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Abstract. In this paper, we introduce a constant positive linear dependence condition (CPLD),
which is weaker than the Mangasarian–Fromovitz constraint qualification (MFCQ) and the constant
rank constraint qualification (CRCQ). We show that a limit point of a sequence of approximating
Karush–Kuhn–Tucker (KKT) points is a KKT point if the CPLD holds there. We show that a
KKT point satisfying the CPLD and the strong second-order sufficiency conditions (SSOSC) is an
isolated KKT point. We then establish convergence of a general sequential quadratical programming
(SQP) method under the CPLD and the SSOSC. Finally, we apply these results to analyze the
feasible SQP method proposed by Panier and Tits in 1993 for inequality constrained optimization
problems. We establish its global convergence under the SSOSC and a condition slightly weaker
than the Mangasarian–Fromovitz constraint qualification, and we prove superlinear convergence of a
modified version of this algorithm under the SSOSC and a condition slightly weaker than the linear
independence constraint qualification.
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1. Introduction. Consider the constrained optimization problem

min{f(x) | x ∈ X},(1.1)

where X = {x ∈ �n | g(x) ≤ 0, h(x) = 0}, f : �n → �, g : �n → �m,
and h : �n → �p are continuously differentiable functions. Assume that X �= ∅. Let
I = {1, . . . ,m} and J = {1, . . . , p}. For a vector d ∈ �q, we let supp(d) = {j | dj �= 0}.

Let x ∈ X be a given feasible point of (1.1). Let

I(x) = {j ∈ I | gj(x) = 0},

S(x) = {∇gj(x) | j ∈ I(x)},

and

T (x) = {∇hj(x) | j ∈ J}.

We call a feasible point x a Karush–Kuhn–Tucker (KKT) point of (1.1) if there exist
vectors u ∈ �m and v ∈ �p such that the following requirements are simultaneously
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satisfied:




∇f(x) +∑
j∈I uj∇gj(x) +

∑
j∈J vj∇hj(x) = 0;

u ≥ 0;

uT g(x) = 0.

(1.2)

We call the pair (u, v) a Lagrange multiplier at x and denote the set of all possible
Lagrange multipliers associated with x by M(x). For a given x ∈ X, if we regard
(1.2) as the constraints of a linear program with (u, v) as variables, we see that if
x is a KKT point, there is a (u, v) ∈ M(x) such that the vectors {∇gj(x) | j ∈
supp(u)} ∪ {∇hj(x) | j ∈ supp(v)} are linearly independent. We call such a (u, v) a
regular Lagrange multiplier of x.

For convenience, we set M(x) = ∅ if x is not a KKT point. We say that x is an
isolated KKT point of (1.1) if there is a neighborhood of x such that x is the only
KKT point in this neighborhood. Note that an isolated KKT point may have more
than one Lagrange multiplier.

In sequential quadratic programming (SQP) methods [7, 10, 23, 24, 9] and KKT
equation methods [26] for solving (1.1), at each step, an approximate KKT point of
(1.1) is found. Is any limit point of a sequence of approximate KKT points a KKT
point of (1.1)? If it is, will the whole sequence converge to it? Under which conditions
is a KKT point stable with respect to perturbations? In the next section, we formally
define an approximate KKT point sequence and introduce a regularity condition called
the constant positive linear dependence condition (CPLD). The CPLD is weaker than
the well-known Mangasarian–Fromovitz constraint qualification (MFCQ) [16] and the
constant rank constraint qualification (CRCQ); moreover, the MFCQ and the CRCQ
together are weaker than the linear independence constraint qualification (LICQ). We
show that a limit point x∗ of an approximate KKT point sequence is a KKT point of
(1.1) if the CPLD holds at x∗. In section 3, we show that if a KKT point x satisfies the
CPLD and the strong second-order sufficiency conditions (SSOSC) [31], then it is an
isolated KKT point. Hence, a limit point x∗ of an approximate KKT point sequence
is a KKT point of (1.1) and the whole sequence will converge to it if both the CPLD
and the SSOSC hold at x∗. We state in section 3 a Kojima theorem on perturbed
KKT points under the MFCQ and the SSOSC. The Kojima theorem will be used in
section 6.

SQP methods constitute an important class of methods for solving (1.1). They
enjoy local superlinear convergence under mild conditions [7, 10, 23, 24, 9]. The su-
perlinear convergence of SQP methods was first established [7, 10] under a set of
conditions: the LICQ, the second-order sufficiency conditions, and the strict com-
plementarity slackness. This set of conditions was first studied in [5] and is called
the Jacobian uniqueness condition [10]. Robinson [31] reduced the second-order suffi-
ciency conditions and the strict complementarity slackness to the SSOSC. Robinson’s
condition has been used for classical SQP methods and KKT equations methods in
[1, 9, 26]. What is difficult is to relax the LICQ. The relaxation of the LICQ may
result in multiple Lagrange multipliers. Only recently, several authors [6, 28, 35] be-
gan to study the convergence of algorithms on problems with nonunique Lagrange
multipliers. In section 4, we apply the results in sections 2 and 3 to a general SQP
method and establish its convergence under the CPLD and the SSOSC. In sections 5
and 6, we further apply these results to a feasible SQP method. For classical SQP
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methods, the iteration points may be infeasible, while feasible SQP methods take spe-
cial precautions to guarantee that the iteration points are feasible. Panier and Tits
[17, 18] proposed two feasible SQP methods in 1987 and 1993. They established global
and superlinear convergence of their feasible SQP methods under the classical Jaco-
bian uniqueness condition. In section 5, we establish global convergence of the 1993
Panier–Tits method [18] under the condition that the CPLD and the SSOSC hold for
a limit point of the primal iterative sequence and the MFCQ holds at all non-KKT
points in X. In section 6, we first modify the 1993 Panier–Tits algorithm slightly;
then, with the help of the Kojima theorem, we establish superlinear convergence of
the modified algorithm under the SSOSC and a condition slightly weaker than the
LICQ. In this way, both the strict complementarity condition and the LICQ, assumed
in [18], are relaxed. These results can be extended to the 1987 Panier–Tits method.

Throughout the paper, we denote the Euclidean norm of a vector v by ‖v‖, the
corresponding induced norm of a matrix H by ‖H‖, and the cardinality of a finite set
J by |J | and let N ≡ {1, 2, . . .}.

2. Limiting point of an approximate KKT point sequence. We first re-
view the concept of positive linear independence for vectors [21, 32, 33, 29].

Definition 2.1. Let A = {a1, . . . , al} and B = {b1, . . . , br} be two finite subsets
of �n such that A ∪B �= ∅. We say that (A,B) is positive-linearly dependent if there
are α ∈ �l and β ∈ �r such that α ≥ 0, (α, β) �= 0, and

l∑
j=1

αja
j +

r∑
j=1

βjb
j = 0.

Otherwise, we say that (A,B) is positive-linearly independent. If B = ∅, we simply
say that A is positive-linearly dependent or independent.

Clearly, just as linearly independent and dependent sets, a subset pair of a
positive-linearly independent set pair is always positive-linearly independent and a
set pair with a positive-linearly dependent subset pair is always positive-linearly de-
pendent.

Proposition 2.2. Let Gj : �n → �n, j = 1, . . . , l, and Hj : �n → �n, j =
1, . . . , r, be continuous functions. If ({Gj(x)}lj=1, {Hj(x)}rj=1) is positive-linearly in-
dependent for x ∈ �n, then there is a neighborhood N(x) of x such that for any
y ∈ N(x), ({Gj(y)}lj=1, {Hj(y)}rj=1) is positive-linearly independent.

Proof. If such a neighborhood does not exist, then there is a sequence {yk}∞k=1 ⊂
�n with yk → x as k → +∞ and αk ≥ 0, ‖(αk, βk)‖ ≡ 1, such that

l∑
j=1

αk
jGj(y

k) +

r∑
j=1

βk
jHj(y

k) = 0.

Without loss of generality, we may assume that αk → α∗ and βk → β∗ as k → +∞.
Clearly,




∑l
j=1 α

∗
jGj(x) +

∑r
j=1 β

∗
jHj(x) = 0;

α∗ ≥ 0;

‖(α∗, β∗)‖ = 1.
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This gives a contradiction.
This proposition will be used in later sections.
Proposition 2.3. For any given x ∈ X, assume that ∇f(x), ∇gj(x), j ∈ I(x),

and ∇hj(x), j ∈ J, are not all zero. Then x is a KKT point of (1.1), i.e., M(x) �=
∅, if and only if there is a subset S0(x) ⊆ S(x) and a subset T0(x) of T (x) such
that (S0(x), T0(x)) is positive-linearly independent while (S0(x)

⋃{∇f(x)}, T0(x)) is
positive-linearly dependent.

Proof. The case when ∇f(x) = 0 is trivial. Thus we assume that ∇f(x) �= 0.
[⇒]. If M(x) �= ∅, then there exist vectors u = u1 ∈ �m and v = v1 ∈ �p such

that (1.2) holds. Let I1 = supp(u), J1 = supp(v), S1 = {∇gj(x) | j ∈ I1}, and
T1 = {∇hj(x) | j ∈ J1}. Since ∇f(x) �= 0, by the first equality of (1.2), S1 ∪ T1 �= ∅.
If (S1, T1) is positive-linearly independent, then let S0(x) = S1 and T0(x) = T1, and
the first equality in (1.2) implies that (S0(x)

⋃{∇f(x)}, T0(x)) is positive-linearly
dependent. If (S1, T1) is positive-linearly dependent, then we have αj ≥ 0, j ∈ I1, and
βj , j ∈ J1, such that not all of αj and βj are zero and

∑
j∈I1

αj∇gj(x) +
∑
j∈J1

βj∇hj(x) = 0.

If some αj �= 0, let λ = min{ uj

αj
| j ∈ I1, αj �= 0}; otherwise, there is j̄ ∈ J1 such

that βj̄ �= 0, and we then let λ =
vj̄

βj̄
. Let u2

j = uj − λαj for j ∈ I1, u
2
j = 0 for j �∈ I1,

v2
j = vj − λβj for j ∈ J1, and v2

j = 0 for j �∈ J1. Then (u, v) = (u2, v2) still satisfies
(1.2) but its support set is strictly contained in I1 ∪ J1, the support sets of S1 and
T1. Repeat this process. Finally, we have a subset S0(x) of S(x) and a subset T0(x)
of T (x), which satisfy the requirements.

[⇐]. Assume that I0 ⊆ I(x) and J0 ⊆ J such that S0(x) = {∇gj(x) | j ∈
I0} and T0(x) = {∇hj(x) | j ∈ J0} satisfy the requirements. The fact that
(S0(x)

⋃{∇f(x)}, T0(x)) is positive-linearly dependent implies that there are γ ∈ �,
α ∈ �|I0|, and β ∈ �|J0| such that γ ≥ 0, α ≥ 0, (γ, α, β) �= 0, and

γ∇f(x) +
∑
j∈I0

αj∇gj(x) +
∑
j∈J0

βj∇hj(x) = 0.

These and the assumption that (S0(x), T0(x)) is positive-linearly independent imply

that γ > 0. Let uj =
αj

γ for j ∈ I0, uj = 0 for j �∈ I0, vj =
βj

γ for j ∈ J0, and vj = 0

for j �∈ J0. Then (u, v) satisfies (1.2). Hence, M(x) �= ∅.
A given feasible point x ∈ X is said to satisfy the MFCQ [16] if T (x) is linearly

independent and there is a vector z ∈ �n such that

(∇gI(x)(x))
T z < 0

and

(∇h(x))T z = 0.

The following proposition was given in section 1.8 of [21].
Proposition 2.4. For any given x ∈ X, assume that I(x) ∪ J �= ∅. Then the

MFCQ holds at x if and only if (S(x), T (x)) is positive-linearly independent.
Proof. If I(x) = ∅, the conclusion is obvious; otherwise, the conclusion follows

Motzkin’s theorem of the alternative [16].



CONSTANT POSITIVE LINEAR DEPENDENCE CONDITION 967

We now define an approximate KKT point sequence of (1.1).
Definition 2.5. We say that {xk}∞k=1 ⊂ �n is an approximate KKT point se-

quence of (1.1) if there is a sequence {(uk, vk, εk, δk, λk)}∞k=1 ⊂ �m×�p×�n×�m×�
such that the following requirements are simultaneously satisfied for each k:



∇f(xk) +∑
j∈I u

k
j∇gj(xk) +

∑
j∈J v

k
j∇hj(xk) = εk;

g(xk) ≤ δk;

uk ≥ 0;

(uk)T (g(xk)− δk) = 0;

‖h(xk)‖ ≤ λk;

(2.1)

and {(εk, δk, λk)}∞k=1 converges to zero as k → ∞.
Such an approximate KKT point sequence is produced by SQP methods, KKT

equations methods, and some other methods for solving (1.1). If x∗ is a limit point
of {xk}, or without loss of generality, if {xk} converges to x∗, is x∗ a KKT point of
(1.1)? To answer this question, we introduce a regularity condition.

Definition 2.6. A given feasible point x ∈ X is said to satisfy the CPLD if
for any I0 ⊆ I(x) and J0 ⊆ J, whenever ({∇gj(x) | j ∈ I0}, {∇hj(x) | j ∈ J0})
is positive-linearly dependent, there is a neighborhood N(x) of x such that for any
y ∈ N(x), ({∇gj(y) | j ∈ I0}, {∇hj(y) | j ∈ J0}) is linearly dependent.

Note that in the definition we do not require that ({∇gj(y) | j ∈ I0}, {∇hj(y) | j ∈
J0}) be positive-linearly dependent, which is stronger than our requirement here. By
Propositions 2.2 and 2.4, the CPLD is weaker than the MFCQ.

It is said that the CRCQ [11, 15, 20, 34, 22] holds at x ∈ X if there is a neigh-
borhood N(x) of x such that for every I0 ⊆ I(x) and J0 ⊆ J, the family of gradient
vectors

{∇gj(y) | j ∈ I0}
⋃

{∇hj(y) | j ∈ J0}
has the same rank (which depends on I0 and J0) for all vectors y ∈ N(x). It is
not difficult to see that the CRCQ holds at x if and only if for any I0 ⊆ I(x) and
J0 ⊆ J, whenever {∇gj(x) | j ∈ I0}

⋃{∇hj(x) | j ∈ J0} is linearly dependent,
there is a neighborhood N(x) of x such that for any y ∈ N(x), {∇gj(y) | j ∈
I0}

⋃{∇hj(y) | j ∈ J0} is linearly dependent. Hence, the CPLD is also weaker
than the CRCQ. Note [11] that neither the CRCQ implies the MFCQ nor the MFCQ
implies the CRCQ. Furthermore, even the MFCQ and the CRCQ together are weaker
than the LICQ. This can be seen from the following example: n = m = 2, p =
0, g1(x) = x1 + x2, g2(x) = 2x1 +2x2, at x = (0, 0)T . If x is a local minimum point of
(1.1) and the CPLD holds at x, is x always a KKT point of (1.1)? If so, we may also
call the CPLD a constraint qualification, but at this moment we only use the CPLD
to derive the following result.

Theorem 2.7. If an approximate KKT point sequence {xk}∞k=1 converges to x∗

as k → ∞ and the CPLD holds at x∗, then x∗ is a KKT point of (1.1), i.e., there are
a u∗ ∈ �m and a v∗ ∈ �p such that (x∗, u∗, v∗) satisfies (1.2).

Proof. By using the theory of linear programming, we may assume, without loss
of generality, for any given k, there is (ūk, v̄k) satisfying (2.1) such that

{∇gj(xk) | j ∈ supp(ūk)}
⋃

{∇hj(xk) | j ∈ supp(v̄k)}
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is linearly independent. Let Ik = supp(ūk) and Jk = supp(v̄k). Without loss of gen-
erality, we may assume that I0 ≡ Ik and J0 ≡ Jk. Then I0 ⊆ I(x∗) and J0 ⊆ J . If
{(ūk, v̄k)}∞k=1 has a bounded subsequence, then, without loss of generality, we may
assume that there are u∗ ∈ �m and v∗ ∈ �p such that ūk → u∗ and v̄k → v∗ as
k → ∞. Letting k tend to infinity in (2.1), we see that (x∗, u∗, v∗) satisfies (1.2), and
hence the conclusion holds for this case. We assume now that

lim
k→∞

‖(uk, vk)‖ = +∞.

Without loss of generality, we may assume that

lim
k→∞

(uk, vk)

‖(uk, vk)‖ = (α, β).

Then ‖(α, β)‖ = 1, supp(α) ⊆ I0, supp(β) ⊆ J0, and α ≥ 0. Dividing both sides of

∇f(xk) +
∑
j∈I

ūkj∇gj(xk) +
∑
j∈J

v̄kj∇hj(xk) = εk

by ‖(uk, vk)‖ and letting k tend to infinity in the above equality, we obtain

∑
j∈I0

αj∇gj(x∗) +
∑
j∈J0

βj∇hj(x∗) = 0.

This implies that ({∇gj(x∗) | j ∈ I0}, {∇hj(x∗) | j ∈ J0}) is positive-linearly
dependent. By the assumptions that the CPLD holds at x∗ and xk → x∗, we have
that for all large k, ({∇gj(xk) | j ∈ I0}, {∇hj(xk) | j ∈ J0}) are linearly dependent.
This contradicts the fact that {∇gj(xk) | j ∈ I0}

⋃{∇hj(xk) | j ∈ J0} are linearly
independent for all k. .

3. Isolated and stable KKT points. We now assume that f, g, and h are
twice continuously differentiable.

For any x ∈ �n, u ∈ �m, and v ∈ �p, we denote the Lagrange function of (1.1)
by

L(x, u, v) = f(x) + uT g(x) + vTh(x).

By Robinson [31], a triplet (x, u, v) is said to satisfy the SSOSC if it satisfies the KKT
conditions (1.2) and ∇xxL(x, u, v) is positive definite on the subspace

G(x, u, v) = {d ∈ �n | ∇f(x)T d = 0, ∇gj(x)T d = 0 for j ∈ supp(u),

∇hj(x)T d = 0 for j ∈ J}.
Note that even under the second-order sufficiency conditions, x will be a strict local
minimum of (1.1).

Definition 3.1. Suppose that x is a KKT point of (1.1). If for all Lagrange
multipliers (u, v) of x, (x, u, v) satisfies the SSOSC, then we say that x satisfies the
SSOSC.

Theorem 3.2. Suppose that x∗ is a KKT point of (1.1). If x∗ satisfies the CPLD
and the SSOSC, then x∗ is an isolated KKT point of (1.1).

Proof. Suppose that x∗ is not an isolated KKT point of (1.1). Then there is a
KKT point sequence {xk}∞k=1 such that xk �= x∗ and limk→∞ xk = x∗. It follows
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from the theory of linear programming that for each k, there is a regular Lagrange
multiplier (uk, vk) for xk. Let Ik = supp(uk) and Jk = supp(vk). Without loss of
generality, we may assume that I0 ≡ Ik and J0 ≡ Jk for all k. Then

{∇gj(xk) | j ∈ I0}
⋃

{∇hj(xk) | j ∈ J0}

is linearly independent for all k. By the CPLD at x∗,

({∇gj(x∗) | j ∈ I0}, {∇hj(x∗) | j ∈ J0})

is positive-linearly independent.
If {(uk, vk)}∞k=1 is unbounded, without loss of generality, we may assume that

lim
k→∞

‖(uk, vk)‖ = +∞,

lim
k→∞

(uk, vk)

‖(uk, vk)‖ = (α, β),

‖(α, β)‖ = 1, α ≥ 0, supp(α) ⊆ I0, and supp(β) ⊆ J0. Then dividing

∇f(xk) +
∑
j∈I

ukj∇gj(xk) +
∑
j∈J

vkj∇hj(xk) = 0

by ‖(uk, vk)‖ and letting k → ∞, we have

∑
j∈I0

αj∇gj(x∗) +
∑
j∈J0

βj∇hj(x∗) = 0.

This contradicts the fact that

({∇gj(x∗) | j ∈ I0}, {∇hj(x∗) | j ∈ J0})

is positive-linearly independent.
Hence {(uk, vk)}∞k=1 is bounded. Without loss of generality, we may assume that

uk → u∗ and vk → v∗. Then (u∗, v∗) ∈ M(x∗) is a Lagrange multiplier of x∗,
supp(u∗) ⊆ I0, and supp(v∗) ⊆ J0. We may assume that

lim
k→∞

xk − x∗

‖xk − x∗‖ = d.

Then ‖d‖ = 1. Since

gj(x
k)− gj(x

∗) = 0, j ∈ I0,

and

hj(x
k)− hj(x

∗) = 0, j ∈ J,

we have, by Taylor’s theorem, that

gj(x
k)− gj(x

∗) = ∇gj(x∗)T (xk − x∗) + o(‖xk − x∗‖), j ∈ I0,(3.1)
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and

hj(x
k)− hj(x

∗) = ∇hj(x∗)T (xk − x∗) + o(‖xk − x∗‖), j ∈ J.(3.2)

Dividing (3.1) and (3.2) by ‖xk − x∗‖ and letting k → ∞, we have

∇gj(x∗)T d = 0, j ∈ I0,(3.3)

and

∇hj(x∗)T d = 0, j ∈ J.(3.4)

On the other hand, since (u∗, v∗) ∈ M(x∗), we have

∇f(x∗) +
∑

j∈supp(u∗)

u∗j∇gj(x∗) +
∑

j∈supp(v∗)

v∗j∇hj(x∗) = 0.

This formula, combined with (3.3), (3.4) and observing that supp(u∗) ⊆ I0 and
supp(v∗) ⊆ J, yields

∇f(x∗)T d = 0.(3.5)

From (3.3), (3.4), and (3.5), we have d ∈ G(x∗, u∗, v∗). For any given k and t ∈ [0, 1],
let

(xt, ut, vt) = (1− t)(x∗, u∗, v∗) + t(xk, uk, vk).

Then, Robinson’s function [31, 8] is defined by

s(t) = (xk − x∗)T


∇f(xt) +

∑
j∈I0

utj∇gj(xt) +
∑
j∈J0

vtj∇hj(xt)



− (uk − u∗)T g(xt)− (vk − v∗)Th(xt).

The function s : [0, 1] → � is clearly continuous on [0, 1] and continuously differen-
tiable on (0, 1). Moreover, s(0) = 0 = s(1). By the mean-value theorem, for any given
k, there exists tk ∈ (0, 1) such that s′(tk) = 0, i.e.,

(xk − x∗)T∇xxL(x
tk , utk , vtk)(xk − x∗) = 0.

Dividing this inequality by ‖xk − x∗‖2 and passing to the limit k → ∞, we obtain

dT∇xxL(x
∗, u∗, v∗)d = 0.

This formula, combined with the facts that d ∈ G(x∗, u∗, v∗) and ∇xxL(x
∗, u∗, v∗) is

positive definite in G(x∗, u∗, v∗), implies that d = 0, which contradicts the fact that
‖d‖ = 1. This proves the theorem.

Remark. It is possible to reduce the requirement of twice differentiability of
f, g, and h to semismoothness of ∇f,∇g, and ∇h. Such an optimization problem is
called an SC1 optimization problem. For SC1 optimization and its applications, see
[24, 19, 4, 9, 3, 12, 27, 13, 2, 25].

Theorem 3.3. Suppose that x∗ is a limit point of an approximate KKT point
sequence {xk}∞k=1 of (1.1) and the CPLD and the SSOSC hold at x∗. If

lim
k→∞

‖xk+1 − xk‖ = 0,(3.6)
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then limk→∞ xk = x∗.
Proof. By Theorem 2.7, we have that x∗ is a KKT point of (1.1) and every

accumulation point of {xk}∞k=1 is a KKT point of (1.1). The assumptions that the
CPLD and the SSOSC hold at x∗ and Theorem 3.2 imply that x∗ is an isolated KKT
point of (1.1), i.e., there is ε > 0 such that the ballO(x∗, ε) = {x ∈ �n, | ‖x−x∗‖ ≤ ε}
does not contain any KKT point other than x∗. On the other hand, (3.6) implies that
for k large enough, ‖xk+1 − xk‖ < ε

4 and there exists a subsequence {xk}k∈K such
that ‖xk − x∗‖ < ε

4 on K. It is then impossible to leave O(x∗, ε) without creating
another cluster point and hence a KKT point in that ball.

In the remaining part of this section, as in [14], ‖·‖ is for the infinity norm instead
of the Euclidean norm. Let N(x, δ) = {y ∈ �n : ‖y − x‖ ≤ δ}.

Consider the perturbed form of (1.1)

min{f(x) + f̄(x) | x ∈ X̄},(3.7)

where X̄ = {x ∈ �n | g(x) + ḡ(x) ≤ 0, h(x) + h̄(x) = 0}, f, f̄ : �n → �,
g, ḡ : �n → �m, and h, h̄ : �n → �p are twice continuously differentiable functions.

Definition 3.4. Let x∗ be a KKT point of (1.1). We call x∗ a strongly stable
KKT point of (1.1) if for some δ∗ > 0 and each δ ∈ (0, δ∗] there exists an α > 0 such
that whenever twice continuously differentiable functions f̄ , ḡ, and h̄ satisfy

sup
‖x−x∗‖≤δ∗

i∈I,j∈J

{|f̄(x)|, |ḡi(x)|, |h̄j(x)|, ‖∇f̄(x)‖, ‖∇ḡi(x)‖, ‖∇h̄j(x)‖,

‖∇2f̄(x)‖, ‖∇2ḡi(x)‖, ‖∇2h̄j(x)‖} ≤ α,

N(x∗, δ) contains a solution x̄∗ of (3.7), which is unique in N(x∗, δ∗).
The following theorem is Theorem 7.2 of [14]. We will use it in section 6.

Theorem 3.5 (by Kojima [14]). Suppose that x∗ is a KKT point of (1.1) and
that the MFCQ holds at x∗. Then x∗ is a strongly stable KKT point of (1.1) if and
only if for all (u, v) ∈ M(x∗), (x∗, u, v) satisfies the SSOSC.

Remark. The Kojima theorem can be regarded as an alternative to Robinson’s
perturbation theorem in [30]. Theorem 4.1 of [30] (together with Theorem 2.1 and
Corollary 2.2 of the same paper) shows that under the SSOSC and the LICQ one has
Lipschitzian behavior of the solution and the multipliers, with respect to perturba-
tions, while the Kojima theorem shows that under the SSOSC and the MFCQ one
has continuity of the solution and the multipliers, with respect to perturbations (but
a counterexample in [31] shows that we cannot prove Lipschitz continuity in this sit-
uation). It is thus not surprising that in section 6 we must add the CRCQ to get our
superlinear convergence result for a modified version of the 1993 Panier–Tits method.
Note that the example in [31] does not satisfy the CRCQ. A question is, Is the Kojima
theorem still true if the MFCQ is replaced by the CRCQ?

4. A general SQP method. We describe a general SQP method as follows.

Algorithm A.
Let C > 0.
Data. x0 ∈ X,H0 ∈ �n×n, symmetric positive definite.
Step 0. (Initialization.) Set k = 0.
Step 1. (Computation of a search direction.) Compute dk by solving the quadratic
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program

(QP )




min 1
2d

THkd+∇f(xk)T d

s.t. gj(x
k) +∇gj(xk)T d ≤ 0, j ∈ I,

s.t. hj(x
k) +∇hj(xk)T d = 0, j ∈ J.

If dk = 0 stop.
Step 2. (Line search and additional correction.) Determine the steplength αk ∈ (0, 1)
and a correction direction d̄k such that

‖d̄k‖ ≤ C‖dk‖.(4.1)

Step 3. (Updates.) Compute a new symmetric positive definite approximation Hk+1

to the Hessian of the Lagrangian. Set xk+1 = xk +αkd
k + d̄k and k = k+1. Go back

to Step 1.
Algorithm A is a general model for SQP methods. For a specific SQP method,

the rules for determining αk, d̄
k, and Hk must be given. For classical SQP methods

[23], d̄k = 0. We assume that the quadratic program (QP ) is always solvable. This is
obvious for feasible SQP methods since 0 is a feasible solution of (QP ) in that case.
Checking the KKT conditions of (QP ) for d = 0, we have the following proposition.

Proposition 4.1. If Algorithm A stops in Step 1, then xk is a KKT point of
(1.1).

Hence, we need only consider the case where Algorithm A generates an infinite
sequence.

Theorem 4.2. Assume that Algorithm A generates an infinite sequence {xk}∞k=1

and that this sequence has an accumulation point x∗. Let K be a subsequence of N
such that

lim
k∈K

xk = x∗.

Suppose that the CPLD holds at x∗ and that the Hessian estimates {Hk}∞k=0 are
bounded, i.e., there exists a scalar C1 > 0 such that for all k

‖Hk‖ ≤ C1.(4.2)

If

lim inf
k∈K

‖dk‖ = 0,(4.3)

then x∗ is a KKT point of (1.1).

Proof. Without loss of generality, by passing to a subsequence if necessary, we
may assume that

lim
k∈K

‖dk‖ = 0.(4.4)
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By the KKT conditions of (QP ), we have




Hkd
k +∇f(xk) +∇g(xk)T ūk +∇h(xk)Tuk = 0;

g(xk) +∇g(xk)T dk ≤ 0;

uk ≥ 0;

(uk)T (g(xk)−∇g(xk)T dk) = 0;

h(xk) +∇h(xk)T dk = 0.

By (4.2) and (4.4), as k → ∞ for k ∈ K, we have that

εk ≡ −Hkd
k → 0,

δk ≡ −∇g(xk)T dk → 0,

and

λk ≡ ‖∇h(xk)T dk‖ → 0.

Then, by Theorem 2.7, x∗ is a KKT point of (1.1).

Theorem 4.3. Assume that the conditions of Theorem 4.2 hold. If, furthermore,
f, g, and h are twice continuously differentiable, the SSOSC holds at x∗, and

lim
k→∞

dk = 0,(4.5)

then limk→∞ xk = x∗.
Proof. This follows from (4.1) and Theorem 3.3.

We can establish superlinear convergence of the general SQP method by following,
step by step, with minor modifications, the proofs of Lemma 3 to Theorem 1 of [23]
and replacing ∇2

xxL(x
∗, u∗, v∗) with ∇2

xxL(x
k, uk, vk) in (3.10) of [23]. We will see this

more clearly in section 6.

To establish (4.3) or (4.5) one must use the properties of specific SQP methods.
In the next section, we will establish these two conditions for a feasible SQP method.

5. Global convergence of a Panier–Tits method. In this section, we estab-
lish the global convergence of the 1993 Panier–Tits feasible SQP method [18] under
the SSOSC and a condition slightly weaker than the MFCQ. The global convergence
of the 1987 Panier–Tits method [17] can be established in the same way. First of all,
we describe the algorithm given in [18]. Keep in mind that the Panier–Tits methods
are for inequality constrained optimization problems. Therefore, in this section and
the next section, problem (1.1) becomes

min{f(x) | x ∈ X},(5.1)

where X = {x ∈ �n | g(x) ≤ 0}.
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5.1. A Panier–Tits method. In [18], a continuous map d1 : �n → �n is
needed in the algorithm such that

d1(x) = 0 if x is a KKT point of (5.1),(5.2)

∇f(x)T d1(x) < 0 if x is not a KKT point of (5.1),(5.3)

and

∇gj(x)T d1(x) < 0 if x is not a KKT point of (5.1) and j ∈ I(x).(5.4)

As indicated in [18], if the LICQ holds at x, then the continuous map d1(x) satisfying
(5.2), (5.3), and (5.4), for example, can be obtained as the solution of

min
1

2
‖d‖2 +max{∇f(x)T d; max{gj(x) +∇gj(x)T d | j ∈ I}}.(5.5)

We see from (5.4) that the existence of such a d1(x) implies that the MFCQ holds
at all non-KKT points. On the other hand, if the MFCQ holds at all non-KKT points,
then such a continuous map still exists (see section 2.6 of [21]). However, this does
not require that the MFCQ hold at KKT points.

In the method of [18], it is necessary to have a map ρ : �n → [0, 1] that is bounded
away from zero outside every neighborhood of zero, and for v small

ρ(v) = O(‖v‖2).

Since the existence of the map ρ is independent of problem (5.1), for sake of simplicity,
we choose

ρ(v) =
‖v‖2

1 + ‖v‖2
.

Establishing the convergence properties of the algorithm presents no difficulty when
choosing other such maps.

The 1993 Panier–Tits method is as follows.
Algorithm B.

Let C > 0, τ1 ∈ (0, 1
2 ), τ2 ∈ (0, 1), τ3 ∈ (2, 3).

Data. x0 ∈ X,H0 ∈ �n×n, symmetric positive definite.
Step 0. (Initialization.) Set k = 0.
Step 1. (Computation of a search arc.)

(i) Compute dk0 by solving the quadratic program

(QP1)




min 1
2d

THkd+∇f(xk)T d

s. t. gj(x
k) +∇gj(xk)T d ≤ 0, j ∈ I.

If dk0 = 0, stop.
(ii) Let dk1 be the solution of (5.5), ρk = ρ(dk0), and dk = (1− ρk)d

k
0 + ρkd

k
1 .

(iii) Compute a correction d̃k as the solution of the problem

(QP2)




min 1
2 (d

k + d)THk(d+ dk) +∇f(xk)T (d+ dk)

s.t. gj(x
k + dk) +∇gj(xk)T d ≤ −‖dk‖τ3 , j ∈ I,
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if it exists and has norm less than min {‖dk‖, C} and d̃k = 0 otherwise. Hence, in any
case, we have

‖d̃k‖ ≤ min {‖dk‖, C}.(5.6)

Step 2. (Arc search.)
Compute tk, the first number t of the sequence {1, τ2, τ2

2 , . . .} satisfying

f(xk + tdk + t2d̃k) ≤ f(xk) + τ1t∇f(xk)T dk

and

gj(x
k + tdk + t2d̃k) ≤ 0, j ∈ I.

Step 3. (Updates.) Compute a new symmetric positive definite approximation Hk+1

to the Hessian of the Lagrangian. Set xk+1 = xk+ tkd
k+ t2kd̃

k and k = k+1. Go back
to Step 1.

We see that Algorithm B is a special case of Algorithm A with dk0 in Algorithm
B playing the role of dk in Algorithm A. The following two propositions show that
Algorithm B is well defined and either stops at a KKT point of (5.1) or generates a
sequence {xk}∞k=1.

Proposition 5.1 (Proposition 3.1 of [18]). If Algorithm B stops at Step 1(i),
then xk is a KKT point of (5.1). If xk is not a KKT point of (5.1), dk0 satisfies

∇f(xk)T dk0 < 0(5.7)

and

∇gj(xk)T dk0 ≤ 0 for all j ∈ I(xk).

Proposition 5.2 (Proposition 3.2 of [18]). The line search yields a step tk = τ i2
for some finite i = i(k).

5.2. Global convergence of Algorithm B. In order to prove the convergence
properties of Algorithm B, we assume that

(H1) the Hessian estimates {Hk}∞k=0 are bounded, i.e., there exists a scalar C1 > 0
such that for all k, ‖Hk‖ ≤ C1;

(H2) the MFCQ holds at all non-KKT points in X.
As discussed in subsection 5.1, (H2) implies that (5.5) has a continuous solution for

x. By Proposition 4.1 or Proposition 5.1, we may assume that Algorithm B generates
an infinite sequence {xk}∞k=1 and {xk}∞k=1 has an accumulation point x

∗. Furthermore,
we assume that

(H3) the CPLD holds at x∗.
(H2) and (H3) together are slightly weaker than the condition that the MFCQ

holds at all points in X.
Theorem 5.3. Assume that the hypotheses (H1)–(H3) hold. Then x∗ is a KKT

point of (5.1).
Proof. We assume that there is K such that

lim
k∈K

xk = x∗.

By Theorem 4.2, we only need to prove that

lim inf
k∈K

‖dk0‖ = 0.
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Assume that this does not hold. Then there exists a subsequence K′ ⊂ K and a scalar
c > 0 such that for all k ∈ K′, ‖dk0‖ ≥ c. Suppose, by contradiction, that x∗ is not
a KKT point of (5.1). Then from the definitions of ρk and ρ, there exists a number
c0 > 0 such that for all k ∈ K′, ρk ≥ c0. Therefore, using (5.3), (5.4), (5.7), and the
definition of dk in Step 1(ii) of Algorithm B, we have

∇f(xk)T dk ≤ c0∇f(xk)T dk1 .(5.8)

Similarly, for j ∈ I, we have

∇gj(xk)T dk ≤ −gj(xk) + c0∇gj(xk)T dk1 .(5.9)

Since x∗ is not a KKT point, we may assume that

lim
k∈K′

dk1 = d∗1,(5.10)

∇f(x∗)T d∗1 ≤ −3c1,(5.11)

and

∇gj(x∗)T d∗1 ≤ −3c1 for j ∈ I(x∗)(5.12)

for some c1 > 0. (5.10) and (5.11) imply that, for k ∈ K′ large enough,

∇f(xk)T dk1 ≤ −2c1.(5.13)

Similarly, from (5.10) and (5.12), we have, for k ∈ K′ large enough, that

∇gj(xk)T dk1 ≤ −2c1 for j ∈ I(x∗).(5.14)

Therefore, by viewing (5.8) and (5.13), (5.9) and (5.14), we have c2 > 0 such that,
for all k ∈ K′ large enough,

∇f(xk)T dk < −c2,

∇gj(xk)T dk < −c2 for j ∈ I(x∗),

and, by continuity of g,

gj(x
k) ≤ −c2 for j ∈ I \ I(x∗).

From the definitions of ρ and dk, we see that {dk}∞k=1 is bounded. From (5.6), {d̃k}∞k=1

is also bounded. The argument used in the proof of Proposition 3.2 of [17] implies that,
in this case, the step performed by the line search is bounded away from zero. This
and the monotonic decrease of f(xk) imply therefore that {f(xk)}k∈K′ is unbounded,
which contradicts the facts that xk → x∗ as k ∈ K′ and k → ∞ and the continuity of
f . Hence the proof of this theorem is complete.

In addition to (H1)–(H3), we further assume that
(H4) f and g are twice continuously differentiable;
(H5) there exists a scalar C2 > 0 such that, for all k, the Hessian estimates satisfy

dTHkd ≥ C2‖d‖2 for any d ∈ �n;(5.15)
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(H6) x∗ satisfies the SSOSC.
Proposition 5.4. Assume that (H1)–(H6) hold and {xk}∞k=1 is generated by

Algorithm B. Then

lim
k→∞

xk = x∗.(5.16)

Proof. The argument used in the proof of Proposition 3.4 in [18] showed that

lim
k→∞

‖xk+1 − xk‖ = 0,

which combined with Theorem 3.3 yields that (5.16) holds.
Proposition 5.5. Assume that (H1)–(H6) hold. Then

lim
k→∞

dk0 = 0.

Proof. By Proposition 4.3, {xk}∞k=1 is bounded. From

−‖∇f(xk)‖‖dk0‖ ≤ ∇f(xk)T dk0 ≤ −1

2
(dk0)

THkd
k
0 ≤ −1

2
C2‖dk0‖2

we have

‖dk0‖ ≤ 2

C2
‖∇f(xk)‖2,

which implies that {dk0}∞k=1 is bounded.
Suppose, by contradiction, that there exists a subsequence {dk0}k∈K such that

lim
k∈K

dk0 = d∗0 �= 0.(5.17)

Since x∗ is a KKT point of (1.1), there is a u∗ ≥ 0 such that




∇f(x∗) +∑
j∈I(x∗) u

∗
j∇gj(x∗) = 0,

u∗jgj(x
∗) = 0 for j ∈ I(x∗),

which combined with the facts that ∇f(x∗)T d∗0 ≤ 0, ∇gj(x∗)T d∗0 ≤ 0 for j ∈ I(x∗)
and u∗ ≥ 0 implies that

∇f(x∗)T d∗0 = 0.

On the other hand, from ∇f(xk)T dk0 ≤ − 1
2C2‖dk0‖2, C2 > 0, Proposition 4.3, and

limk∈K d∗0 = d∗0, we have

0 = ∇f(x∗)T d∗0 ≤ −1

2
C2‖d∗0‖2,

which contradicts (5.17). This completes the proof.

6. Superlinear convergence of a modified Panier–Tits method. We begin
by modifying Algorithm B in subsection 6.1 to enable us to prove its superlinear
convergence. Then we establish the superlinear convergence of the modified algorithm
in subsection 6.2.



978 LIQUN QI AND ZENGXIN WEI

6.1. A modified Panier–Tits method. In Algorithm B, let uk be a regular
Lagrange multiplier of dk0 with respect to (QP1). Let Îk be the active constraint set of
(QP1). Then there is a subset Ik ⊂ Îk such that u

k
j = 0 if j �∈ Ik and {∇gj(xk) | j ∈ Ik}

is a maximum linearly independent subset of {∇gj(xk) | j ∈ Îk}. We now replace
(QP2) in Algorithm B by

(QP3)




min 1
2 (d

k + d)THk(d+ dk) +∇f(xk)T (d+ dk)

s.t. gj(x
k + dk) +∇gj(xk)T d = −‖dk‖τ3 , j ∈ Ik,

gj(x
k + dk) +∇gj(xk)T d ≤ −‖dk‖τ3 , j ∈ I \ Ik.

We call the resulting algorithm Algorithm C. This modification forces Ik to be a part
of the active constraints of (QP3), which is necessary for the proof of superlinear
convergence without assuming the LICQ and the strict complementarity slackness.
Checking the proofs of subsection 5.2, we see that this modification does not affect
the global convergence of the algorithm since only (5.6) is required for d̃k in the global
convergence analysis in subsection 5.2. We did not make this modification in section 5
since there it was not needed.

Let Rk be the n× |Ik| matrix whose columns consist of ∇gj(xk) for j ∈ Ik. Note
that RT

kRk is invertible in view of the definition of the regular Lagrange multiplier.
Let

Pk = I −Rk(R
T
kRk)

−1RT
k

and

∇2
xxL(x

k, uk) = ∇2f(xk) +
∑
j∈Ik

ukj∇2gj(x
k).

6.2. Superlinear convergence of Algorithm C. In the following analysis, we
assume that {xk}∞k=1 converges to a point x

∗. It follows from the preceding discussion
that x∗ is a KKT point of (5.1). In addition to (H1)–(H6), we assume that the following
hypotheses hold:

(H7) x∗ satisfies the CRCQ;
(H8) whenever B ⊂ I(x∗) and vectors in {∇gj(x∗)|j ∈ B} are linearly indepen-

dent, ({∇gj(x∗)|j ∈ I(x∗) \B}, {∇gj(x∗)|j ∈ B}) is positive-linearly independent;
(H9)

‖Pk(Hk −∇2
xxL(x

k, uk))Pkd
k‖

‖dk‖ → 0 as k → ∞.

Note that the LICQ implies both (H7) and (H8). Thus, even (H7) and (H8)
together are slightly weaker than the LICQ at x∗.

Proposition 6.1. Assume that (H1)–(H9) hold and that {xk}∞k=1 is generated
by Algorithm C. Then for k large enough, the step size tk is one.

Proof. Since Ik are finite sets for all k, we may partition N ≡ {1, 2, . . .} into l+1
disjoint subsets Ki for i = 0, 1, . . . , l such that K0 is finite, while other Ki are infinite
and Ik ≡ Īi if k ∈ Ki and i > 0. For i = 1, . . . , l, let R̄i be the n× |Īi| matrix whose
columns consist of ∇gj(x∗) for j ∈ Īi. Note that by (H7), R̄T

i R̄i is also invertible. By
the equality part of the KKT conditions for (QP1),

ukIk = −(RT
kRk)

−1RT
k (Hkd

k
0 +∇f(xk)).
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Then, as k → ∞ for k ∈ Ki,

ukIk → u∗̄Ii = −(R̄T
i R̄i)

−1R̄T
i ∇f(x∗).

Let u∗i = 0 if i �∈ Īi. Then u∗ ∈ M(x∗). We see that 0 is a KKT point of

(Q̄P i)




min 1
2d

T d+∇f(x∗)T d

s.t. gj(x
∗) +∇gj(x∗)T d = 0, j ∈ Īi,

gj(x
∗) +∇gj(x∗)T d ≤ 0, j ∈ I \ Īi,

with a Lagrange multiplier u∗. Because of (H7), vectors in {∇gj(x∗)|j ∈ Īi} are
linearly independent. Then (H8) implies that the MFCQ holds at x∗ for (Q̄P i). It is
easy to see that the SSOSC holds at x∗ for (Q̄P i) too. Applying the Kojima theorem
(Theorem 3.5), we see that

(QP4)




min 1
2d

T d+∇f(xk)T d

s.t. gj(x
k + dk) +∇gj(xk)T d = −‖dk‖τ3 , j ∈ Ik,

gj(x
k + dk) +∇gj(xk)T d ≤ −‖dk‖τ3 , j ∈ I \ Ik,

is feasible for k large enough, since (QP4) is a perturbed form of (Q̄P i). Since (QP3)
has the same constraints as (QP4), (QP3) is also feasible for k large enough. Hence,
and because of (H5) and (H7), and because of the fact that if the CRCQ holds at
a point then it holds at a neighborhood of that point, (QP3) has a KKT point d̃k

for k large enough. Now, we may follow the proof of Proposition 3.6 of [18] step by
step with minor modification for each i satisfying 1 ≤ i ≤ l. Note that l is finite. The
conclusion follows.

Finally, two-step superlinear convergence follows. As in [18], the proof is not given
as it follows step by step, with minor modifications, that of Lemma 3 to Theorem 1
in [23]. Note that with (H9), (H8), and (H7), we do not need to invoke Lemmas 1 and
2 in [23], which rely on the LICQ and the strict complementarity slackness.

Theorem 6.2. Under the stated assumptions, the convergence is two-step super-
linear, i.e.,

lim
k→∞

‖xk+2 − x∗‖
‖xk − x∗‖ = 0.

Remark. Similarly, as we mentioned in section 4, the conditions of Powell’s theo-
rem on the SQP method, Theorem 1 of [23], may be reduced to the SSOSC and the
CPLD, by replacing (3.10) in [23] with (H9).

Again, the result in this section can also be extended to the 1987 Panier–Tits
algorithm.
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