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Deformation analysis of the unified lunar control networks

H. Baki Iz, Yong Qi Chen, Bruce Anthony King, Xiaoli Ding and Chen Wu

Abstract. This study compares the latest Unified
Lunar Control Network, ULCN 2005, solution with
the earlier ULCN 1994 solution at global and local
scales. At the global scale, the relative rotation,
translation, and deformation (normal strains and
shears) parameters between the two networks are es-
timated as a whole using their colocated station Car-
tesian coordinate differences. At the local scale, the
network station coordinate differences are examined
in local topocentric coordinate systems whose origins
are located at the geometric center of quadrangles
and tetrahedrons. This study identified that the omis-
sion of the topography in the old ULCN solutions
shifted the geometric center of the lunar figure up to
5 km in the lunar equatorial plane and induced a few
hundred-meter level global rotations of the ULCN
1994 reference frame with respect to ULCN 2005.
The displacements between the old and new control
networks are less than +2 km on the average at the
local scale, which behave like translations, caused by
the omission of lunar topography in the earlier solu-
tion. The contribution of local rigid body rotations
and dilatational and compressional components to
the local displacements are approximately +100 m
for a quadrangle/tetrahedron of an average side
length of 10 km.

Keywords. Lunar control network, ULCN 2005,
lunar topography, network deformations.

1. Introduction

As in the case of the Earth, Lunar mapping activities
require a reference network for the selenodetic con-
trol. The recent lunar control networks include the
Unified Lunar Control Network (ULCN 1994) and
the Clementine Lunar Control Network (CLCN),
both derived at RAND (Davies et al. 1987), and
ULCN 2005 at USGS (Archinal et al. 2006). The
ULCN 1994 was based on images from the Apollo,
Mariner 10, and Galileo missions, and Earth-based
photographs, whereas the CLCN was derived from
Clementine images and measurements on Clementine
750-nm images (Edwards et al. 1996). Further infor-
mation about these solutions can be found in the
USGS Astrogeology site (USGS Control Networks
2008).

ULCN 2005 is the fusion of the ULCN 1994 and
CLCN improving significantly upon the accuracy of
the CLCN. The primary feature of the ULCN 2005
in comparison to the previous networks is due to the
inclusion of the radii of the control points in the solu-
tion. Hence, the resulting ULCN 2005 is a unified

three dimensional photogrammetrically determined
network, which consists of 272,931 control points
with an average of one point for every approximately
46 km? (Archinal et al. 2006). Comparison by Archi-
nal et al. 2006 revealed that the radii derived from
the images show no systematic difference compared
to those from the Clementine LIDAR values (Smith
et al. 1997), which implies that the radii must be of a
few hundred meters accuracy. The horizontal accu-
racy of the ULCN 2005 is also reported to be a few
hundred meters (Archinal et al. 2006).

The most straightforward comparison of the old and
new control networks is to examine the differences
in the Cartesian and radial components of the colo-
cated control points (ibid). Nonetheless, although
the magnitude and the distribution of the differences
are informative, they do not reveal the nature of the
underlying systematic differences between the two
networks. In this study, the network distortions de-
scribed by the differences between the ULCN 2005
and the ULCN 1994 Cartesian coordinates are ana-
lyzed as a function of relative rigid body motions (ro-
tations and translations) and deformations (normal
strains and shears) at a global scale. At the local
scale, the control point differences of 243,676 quad-
rangles (for the ULCN 1994) and tetrahedrons (for
the ULCN 2005) formed by four colocated lunar
control points are modeled in their respective topo-
centric coordinate systems and investigated to reveal
the underlying properties of the local distortions.

2. The lunar reference system

Lunar control networks can be referenced to two
slightly different lunar body-fixed coordinate systems:
a mean Earth/rotation system, and a principal axis
system (Roncoli 2005). The mean Earth/rotation sys-
tem (also called the mean Earth/polar axis system)
is based upon a mean direction to the Earth and a
mean axis of rotation of the Moon. The principal
axis system is also a lunar body-fixed coordinate sys-
tem aligned with the principal axes of the Moon. The
principal axes and the mean Earth/rotation axes of
the Moon do not coincide but differ by less than
1 km because the Moon is not really a synchronously
rotating triaxial ellipsoid (ibid). In this system, the
mean Earth equator is defined at J2000 with the ori-
gin at the center of mass of the Moon. The selenocen-
tric latitudes are measured from the center of the
Moon relative to the equator and longitudes are
measured from 0-360 degrees, positive to the east.
Nearly all lunar maps depict longitudes as 0—180 de-
grees east and west as is done on terrestrial maps.
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The fusion of CLCN and ULCN 1994 data and the
use of Clementine a priori spacecraft position data
in the mean Earth/polar axis system suggests that
ULCN 2005 is referenced to the same mean Earth/
polar axis system as reported in Davies et al. 1994,
(Archinal et al. 2006). Nonetheless, as it will be
shown in the following sections, that this is not the
case for the old ULCN 1994 solution. Evidently, the
omission of the topography in the ULCN 1994 solu-
tion had an impact on the origin and orientation of
its reference frame as realized by the network station
coordinates.

3. Methodology: deformations of a
polyhedron

In order to investigate the network distortions, i.e.
the differences between the Cartesian coordinates of
the new ULCN 2005 solution with the earlier ULCN
1994 solution, the classical tools of deformation anal-
yses are deployed. First, the relative rotation, transla-
tion and deformation (normal strains and shears) pa-
rameters between the two networks whose control
points are the vertices of a polyhedron are consid-
ered. At the local scale, the network differences of
quadrangles/tetrahedrons are modeled and investi-
gated to reveal the underlying properties of the con-
trol points coordinate differences as local deforma-
tions in their topocentric coordinate systems.

The following formulations are used for both global
and local analysis. The underlying mathematical
foundations of the analysis, namely the theory of de-
formations, are exhaustively discussed by Novozhi-
lov (1961). An operational summary of its use in ge-
odesy is given by Grafarend (1982). Studies by Schon
(2007) and Cai et al. (2008) are some of the most re-
cent examples of its applications in deformation anal-
ysis of geodetic control networks in time domain.

Consider the Cartesian displacement components, u,
v, w of a point subject to deformation, which are
defined in terms of its Cartesian position X, Y, Z
before the deformation, and x, y, z after the defor-
mation as

u:=X—x,
vi=Y -y, (1)
w:i=2—z.

The displacement components expanded into Taylor
series (neglecting second and higher order terms) are
given by

U= Uy + UyX + Uy + Uz,

V= Uy + UxX + 1,y + 0-2, (2)

W =W+ WX+ W,y + w.z.

By definition

O R
xx = Ux = ox’ V. aya z oz
ov ov ov
Ux _a, €yy Uy 6—, U _& (3)
w —@ ) —@ e =W _é_w
X 76}67 y ay7 ZZ V4 762

from which complete set of strain tensor elements are
obtained as

1 1
Cxy = E (uy + Ux)v Cyz = E (uz + Wx)>
1
Cyz = D) (v- + Wy)a
(4)
1 1
Wy = 3 (Uy —vy), O = 3 (. — wy),
1
- = E(UZ —wy)
These expressions can be combined as follows:
1 1
w = o+ uxx + 5 (ty + 03)y + 5 (uy = v3) y
g ()4 3 (e~ )
—(u: + wy)z + = (u: — wy)z,
24 ’ 2
1 1
v =100+ = (0x + ;)X + = (0 — 1) X + vyz
2 2
i { (5)
+3 (v: +wy)z+ 3 (v: —w))z,
1
w=wy -+ 5 (wy +u.)x + 3 (Wy — u-)x
1 1
+ E(W}’ +u)y+ E(wy —U.)y +w.z,
or equivalently
u=A-p (6)
where
100 » z 0 x00ypz0
A=|010-—x 0 z 0yO0x0z],
001 0 - x—py00z0xy )
pT = [uO Vo Wo Wy wyz wzy Cxx eyy €2z €yy Cxz ey:]T7
u' = [u o wl’

In equation (7), uy, vy, wo are the shift parameters
of between the undeformed and deformed state of a
polyhedron, w,, w,, w. are the rotations, and ey,
ey, e-- and ey, e, e,. are the linear strain parame-
ters (compression or dilatation and shear respec-
tively) for small deformations with respect to unity.
All the parameters can be calculated uniquely if the
displacements of four points (vertices of a tetrahe-
dron) are known. In this analysis, the coordinates of
each point that appear in the coefficient matrix in
equation (7) are referenced to the geometric center
of a tetrahedron and are evaluated at nominal coor-
dinate values of a Taylor expansion.
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The above relationships, when expressed in terms
of the linear strain parameters of the deformations
(hence their geometric interpretations), are valid only
for small deformations with reference to unity for the
deformation parameters, not with reference to the
small magnitude of the displacements. Otherwise,
the geometric meaning of the strains is only a crude
approximation in describing the deformations.

4. Global network distortions

The 12 global distortion parameters between the
two networks are estimated using equation (7) as a
mathematical model with 272,931 colocated network
station Cartesian coordinate differences in a least
squares sense. Table 1 lists the estimated translation
parameters in meters. The rotation angles are simi-
larly expressed as distances in meters along the lunar
equator. The deformation parameters refer to changes
in meters against a lunar sphere of radius 1737 km.
The values within the parentheses are the standard
deviations of the estimates calculated using a diago-
nal variance-covariance matrix where the standard
deviations of the Cartesian coordinate components
are assumed to be 200 m. The a posteriori variance
of unit weight is not applied in calculating the stan-
dard deviations of the estimates because the lunar to-
pography, which is non-stochastic, is intrinsically
projected onto all the coordinate components. All
the estimated parameters, except the translation in
the z direction, are statistically significant at 5 and 1
percent significance levels. The ULCN 1994 data is
already included in the ULCN 2005 solution, and

Table 1: Translation components are in meters. The rotation
angles are expressed as distances in meters on the lunar equa-
tor and the deformations parameters refer to the changes in
the spherical radius of the lunar figure in meters. The values
in parentheses are the standard deviations of the estimates cal-
culated using an a priori standard deviation of 200 m for the
Cartesian coordinate components.

Translation Rotation Scale Shear

Up, Vo, Wo Dy, Wy, W= €xx, Cyy, €2z €xy, €xz, €yz

—5232 (666) 241 (1) 1809 (1) 968 (1)

—2199 (666) 187 (1) 1129 (1) —1720 (1)
31 (666) 698 (1) —1463 (1) -36 (1)

the ULCN 2005 solution is not constrained to the lu-
nar laser ranging stations (Archinal, private commu-
nications, 2008). Hence, the translation components
in the x and y directions (corresponding to an origin
shift in the xy plane) are caused largely by the omis-
sion of the topography in the old ULCN 1994 solu-
tion. Moreover, because the lunar figure deviates
from a sphere (Table 2), the omission of the spheroi-
dal excesses contributed to translations as well as de-
formations in the old ULCN 1994 solution, though
the latter ones are less pronounced in magnitude.
For instance, the signs and the magnitudes of the
spheroidal axes a, b and c of the best fitting triaxial
lunar figure parameters for ULCN 2005 solution
(Table 2) suggest that the dilatations in the x and y
directions and compression in the z direction are due
to the 1736.7 km lunar spherical radius used in the
ULCN 1994 solution. These results are in agreement
with the estimated dilatation and compression pa-
rameters given in Table 1.

On one hand, the standard deviation of all the esti-
mated parameters, except the translation components
are extremely small (close to 1 meter when rounded).
This is partly due to the large amount of data, but
mostly because the new and old data sets are the
same in both solutions but differ only by the solution
methodology of ULCN 2005 that also account for
the radial component. On the other hand, the stan-
dard deviations of the translation parameters are rel-
atively large because the radial distances indicate a
lunar figure that deviates from a sphere and contain
topographic irregularities.

5. Local network distortions

At the local scale, the control networks are scruti-
nized in topocentric coordinate systems defined on
the lunar sphere (Appendix) at the geometric center
of each of the four ULCN 1994 and ULCN 2005
control points. Since the ULCN 1994 is defined only
by the latitudes and longitudes of the control points
and a fixed radial component (i.e. on the lunar
sphere), the four control points are locally defined
quadrangles with a plane approximation, whereas
the same control points in the ULCN 2005 solutions
form tetrahedrons because of the presence of topog-
raphy in the unconstrained radial coordinates.

Table 2: Geometrically best fitting lunar figure parameters based on ULCN2005 solution data (Iz 2009). The units are in meters.
The values within parentheses are the standard errors of the estimated parameters. The first values of each lunar figure belong to

the non-selenocentric best fitting lunar figure solutions. N/A: Not applicable.

Figure a b ¢ Xc Ve Zc RMS
Triaxial 1737899 (9) 1737570 (9) 1735742 (7) —658 (6) —681 (6) 133 (5) 1754
Ellipsoid 1737811 (10) 1737595 (10) 1735710 (8) 0 0 0 2018
Rotational 1737737 (5) N/A 1735741 (7) —653 (6) —682 (6) 133 (5) 1756
Ellipsoid 1737705 (6) N/A 1736710 (8) 0 0 0 2018
Sphere 1736965 (6) N/A N/A —645 (6) —696 (7) 142 (6) 1868

1736934 (4) N/A N/A 0 0 0 2117
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Figure 1: Distortion of quadrangles into tetrahedrons (or vice
versa).

For the analysis, the quadrangles are established first
by constructing over half a million Delaunay trian-
gles using the 2D coordinates of a plate carrée pro-
jection of the ULCN 1994 control points, which are
then combined with neighboring Delaunay triangles
to form 271,530 quadrangles. The quadrangles’ con-
trol points (vertices) in the ULCN 2005 form the
corresponding 3D tetrahedrons (Figure 1). The curvi-
linear coordinates of the network control points
are then converted into Cartesian coordinates. Sub-
sequently, the local Cartesian coordinates of each
quadrangle and tetrahedron vertices are calculated
in their topocentric coordinate systems whose origins
are defined by the average Cartesian components of
each of the quadrangle’s and tetrahedron’s vertices
using the relationships given in the appendix.

Although the exact solution for the rigid body mo-
tion and strain parameters are theoretically conceiv-
able given the colocated Cartesian coordinates of the
four control points in both ULCNS, there are numer-
ical problems in inverting the coefficient matrix that
appears in equation (7). The distribution of the con-
trol points is irregular, which causes near linear de-
pendency between the rotation and shear parameter
coefficients if some of the coordinate components are
close to zero. For instance, if the x component of a
control point is close to zero then the 4" and the
10™ columns of the coefficient matrix are colinear,
hence a numerically stable solution is not possible
(there are additional scenarios that may lead to
harmful colinearity). Separate solutions with and
without the shear parameters showed that only less
than 20% of the local deformations are subject
to shear, whereas over 90 percent of quadrangles
(243,676) are affected by rotations together with dila-
tation and compression, and rigid body translation
parameters. Therefore, the following results are ob-

tained in the absence of shears (i.e. using only 9 pa-
rameters) in a least squares sense with 3 degrees of
freedom for each quadrangle and tetrahedron pair (a
set of unique 3D Delaunay triangle solutions are also
obtained using the same formulations with similar re-
sults). Note that it is possible to form more regular
figures by selectively choosing control points for the
analysis, but this approach will not only eliminate
significant number of control points being examined
but also the local distortional properties of the solu-
tions will be smoothed out by using more control
points distributed over larger areas.

The histograms and scatter plots in Figure 2 show
that local rigid body motions, as translations are
significant. Eighty percent of the changes in the ra-
dial component are concentrated within the interval
42 km and exhibit a normal distribution. This num-
ber is also in agreement with the RMS misclosures
of about 1.7-2 km in the best fitting lunar figures
computations (Table 2). The translations in northerly
and easterly directions are also pronounced but not
random. The magnitudes of the northerly compo-
nents are at maximum on the limb of the lunar figure
whereas the easterly translations are more pro-
nounced on the far side of the moon.

In comparison, the contributions of all the rotation,
dilatation and compression parameters that act like
scale changes along the axes of the topocentric coor-
dinate system, to the local displacements are mark-
edly smaller (Figure 3 and Figure 4). They are within
the +100 m range for a quadrangle/tetrahedron of
an average side length of 10 km. Because the lunar
topography does not vary significantly over areas of
this size, the differences are more or less independent
of the topography and therefore more representative
of the effect of processing the data for the two net-
work solutions.

6. Conclusion

This study identified and quantified that the omission
of topography in the old ULCN solutions shifted the
geometric center of the lunar figure up to 5 km in the
lunar equatorial plane and induced a few hundred-
meter level global rotations of the ULCN 1994 refer-
ence frame with respect to ULCN 2005 (Table 1).

Significant displacements between the old and new
control networks are due to the omission of lunar
topography in the earlier solution, which is, as ex-
pected, the dominant contributor in vertical displace-
ments. Nonetheless, there are also significant hori-
zontal translations of the control points of about
+2 km (Figure 3). The contribution of rigid body
rotations and local dilatational and compressional
components to the local displacements are approxi-
mately +100 m for a quadrangle/tetrahedron of an
average side length of 10 km (Figure 3 and 4), which
are much less influenced by the omission of the to-
pography in the ULCN 1994 solution. They are
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Figure 2: Distribution of the translation components as a function of the longitude of their topocentric coordinate systems’ ori-

gins and their frequencies.

more representative of the processing differences be-
tween the control networks.

By the end of this year, satellite laser-altimetry mea-
surements, which were recently carried out during
the Chinese Chang’E 1 and the Japanese SELENE
missions will be released to the scientific community.
Moreover, recently launched Iunar reconnaissance
orbiter’s (LRO) laser-altimeter (LOLA) will also pro-
vide abundant information about the lunar topogra-
phy. The data from all the new missions are denser

and more accurate than the ULCN 2005 data. The
methods presented in this study also suit well analyz-
ing their relative distortions.

7. Appendix: transformation from
selenocentric to topocentric coordinate
system

The selenocentric Cartesian coordinates of a station
P (Figure 5) on or above the lunar sphere of radius
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pressed in km for figures of an average side length 10 km.

R are given by

Xxp (R+ hp)cos¢pcosp
yp|=| (R+hp)cos¢psinip |. (8)
zZp (R+/’lp) sin¢P

The lunar topocentric coordinates of a point P in
space rr, = (x7, yr, zr,)’ can be calculated
using the following transformation from the seleno-

centric to the lunar topocentric coordinate system:
rr, = M(rp — 1,) 9)

where ¢,, 4, refers to the selenocentric latitude and
longitude of the origin of the lunar topocentric coor-
dinate system respectively (in this study, the origin is
located at the geometric center of the quadrangle on
the surface of the lunar sphere), and /4, and /p are the
heights of the station 0 and P on, above, or below the
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lunar sphere. The position vectors of the origin of
the lunar topocentric coordinate system and the point
P are denoted by r,, rp. They are both in the seleno-
centric coordinate system and the rotation matrix M
is given by

—sin 4, cos /A, 0
M= | —sing,cosl, —sing,sini, cosg, (10)
cos¢,cosl, cos¢p,sini, sing,
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