A
a 03 ¢ Po 0.56 ..3> -
High vol. cap. .
&
02 = py=050 2 .
s po=053 Y
01k * Py =0.56 %, i
-QQ
0 1 1 1 1 I 1 %m_

T T T T T T T
RS ®
02+ LN oq ]

01 | & .
S “ 5
'3 Om n@% .
>~ 01F £ .
S %aﬁ
02+ . .
& b,
03 A‘& .d -
04 - Ao’ R 7
05 F RN
¢ o

1 1 1 1 1 1 1

T T T T T T T
02 (c) i

A
. *
B A 4, N
QT] or ° oo Koo "te ] ;
S “ § o . ﬁo- —_— IS
~ 02 r N a =4 ~
QF - — ml:! .A’O n ’-\‘a
! On A Ry
& %0 ", |
~ 04 r AR )
%Ao@o ~
06 F 2
godl
0.8 1 | 1 | 1 1 1
-4 -3 2 -1 0 1 2
z
FIG. 3. Rescaled plots of local saturation S (a), percolation

probability p (b), and pressure P (c) against rescaled coordi-
nate z = (y — h)/w. Note that P requires different rescaling
forms for the low and high volume capacitance cases.

p, pipes with capillary pressure as low as ['(p) =
(1 = p/po)ly are expected to be filled. There is hence at
least one instance when the pressure climbs up to instan-
taneous maximum value —I'(p). Figure 4 compares the
local pressure P with —I'(p). Only results for p, = 0.53
are shown but other values give similar findings.

At high volume capacitance, Fig. 4 shows that the
pressure simply coincides with its upper bound, i.e.,

P = —-T(p). “4)
Letting P, = —I'(p.), it implies
P(y) = Pc~ p(y) = pc (5)

which has been widely used in the literature [4—8] and is
valid for gradient percolation [3]. However, for viscous
gradient percolation, Eq. (4) is indeed nontrivial and
results from the strong damping of pressure fluctuations.
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FIG. 4. Plot of the average pressure P against the instanta-
neous maximum pressure —I'(p) expected from the percolation
probability p.

Local pressure depends on the capillary pressure of the
pipes under invasion. Pipes with capillary pressure in the
range [['(p), ] are to be invaded. The pressure is hence
dominated by those with the smallest capillary pressure
I'(p) which takes the longest time to wet. Moreover, we
observe that when a pipe with a higher capillary pressure
is invaded, it quickly draws liquid from neighboring
pipes, especially perpendicular ones with capillary pres-
sure close to I'(p). There is hence only a brief and highly
localized pressure disturbance which has little impact on
the average pressure. After completing the invasion, these
neighbors are slowly refilled directly from the liquid
reservoir and maintain the pressure roughly at —I'(p)
again. This pressure stabilization mechanism leads to
Eq. (4). Then, Egs. (3) and (5) imply P(y) — P, =
w7 £p(z). We therefore plot [P(y) — P.]/w~ '/ against
z for the high-capacitance case and is shown in Fig. 3(c)
using filled symbols. We have taken »' = 1.5 for the best
data collapse which is in reasonable agreement with the
exact value 4/3. The discrepancy inherits from the slight
deviation from Eq. (4) as observed in Fig. 4 and results
from incomplete damping of the pressure fluctuations due
to the finite volume capacitance of the network. The
pressure difference APy across the front is hence

APy ~ w7, (6)

At low capacitance, Fig. 4 implies P < —I'(p) instead.
Pipes with capillary pressure larger than I'(p) can now
significantly pull down the pressure when invaded. A new
analytic description of the pressure field is now presented.
We first quantitatively define the front region by z, = z =
Z,. We take z, = —2 since it marks the bottom of the
lattice for py = 0.50 and z;, = 2 as it is where the satura-
tion practically vanishes. We denote quantities evaluated
at the boundaries by the subscripts a and b. For z < z,,
corresponding to the bulk region, good connectivity
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suppresses pressure fluctuations and Eq. (4) holds ap-
proximately. In particular, the pressure at z, is P, =
—I'(p,). In contrast, the pressure fluctuates strongly at
z, between —I'y and —I'(p,) as pipes with capillary
pressure in the range [I'(p,), ['y] are invaded. With dewet-
ting in other pipes forbidden, they draw liquid directly
from the water reservoir. This leads to strong delocalized
pressure fluctuations. The invasion of a pipe with capil-
lary pressure P,, takes a period 7~ (P, + P) LA
characteristic pressure P, at z;, hence follows from the
time averaged capillary pressure. Straightforward algebra
gives P, = P, — AP; where

(N

AP, = [Ty — T(p,))/ ln[ o+ P, }

F(pb) + Pa

Here AP, represents a characteristic pressure difference
across the front. We thus suggest P(y) — P, = AP, fp(2).
It is verified by the reasonable data collapse in Fig. 3(c)
which plots [P(y) — P,]/AP, against z for the high-
capacitance case using open symbols. We have used
Pap = Pe + W Vf,(z,,) from Eq. (3) and further as-
sumed f,(z,) = 0.15 and f,(z,) = —0.5 which are con-
sistent with values read directly from Fig. 3(b).

Now, we can calculate the exponent « defined in Eq. (1).
The permeability of the front is k ~ w~#/*~! where u is
the conductivity exponent [2]. The liquid flux across the
front is then kAP ; for high and low capacitances,
respectively. However, it should equal vS as well. Using
also Eq. (2), we obtain v ~ w#/**P~1AP, ;. For the
high-capacitance model obeying Eq. (6), we arrive at
Eq. (1) with

k=v/[1+u+vD-1)]=038 (8)

derived previously in Refs. [4,5,8]. Our network simula-
tions in the high-capacitance regime lead to x = 0.36(2)
giving a direct numerical support to Eq. (8).

For the low-capacitance case, we apply Eq. (7) which
simplifies at large w to AP, ~ (Inw)~'. Therefore, Eq. (1)
is replaced by

W—I/K
~ 7 9)
nw
with a new exponent
k=v/[u+ v(D—1)]=0.53 (10)

The scaling thus admits a logarithmic correction. This is
verified by the log-log plot of w against v Inw in the inset
of Fig. 2 which gives straight lines with the expected
slope —0.53(2) for w = 8. A naive measurement of
from a log-log plot of w against v disregarding the
correction should lead to an effective exponent k, in
between 0.38 and 0.53. Using Eq. (7), we obtain «, =
0.46 in good agreement with the value 0.47(2) directly
measured from our simulations and 0.48 from imbibition
experiments in Refs. [10,11].
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We have considered extreme values of the volume
capacitance. In general, networks with significant pres-
sure fluctuations extending beyond or well within the
invasion front are at the low- or high-capacitance limits,
respectively. Networks with intermediate capacitance are
therefore expected to cross over to the high-capacitance
regime at the large front width limit. However, from
experiments, pressure fluctuations in the form of Haines
jumps propagate far beyond the invasion front [9]. It is
also known that wetting and drainage in porous media are
highly hysteric. These further establish that the new low-
capacitance condition is the correct experimentally rele-
vant regime. In addition, similar to the original model in
Ref. [12], our low-capacitance model can also reproduce
the rich dynamical features of the invasion front in
Ref. [10] with reasonable accuracy at p, = 0.53 and
will be reported elsewhere.

In conclusion, we have derived a new effective scaling
relation based on viscous gradient percolation for fluid
invasion fronts in porous media with low volume capaci-
tance. This regime is characterized by realistic features
including highly hysteric capillary flow and long-range
propagation of pressure disturbances. The scaling is sup-
ported by large scale network simulations and agrees with
previous experiments. We also show numerically that a
well-known scaling theory applies only at high volume
capacitance which is not supported experimentally.
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