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We investigate the dynamics of nucleation and the growth of voids in an irradiated material in the presence
of a spatially heterogeneous dislocation microstructure. We find that, due to the sensitivity of the void nucle-
ation rate to the local vacancy supersaturation, voids nucleate and grow almost exclusively in the regions where
the density of dislocations is low. Numerical simulations show that the relatively high void growth rates
observed experimentally in the regions of low dislocation density, leading to segregated evolution of disloca-
tions and voids, can be naturally described by solutions of a spatially heterogeneous reaction-diffusion model
that takes continuous nucleation of voids into account but does not assume the occurrence of long-range
one-dimensional transport of clusters of self-interstitial atoms through the material.
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I. INTRODUCTION

The development of materials suitable for the construc-
tion of a commercial fusion power plant is one of the main
technical tasks in the realization of nuclear fusion as an eco-
nomically viable alternative to the use of fossil fuels.1–3

Given a broad range of challenging issues associated with
the empirical testing of candidate materials in a simulated
fusion environment,1,4 modeling the microstructural evolu-
tion of materials has become a significant part of the inter-
national fusion development program.5,6

The kinetics of phase transformations in materials driven
far from equilibrium by irradiation is characterized by the
dynamic balance between the creation of lattice defects and
their annihilation at dislocations, grain boundaries, or other
elements of the microstructure, and through clustering. The
development of a unified fully quantitative mathematical
treatment of microstructural evolution of a material is hin-
dered by the presence of highly disparate time and length
scales characterizing this evolution.5,6 Also, the extent to
which this evolution can be adequately described by an ef-
fective spatially averaged homogeneous model has long re-
mained a subject of debate. The original formulation of the
reaction-diffusion “standard rate” theory7,8 assumed a spa-
tially homogeneous and time-independent concentration of
diffusing point defects, and a homogeneous distribution of
sinks for these defects. The connection between this model
and the actual heterogeneous microstructure of materials was
made through the effective medium approximation investi-
gated by Brailfsord9 and, more recently, by Doan and
Martin.10

At the same time in many cases the spatial heterogeneity
of the material represents the main factor determining the
mode of microstructural evolution. One example of this is
given by the behavior of nanocrystalline materials under
irradiation,11,12 where a high concentration of grain bound-
aries has a strong effect on the development of collision cas-
cades. Another striking effect is the spatially segregated void
swelling observed in several materials at low irradiation

doses.13–15 In this case voids form predominantly in the re-
gions of low density of dislocations, in a seemingly apparent
contradiction with the reaction-diffusion standard rate theory
model7 in which the growth of voids is driven by the prefer-
ential absorption of interstitial atoms by dislocations. Fur-
thermore, spatially heterogeneous materials, like complex
steels or nanocomposite oxide-metal systems are presently
considered to be among the most promising candidates for
fusion and advanced fission applications in view of their
ability to trap helium at interfaces and to sustain high levels
of irradiation damage.16

A current interpretation of the observed effects is based on
the concept of one-dimensional Brownian motion of self-
interstitial atom clusters.17–19In the case of a nanocrystalline
material molecular dynamics simulations show the one-
dimensional migration of clusters in the stress field of grain
boundaries occurring on the ten-nanometer scale.20 In the
case of spatially segregated void swelling13–15 the failure of
the reaction-diffusion models investigated by Lefferset al.21

to explain experimental observations has led to the hypoth-
esis that it is the occurrence of thelong-range one-
dimensional transport of self-interstitial clusters through the
material on the scale exceeding several thousand
nanometers22 that is responsible for the segregated growth of
voids between the dislocation walls.

However,in-situ electron microscope observations of the
motion of defects in irradiated specimens23,24have not so far
confirmed the actual occurrence of the long-range transport
of interstitial atom clusters. Instead, these observations point
to the possibly significant part played by thermal excitations
giving rise to random changes in the direction of motion of
clusters or interaction with trapping centers in the bulk of the
material25 that hinder the one-dimensional diffusion of clus-
ters and enhance the three-dimensional character of their
motion.26,27

This poses two significant questions: namely,(i) in the
absence oflong-rangeone-dimensional transport, what is the
possible mechanism that drives the nucleation and growth of
voids spatially segregated from dislocations, and(ii ) how can
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we explain the observed evolution in view of its relatively
large spatial scale(a thousand nanometers)? We show that
both questions can be resolved within a relatively simple
reaction-diffusion type model that takes into account the
nucleation of voids in collision cascades. The point that the
nucleation aspect of the problem is important follows from
the fact that all the experimental observations of heteroge-
neous microstructures13–15 refer to the initial stage of micro-
structural evolution(low irradiation doses) where nucleation
and the growth of voids occur continuously and simulta-
neously. Although the significance of continuous nucleation
is clearly evident from observations, it has not been included
in the models considered so far.21,22 A new treatment of
nucleation developed in Ref. 28 has simplified the problem
to the extent that we can now apply it to the investigation of
a sufficiently general but still tractable spatially heteroge-
neous case.

In this paper we examine a sufficiently general diffusion-
reaction-nucleation model of an irradiated material character-
ised by a spatially heterogeneous dislocation microstructure.
We find that a combined treatment of nucleation and growth
of voids can explain very well a segregated occurrence of
voids between dislocation walls similar to that observed ex-
perimentally. Numerical solutions obtained for the relevant
range of parameters13–15are in agreement with observations.
These findings suggest that the observed effects may be ex-
plained without assuming the presence of long-range one-
dimensional transport of interstitial defect clusters, which
was previously believed22 to represent an essential part of the
treatment of the problem.

We start by showing that in the case where continuous
void nucleation is not explicitly taken into account21 the so-
lutions do not match experimental observations. We then in-
vestigate a spatially heterogeneous reaction-diffusion model
that includes the treatment of continuous nucleation and
show that in this case the predicted picture of microstructural
evolution agrees much better with experimental findings. We
conclude by assessing the limits of validity of the model.

II. THE LEFFERS MODEL

We start by investigating a model that describes growth of
voids in the presence of a pre-existing spatially heteroge-
neous dislocation microstructure. We assume that all the
voids are instantly nucleated at the initial moment of timet
=0 and that the subsequent microstructural evolution only
involves thegrowthof voids driven by the supersaturation of
vacancies in the material. A simplified version of this model
(where instead of following the integral history of micro-
structural evolution the authors treated a few “snapshots”
describing an assumed state of the material at a certain dose)
was first considered by Lefferset al.21 In what follows for
convenience we refer to it as to the Leffers model. The rate
of change of the radiusasr ,td of a void situated at pointr in
the material is proportional to the vacancy supersaturation
Dvcvsr ,td−Dicisr ,td at that point,7

dasr ,td/dt = fDvcvsr ,td − Dicisr ,td − DvCssadg/asr ,td, s1d

whereDv and Di are the diffusion coefficients of vacancies
and interstitial atoms, andcvsr ,td and cisr ,td are the local
concentrations of these two types of defects. In Eq.(1) the
term DvCssad describes thermal evaporation of vacancies.
For the supercritical voids in the range of parameters rel-
evant to experimental observations13–15 this term does not
have an appreciable effect on the growth rate and in what
follows it will be neglected. In the case where the clustering
of interstitial atoms in collision cascades plays a significant
part,29 parametersDi andci represent effective quantities that
describe the total flux of interstitial atoms and include con-
tributions of both single interstitial atoms and interstitial at-
oms clusters performing a three-dimensional random walk in
the material.26,27 In the limit of low irradiation rates where
the recombination of vacancy and interstitial defects in bi-
nary collisions may be neglected, concentrationscv and ci
satisfy the system of two equations:

Da¹2casr ,td + Ks1 − erd − fZarsr d + 4pNasr ,tdgDacasr ,td

= 0, s2d

where the indexa refers to either vacanciessa=vd or inter-
stitial type defectssa= id. In this equationrsr d is the volume
density of edge dislocations,Za are the dislocation bias fac-
tors sZi .Zvd, andNsr d is the volume density of voids. In the
Leffers modelNsr d is assumed to be constant as a function of
time and is a globally averaged quantity independent of the
coordinater . Concentrationscasr ,td depend on timet in a
self-consistent way viaasr ,td given by Eq.(1) To model a
spatially heterogeneous microstructure the density of dislo-
cations was modulated in the direction of thex-axis in the
form of dislocation walls, as shown in Fig. 1. We postpone
the discussion of the numerical treatment until the next sec-
tion and begin by considering the solutions of the above
equations.

The profiles shown in Fig. 1 are qualitatively similar to
those shown in Fig. 2 of Ref. 21. The main feature of the
predicted spatial distribution of vacancy supersaturation il-
lustrated in Fig. 1 is the presence of pronounced peaks near
the dislocation walls. It is this feature of the solution of the
Leffers model21 that does not agree with experimental find-
ings reported in Refs. 13–15. In experiments voids form al-
most exclusively in the space between the dislocation walls
and almost no voids are observed in the immediate vicinity
of the walls, while the profile of vacancy supersaturation
shown in Fig. 1 suggests that voids should be expected to
grow at the fastest rate near the walls. It is this qualitative
difference between the solutions of the Leffers model and
experimental observations that stimulated the hypothesis that
the formation of the observed void swelling profiles was
driven by some unusual mode of transport of interstitial at-
oms involving long-range one-dimensional diffusion.22

III. SPATIALLY HETEROGENEOUS REACTION-
DIFFUSION-NUCLEATION MODEL

We now consider how the solutions of a reaction-diffusion
model change if the continuous nucleation of voids is taken
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into account in a self-consistent manner. Letnsr ,td be the
rate of nucleation of voids normalized by the condition

E
0

t

nsr ,tddt = Nsr ,td, s3d

whereNsr ,td is the local density of voids at pointr at timet.
The local void swelling is defined as

Ssr ,td =
4

3
pE

0

t

nsr ,tda3sr ,t,tddt, s4d

whereasr ,t ,td is the radius of a void nucleated at the mo-
ment t=t. By differentiating(4) we find the following ex-
pression for the swelling rate:

dSsr ,td
dt

= 4pE
0

t

nsr ,tda2sr ,t,td
dasr ,t,td

dt
dt

+
4

3
pnsr ,tda3sr ,t,td, s5d

where in most cases the last term can be neglected since the
critical radius of nucleating voidsasr ,t ,td is small in com-
parison with the average radius of voids already formed and
growing in material. In the presence of continuously occur-
ring nucleation the evolution of an ensemble of voids can be
described by a system of equations similar to(1) and (2),
namely

dasr ,t,td
dt

=
Qst − td
asr ,t,td

fDvcvsr ,td − Dicisr ,tdg, s6d

and

Da¹2casr ,td + Ks1 − erd

− 3Zarsr d + 4pE
0

t

nsr ,tdasr ,t,tddt4Dacasr ,td = 0,

s7d

where Qst−td=1 for t.t and Qst−td=0 for t,t, and er

,80% is the fraction of defects recombining directly in col-
lision cascades.

Equations(4)–(7) can be integrated using the supercell
method similar to that used in large-scale electronic structure
calculations30 and in the treatment of electron diffraction.31

Consider the diffusion of particles in the presence of a spa-
tially heterogeneous distribution of sinks,

¹2Psr d − Vsr dPsr d + Ks1 − erd = 0. s8d

Here Psr ,td=Psr d=Dacasr ,td is a potential function, the
gradient of which gives the local flux of mobile defects, and
Vsr d=Vsr ,td=Zrsr d+4pe0

t nsr ,tdasr ,t ,tddt is the local
density of sinks. RepresentingVsr d and the potential func-
tion Psr d in the form of a Fourier series,

Psr d = o
g

Pg expsig · r d,

Vsr d = o
g

Vg expsig · r d, s9d

we write Eq.(8) as

FIG. 1. (Color online) (Top) Spatial distribution of the network
density of dislocationsrsxd used in calculations, and the profile of
the sink strength 4pNasx,td of voids. (Bottom) Profile of vacancy
supersaturationDvcvsx,td−Dicisx,td evaluated using the Leffers
model forf=Kt=10−2 NRT dpa assuming that the volume density
of voids equalsN=1020 m−3. The dose rateK equalsK=2 NRT
dpa/year,Zi =1.15,Zv=1.0.
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o
g8

sg82dgg8 + Vg−g8dPg8 = Ks1 − erddg0. s10d

The matrixg2Î +V̂ entering this equation is Hermitian, and it
can therefore be diagonalized by a unitary transformation,

o
g,g8

sU†d jgsg82dgg8 + Vg−g8dUg8 j8 = v jd j j 8, s11d

wherev j are the eigenvalues corresponding to eigenvectors
Ugj. Using the property of orthogonality of eigenvectors of a
Hermitian matrix,

o
g

sU†d jgUgj8 = d j j 8, s12d

we find the solution of Eq.(10),

Pg = Ks1 − erdo
j

UgjsU†d j0

v j
. s13d

Assuming that the density of dislocations is described by a
“Kronig-Penney”-type functionrsxd defined asrsxd=rw in-
side the walls andrsxd=rbg!rw in the space between the
walls, we find the Fourier componentsrg as

rg = rbgdno −
rw

pn
sinFpnS1 −

l

L
DGexps− ln2d. s14d

Here L is the period of the dislocations walls structure,g
=2np /L is a reciprocal lattice vector,l is the width of the
walls, andl!1 is a damping factor. In all the calculations
described below we assumed thatrw=1014 m−2 and rbg
=0.01rw=1012 m−2 (the choice of the latter value is signifi-
cant, and we discuss this point in greater detail below). The
time integration of the reaction-diffusion equations typically
involves several thousand steps, where at each step the Fou-
rier components of the total density of sinksVgstd are up-
dated using the information accumulated over the entire pre-
ceding interval of time 0,t, t. Spatial integration was
performed using 64-point Gaussian quadratures.32 The value
of the dislocation bias factorZi was chosen to be 1.30 in
agreement with the calculated values for copper.33 Although
this 30% bias value is somewhat larger than the value used
by Lefferset al.,21 it is still significantly lower than the ex-
treme 200% value of bias also considered in Ref. 21 in an
attempt to improve the agreement between the model and
experimental observations. We note that the choice of a rela-
tively large 30% bias factor is consistent with the assumption
that the transport of interstitial atoms also involves the dif-
fusion of interstitial atom clusters that interact with disloca-
tions stronger than single interstitial atoms.

The accuracy of numerical integration of Eqs.(6)–(13)
was verified using the global conservation law,

d

dtFE
V

Ssr ,tdd3rG =E
V

rsr dfZiDicisr ,td − ZvDvcvsr ,tdgd3r ,

s15d

derived in Appendix I. The expression for the rate of the
nucleation of voidsnsr ,td used in this work was taken from

Ref. 28, and is given byn=Ks1−erdP/Nd, whereNd is the
average number of defects produced in a single collision cas-
cade andP is the probability of void nucleation given in
Appendix II. In terms of our model, the most significant
feature of the void nucleation probability is its high sensitiv-
ity to the local vacancy supersaturation.

Figure 2 shows how the density of voidsNsx,td nucleated
at various points in the simulation cell increases as a function
of the irradiation dose. In contrast to the findings of the Lef-
fers model,21 profiles shown in Fig. 2 follow the trend similar
to that found experimentally in Refs. 13–15. For example,
the sketch shown in Fig. 1 of Ref. 13 shows that voids were
distributed almost homogeneously in the space between the
dislocation walls, while the density of voids was significantly
reduced in the immediate vicinity of the walls. The calcu-
lated profiles of the density of voids shown in Fig. 2 exhibit
0.5 micron-wide void denuded zones adjacent to dislocation
walls. In these zones the density of voids is reduced by more
than an order of magnitude in comparison with the density of
voids in the space between the walls. Inside the dislocation
walls the predicted density of voids is exceedingly low, and
this also agrees with experimental observations. Another in-
teresting feature characterizing the evolution of voids occur-
ring in the presence of dislocation walls is the uneven distri-
bution of the average size of voids. Larger voids form in the
space between the dislocation walls, and the experimentally
measured average diameter of voids decreases by approxi-
mately 30% in the zone adjacent to the walls. The calculated
spatial distributions of the average diameter of voids are
shown in Fig. 3. The average diameter of voids decreases by
almost 50% inside the dislocation walls in comparison with
voids situated in the space between the walls, where the den-
sity of dislocations is low. Another significant parameter
characterizing the evolution of the microstructure is the void

FIG. 2. (Color online) Volume density of voids shown as a
function of coordinatex in the direction normal to dislocation walls
for several values of the irradiation dosef=Kt (in units of NRT
dpa). Calculations were performed forK=2 NRT dpa/year,gs

=1.4 J/m2, Zi =1.3, Zv=1.0, 1−er =0.2, andNd=50.
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swelling rate defined as the ratio of the local volume swell-
ing Ssx,td to the irradiation doseKt. Experimental observa-
tions reported in Refs. 13–15 showed that this rate ap-
proached 2% per Norgett-Robinson-Torrens34 (NRT)
displacements per atom(dpa) units, and the Leffers model21

encountered difficulties in trying to explain this relatively
high value. Figure 4 shows profiles of the swelling rate
evaluated using the reaction-diffusion-nucleation model de-
scribed above. ForKt,10−2 NRT dpa the profiles of the
function Ssx,td /Kt are maximum in the center of the simu-
lation cell, and the calculated swelling rate in the interval of
doses 2310−3,Kt,10−2 is close to 1% per NRT dpa in
reasonable agreement with the rate observed experimentally.
In the large dose limit the model exhibits the formation of
peaks of swelling in the vicinity of dislocation walls. Similar
peaks are known to occur in other spatially heterogeneous
microstructures, for example, in the vicinity of grain
boundaries.26 Experimental observations addressing the low
dose limit13–15 do not show the development of peak swell-
ing zones near dislocation walls. Here we note that in con-
trast to the case of grain boundaries, dislocation walls neither
have ideal planar geometry nor do they retain stability in the
limit of a larger irradiation dose. Both of these factors im-
pede the development of zones of enhanced swelling shown
in Fig. 4 for Kt=10−1 NRT dpa.

IV. DISCUSSION

The study of solutions of the reaction-diffusion-nucleation
model described above shows that the model reproduces

practically all the significant features characterizing the ex-
perimentally observed evolution of an ensemble of voids
nucleating and growing in the presence of a heterogeneous
dislocation microstructure. The inclusion of continuously oc-
curring void nucleation in the model, as well as the full treat-
ment of spatial and temporal evolution of the void compo-
nent of the microstructure, are the main points that make our
treatment different from the treatment of models considered

FIG. 4. (Color online) The void swelling rateSsx,td /Kt plotted
as a function of coordinatex for several values of irradiation dose.
Parameters used in the calculation are the same as in Fig. 2.

FIG. 5. (Color online) Profiles of vacancy supersaturation
Dvcvsx,td−Dicisx,td shown as a function of coordinatex for several
values of the irradiation dose. Calculations were carried out for the
same set of parameters as that given in the caption to Fig. 2.

FIG. 3. (Color online) The average diameterd̄sx,td of a void

defined asd̄sx,td=f6Ssx,td /pNsx,tdg1/3, whereSsx,td is the local
void swelling, shown as function of coordinatex in the direction
normal to dislocation walls. Parameters used in the calculations are
the same as in Fig. 2. Note that the density of voids near the dislo-
cation walls is very low, and this agrees with the fact that no voids
were experimentally observed in the walls(Ref. 13), despite the fact
that the voidsizecriterion suggests that they might still be detected.
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previously.21 As we have already noted above, the rate of
nucleation of voids is a function that is sensitive to the local
level of vacancy supersaturation. The evolution of profiles of
vacancy supersaturation shown in Fig. 5 explains why we
find that in the limit of low dose voids nucleate predomi-
nantly in the space between the dislocation walls. Both the
numerical solutions and analytical estimates show that up to
the dose of the order of 2310−3 NRT dpa vacancy super-
saturation is maximum between the dislocation walls, and it
is there where experimental observations show the formation
of regions with the highest density of voids. Another signifi-
cant point that requires consideration refers to the origin of
the dislocation walls themselves. In our model, as well as in
the earlier approaches,21 it was assumed that dislocation mi-
crostructure remained stationary during the entire interval of
evolution of the system. In experiments dislocation walls ap-
peared relatively early during irradiation(reportedly they
were present already at the lowest doseKt=2310−3 NRT
dpa investigated in Refs. 13–15) and then they vanished as
the dose increased. The latter effect can be readily under-
stood if we estimate the distance climbed by dislocations at
various points in the simulation cell,

Xcsxd =
1

b
E
0

t

fZiDicisx,td − ZvDvcvsx,tdgdt, s16d

whereb is the magnitude of the Burgers vector of a disloca-
tion. As the dose reachesKt=10−1 NRT dpa the value of
uXcsxdu approaches 2.5 microns in the space between the dis-
location walls and 0.08 microns inside the walls. These val-
ues are comparable with the spatial scale characterizing the
heterogeneity of the dislocation microstructure itself(see
Fig. 1). This estimate showing that the heterogeneous dislo-
cation microstructure “melts” atKt,0.1 NRT dpa explains
the absence of dislocation walls in specimens irradiated to
higher doses. On the other hand, the origin of formation of
dislocation walls in the material in the limit of low doses
requires investigating the collective behavior of dislocations.
The emergence of symmetry broken solutions in the equa-
tions describing interacting dislocations, dislocation loops,
and mobile defects may, in our view, be the most likely
mechanism responsible for the formation of dislocation
walls.35,36 In particular, solutions described in Refs. 35 and
36 show that immobile small dislocation loops are elimi-
nated in the space between the dislocation walls, leading to
the formation of a heterogeneous distribution of network dis-
locations similar to the one assumed in our model. The fact
that the dislocation walls form at an early stage of irradiation
where the density of voids is still relatively low13 shows that
the assumption that the heterogeneous distribution of the
density of dislocations remains stationary within the interval
of doses considered in this study represents a viable approxi-
mation.

A new set of experimental observations related to our
model was performed recently by Singhet al.37 In this work
the authors compared void microstructures generated in cop-
per by electron, proton, and neutron irradiation. The material
studied in Ref. 37 was several times less pure than that in-

vestigated in Ref. 13, and it contained 30 times more oxygen
than copper used in similar experiments performed by En-
glish et al.14 This may explain the fact that the density of
voids observed in Ref. 37 atKt=10−2 NRT dpa was approxi-
mately ten times higher than that reported in Ref. 13. Bear-
ing in mind that the expression for the nucleation rate de-
rived in Ref. 28 and Appendix II does not take the impurity
effect into account, we do not compare our calculations with
the neutron data reported in Ref. 37. Still, it is instructive to
assess the new data in connection with the analysis given
above.

Two aspects need to be taken into account in the compari-
son of effects of charge particle and neutron irradiation. In
the case of irradiation by charged particles a significant num-
ber of atoms is displaced through large impact parameter
collisions giving rise to either smaller cascades(in the case
of protons) or to the generation of individual Frenkel pairs
(in the case of electrons). This affects the rate of nucleation
of voids since, for example, in the case of electron irradiation
nucleation of voids is suppressed due to the difficulty of
accumulating a critical number of vacancies in a vacancy
cluster through a sequence of binary interactions of vacan-
cies with the cluster. In the treatment of void nucleation
adopted in this paper, relatively large nuclei for the thermally
stable supercritical voids are formed from vacancy clusters
formed directly in collision cascades. In the case of electron
irradiation there are no cascades, and void nucleation takes
place through the sequential agglomeration of single vacan-
cies. The probability of nucleating a void in this case is much
lower that in the case of cascade nucleation. Therefore in the
limit of low dose and electron irradiation the void number
density is expected to be significantly lower than in the case
of proton or neutron irradiation corresponding to the same
dose. Proton irradiation, in addition to Frenkel pairs, pro-
duces a significant number of small cascades, and voids
nucleate at the rate intermediate between that of electron and
neutron cases.37

In addition to the difference in the void nucleation rates,
the interstitial component of the microstructure is also
strongly affected by the cascade nature of the nucleation pro-
cess. The formation of larger clusters in the case of neutron
irradiation facilitates the formation of interstitial clusters and
mesoscopic dislocation loops. Using the neutron irradiation
data from Ref. 14 we estimate that dislocation loops with the
average radius of 1.2 nm distributed with the volume density
of N=331020 m−3 contribute approximately 1012 m−2 to the
average dislocation density of the material. It is this value
that we use as an esimate for the effective density of dislo-
cations in the space between the dislocation walls shown in
Fig. 1. In the case of proton irradiation not only do the walls
not form but also the effective density of dislocations re-
mains low s,1011 m−2d, giving rise to low swelling. Our
calculations show that the density of voids in this case
reaches early saturation and remains nearly constant over the
entire interval of doses investigated experimentally, in agree-
ment with experimental results reported in Ref. 37.

Summarizing the main points of our analysis, we con-
clude that a model describing the nucleation of voids in the
material, the reaction of defects with a heterogeneous dislo-
cation microstructure, and the three-dimensional diffusion of
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defects in the material can reproduce at a reasonable level of
accuracy some of the main qualitative features characterizing
the experimentally observed picture of microstructural evo-
lution. In our model we did not assume the occurrence of
long-range one-dimensional transport of interstitial defects
on the several thousand nanometers length scale, and still
arrived at a reasonably accurate mathematical model of the
observed phenomena. This shows that the hypothesis about
the significant part played bylong-range one-dimensional
transport of defects remains an interesting, but yet uncon-
firmed, proposition that requires experimental verification of
a more direct nature than that given by the interpretation of
features of evolution of a spatially heterogeneous microstruc-
ture.
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APPENDIX A: THE GLOBAL CONSERVATION LAW

To derive theglobal law of conservation of the total num-
ber of vacancies and interstitial atoms in an evolving hetero-
geneous microstructure we consider a system of two equa-
tions of the form

Di¹
2cisr ,td + Ks1 − erd

− 3Zirsr d + 4pE
0

t

nsr ,tdasr ,t,tddt4Dicisr ,td = 0,

Dv¹
2cvsr ,td + Ks1 − erd

− 3Zvrsr d + 4pE
0

t

nsr ,tdasr ,t,tddt4Dvcvsr ,td = 0.

sA1d

By subtracting the second equation from the first one, and by
integrating the result over the volume of the simulation cell
we arrive at

E
V

fZirsr dcisr ,tdDi − Zvrsr dcvsr ,tdDvgd3r

= 4pE
V
3E

0

t

dtnsr ,tdasr ,t,tdcvsr ,tdDv

−E
0

t

dtnsr ,tdasr ,t,tdcisr ,tdDi4d3r . sA2d

Taking into account the fact that

cvsr ,tdDv − cisr ,tdDi = asr ,t,td
dasr ,t,td

dt
, sA3d

and combining this with Eq.(5), we find

E
V

dSsr ,td
dt

d3r =E
V

fZirsr dcisr ,tdDi − Zvrsr dcvsr ,tdDvgd3r .

sA4d

By transposing the operations of differentiation and integra-
tion on the left-hand side of this expression we arrive at the
conservation law(15).

APPENDIX B: NUCLEATION OF VOIDS

Nucleation of voids in a material under irradiation is a
process occurring as a result of diffusionin the size spaceof
small nuclei of voids(vacancy clusters) which, while shrink-
ing on average, occasionally reach the critical size. The time
tnucl required for a critical nucleus to form by diffusion of
vacancy clusters in the size space can be estimated as

tnucl , ncr
2 /2Dsncrd, sB1d

where Dsnd is the size-dependent diffusion coefficient de-
scribing Brownian motion of a vacancy cluster along the
n-axis, wheren is the number of vacancies in a cluster, and
ncr is the number of vacancies in a critical nucleus. Using the
expression for this size-space diffusion coefficientDsnd
=3n1/3/2s3V /4pd2/3fDvcv+Dicig given by Eq. 7 of Ref. 28,
we find that

tnucl <
s3V/4pd2/3ncr

5/3

3sDvcv + Dicid
. sB2d

Substituting into this equation the numerical values ofncr
=50,V=10−23 cm−3, andDvcv+Dici =0.1 mm2/year(the lat-
ter value comes from the numerical solution of the reaction-
diffusion model described above forKt=10−2 NRT dpa) we
find that tnucl,4.1310−6 years. In the case where the irra-
diation rate is equal toK=2 NRT dpa/year our estimate
shows that the kinetics of a nucleation event is characterized
by the “dose” scale of the order ofKtnucl,10−5 NRT dpa.
The fact that this value is many times smaller than the dose
(ù10−3 NRT dpa) at which experimental observations13–15

were performed makes it possible to treat nucleation as a
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sequence of events occurring instantaneously but continu-
ously during the entire interval of observation. We can there-
fore introduce the probability of nucleating a void28

P =Î b

6pRcrncr

Dvcv − Dici

s1 + ncr
1/3dd

expS−
hsb/Rcrdncr

2/3

1 + 1/sncr
1/3dd

D ,

sB3d

which is related to the nucleation raten entering Eq.(3) via
n=Ks1−erdP/Nd, whereNd is the average number of defects
created in an individual collison cascade. In Eq.(B3) d
=3sDvcv−Dicid /2Dici and b=2gsV /kBT, where V is the
atomic volume,gs is the coefficient of surface tension, andT

is the absolute temperature.Rcr is the critical radius of a void
given by28

Rcr = b/lnfsDvcv − Dicid/Dvc`g,

wherec`=expf−Efsvacd /kBTg andncr=4pRcr
3 /3V. Function

hsxd entering Eq.(B3) is related to the exponential integral
function and is defined by

hsxd =
sb1 − a1d + sb2 − a2d/x

1 + b1/x + b2/x
2 ,

where a1=2.334733,b1=3.330657,a2=0.250621, andb2
=1.681534.
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