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Abstract:  An analytical method for band structure calculations of photonic 
crystal fibers with liquid crystal infiltrations is presented. The scalar 
eigenvalue equation is extended to treat both isotropic and anisotropic 
materials by introducing a coefficient to describe the index contrast 
between the extraordinary and ordinary refractive index of the liquid crystal. 
The simple model provides a fast insight into bandgap formation in 
photonic crystal fibers filled with anisotropic material such as liquid crystal, 
which would be useful to aid the design based on such fibers. 
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1. Introduction  

Photonic crystal fibers (PCFs) have attracted a lot of research attention since its first 
demonstration in 1996 [1]. Such fibers have opened up many possibilities and promising 
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applications in communication and sensing [2]. The presence of microstructured air holes 
around the fiber core has allowed more degrees of freedom in design than conventional fiber 
design. When the air holes are infiltrated with fluid material which has higher index than 
silica background, the index-guiding silica-air PCFs could turn into PBG PCFs [3,4]. Nematic 
liquid crystal (NLC) which is anisotropic material with rod-like molecules is a good 
infiltration candidate due to its thermal and electrical tunability [5]. It has been 
experimentally demonstrated that the external electrical field controls the orientation and 
alignment of the NLC molecules, which consequently tunes the spectral position of the 
bandgaps [6]. The LC filled PCFs (LCPCF) are finding potential applications in sensing and 
polarization monitoring owing to the thermal and optical properties of LC infiltrations.  

In order to model such PBG fibers, numerical techniques such as planewave expansion 
(PWE) technique [7, 8] solves Maxwell’s equations and computes the band structure of the 
fiber. The exact details of the bandgap formation in the fiber are provided in the band plot at 
the expense of computing time. On the other hand, simplified models which treat the fibers as 
anti-resonant reflecting waveguides are able to provide some important information of the 
fiber and are efficient in calculation [9, 10]. However the size of the low-index regions is not 
considered in such models, therefore the bandgaps obtained from the isolated high-index rod 
provide limited understanding of the fiber. A more comprehensive analytical method which 
takes care of the low-index regions has been proposed [11]. The method is desirable to treat 
photonic crystal fibers with a cladding of isotropic high index rods in a low index background. 
However, this method is insufficient for band structure analysis of PCFs with anisotropic 
high-index rods such as LCPCFs, where the anisotropy of the LC infiltrations shall be 
considered in order to understand the formation of the band structure. In [12], the bandgap 
formation of LCPCF is discussed, which provides a possibility of using the scalar equation 
for the bandgap calculation, but without giving sufficient information on the theoretical 
origins, derivations and final results of the analytical solutions. As it will be presented in this 
work, after the scalar eigenvalue equation has been modified and transformed, the analytical 
solutions can be expressed in Bessel functions.  

In this paper, we extend the analytical approach of [11] to treat PCFs with high-index 
anisotropic materials immersed in low-index background materials. The anisotropy is 
considered in the analytical solutions of the field distribution by introducing a coefficient to 
describe the anisotropy of the NLC cells. This analytical method is therefore generalized to 
investigate the bandgap formation of photonic crystal fibers with high-index isotropic and 
anisotropic materials in low-index background. Based on the method, the influence of the 
degree of the NLC anisotropy as well as the index difference with the silica background on 
the bandgap properties is investigated.  

2. Formulation of the analytical method 

Figure 1(a) depicts the structure of the LCPCF investigated in the paper, Λ is the lattice 
constant and d is the diameter of the air hole, which is infiltrated with NLC molecules. 
Consider the cladding consists of infinite photonic crystal of the NLC rods embedded in silica 
background, the hexagonal unit cell is approximated to a circular cell as in Figs. 1(b), 1(c). 
The shaded circular rods represent air holes with NLC infiltrations. The radius of the 
approximated circular unit cell is obtained from the assumption that the high-index rods takes 

up the same fraction of the unit cell that 1/2 = ( 3/2 )b π Λ [11]. The refractive index of the NLC 
is a tensor nhi and is described by extraordinary and ordinary refractive index of ne and no 
respectively. For example, when NLC molecular are aligned along y- axis, nhi = diag(no,ne,no); 
when they are aligned along x- axis, nhi=diag(ne,no,no). The orientation of the NLC molecules 
can be controlled by appropriate homeotropic anchoring conditions or external electrical field 
[5, 6]. The approximated circular unit cell represents a typical cylindrical coordinate system 
which is defined by (r,δ) radial and azumithal axes. For small index contrast between nhi and 
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nlo, scalar weak-guidance approximation[13] is used to obtain the analytical solutions of the 
field distributions in the unit cell. 
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Fig.1. (a). LCPCF with triangular lattices. The shaded region in cladding is filled NLC, the 
background is silica. (b) Hexagonal unit cell of the NLC rods in silica. (c) Approximated 
circular unit cell of the NLC rods in silica 

 
The eigenvalue equations of transverse electric fields are [14]  
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where Ψx,y represents the electric field distribution in the unit cell along x- and y- directions, k 
is the free space wavevector, β is the propagation constant.  The coupling terms are neglected 
if low index contrast and low anisotropy are assumed [12]. In this work, we take 
nhi=diag(no,ne,no) for demonstration purpose, i.e. nzz=no, nxx=no and nyy=ne. For x-polarized 
mode, it is fairly reasonable to assume Ψyne

2≈Ψyno
2 since Ψy�Ψx. Similarly for y- polarized 

mode we assume Ψxno
2≈Ψxne

2 since Ψx�Ψy[7]. A general expression in cylindrical coordinate 
system is derived for both polarizations as  
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where r is the radial variation, l is integer which defines the azumithal variation of the modes 
to satisfy the eigenvalue equation, ni is either ne or no in the NLC region depending on the 
polarization, f is the coefficient which describes the degree of anisotropy of the NLC 
inclusions. Specifically in the NLC region, f =1 for x- polarized mode and ne

2/no
2 for y- 

polarized mode; in the silica region, f =1 for both polarizations. Therefore for x- polarization 
Eq. (2) is exactly the same as in isotropic system where [11] can be used directly to calculate 
the band structure. On the other hand, the eigenvalue equation for y- polarized mode is the 
same as the uniaxial anisotropic system where nhi=diag(ne,ne,no), which is not in the standard 
form with Bessel functions as solutions. Here we define 2 2 2

0 iR r k n= − β  and look for a solution 
of the form Ψ=ZR-θ, Eq. (2) is expressed in the standard form with solutions of Bessel 
functions as 

( )
2

2 2 2
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0
Z Z

R R R m Z
R R

∂ ∂+ + − =
∂ ∂     

(3) 

where θ=(f-1)/2, m2=fl2+θ2. It is noted that for x-polarization mode in the NLC region, as 
well as both polarizations in the silica cladding, the eigenvalue equations are identical with 
isotropic systems. Only for y-polarization mode in NLC rods the anisotropy coefficient is 
necessary to be introduced into the scalar eigenvalue equation. The general solutions of the 
scalar eigenvalue equation corresponding to LPlq mode of the rod with radius a and assuming 
β<knhi are 
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Ψ(r) is with circular symmetry of any linear combination of cos(lδ) and sin(lδ). Jl, Kl, Il and Yl 
are Bessel functions, A-H are coefficients determined by the continuity of the ψ and 'ψ  at 
the boundaries of r=a. [11] states that the condition Ψ’(b)=0 and Ψ(b)=0 defines the top and 
the lower edge of the band respectively. Therefore the dispersion relation between β and k for 
given l, q could be obtained from finding the roots of the function f(V,W2)=0. The solutions of 
the top of the band and the bottom of the band are defined as  
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where K’
l represents the derivatives of Kl etc, α=a/b. With the above presented formulation, 

this model is ready to calculate the band structure of the LCPCFs with both isotropic and 
anisotropic high-index rods in low-index background. It is noted that when dealing with 
isotropic material, the value of θ is zero, resulting the analytical solutions and the boundary 
conditions exactly the same as [11]. 

3. Bandgap analysis 

The formulated method is used to calculate the band structure of an air-silica PCF with NLC 
infiltrations. The refractive index of silica background is assumed to be 1.45. The anisotropic 
NLC inclusions have ordinary and extraordinary refractive indices no = 1.4884 and ne = 
1.5803 respectively [15]. The NLC cells are assumed to be aligned homogeneously in the air 
holes along y axis so that nhi = diag(no,ne,no). The relative hole diameter / 0.4d Λ = .  A full-
vectorial planewave expansion method (PWE) is used to obtain the bandgap of the LC 
cladding as shown in Fig. 2(a). The shaded regions in dark green are the total bandgaps of the 
LC cladding, which is polarization independent [7]. The core line is drawn at n = 1.45 below 
which the fiber modes are supported in the LCPCF. The bandgap map of the LCPCF obtained 
from the analytical method is shown in Fig. 2(b), which resembles the important properties of 
the band plot in Fig. 2(a). The total bandgaps shaded in dark green which is the overlap 
region between the bandgaps of x- and y- polarization modes, shows a good agreement with 
PWE. It can be seen that the second photonic band in Fig. 2(b) represents LP11 mode, 
corresponding to TE01, TM01 and HE21 modes in the full-vectorial solution. The degeneracy of 
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these three modes in the scalar approach makes them indistinguishable and merging into the 
same one. In addition, due to the anisotropy of the NLC, the bandgaps exhibits splitting 
behaviors for two polarizations which can be observed from both plots highlighted orange 
and cyan, that the bandgaps of x- and y- polarizations have independent operating zones 
which could be explored for single-mode single-polarization applications.  

The width of the first bandgaps for both polarizations are calculated and compared as 
shown in Fig. 3. At short wavelengths, the gap widths of both polarizations obtained from our 
method agree very well with the PWE. In addition, the normalized propagation constants 
corresponding to the maximum gap width are identical from both methods. The relative error 
of the maximum gap width, which is defined as the ratio of difference to the value calculated 
by PWE, is 0.52% for x- polarization compared to 2.24% for y- polarization. This difference 
can be understood since low index contrast between nhi and nlo is assumed in the formulation. 
Here nhi = no for x-polarization and nhi = ne for y-polarization, where no is smaller than ne, 
which yields better accuracy for x-polarization in the calculation. At longer wavelengths, 
discernible deviations occur for both polarizations that the gap width is smaller than that 
obtained from PWE. The variation in band plot is interpreted as narrower gap in longer 
wavelength range, e.g. beyond the normalized wavelength 0.7 shown in Fig. 2. Moreover, the 
PWE plot has solutions at smaller βΛ, i.e. the bandgaps by PWE extend further into longer 
wavelengths, which is also shown in Fig. 2. The circular cell approximation in this analytical 
method is less appropriate for larger /d Λ , e.g. for / 0.8d Λ = , with all the other parameters 
unchanged, the relative error of the maximum gap width for the first y-polarization gap 
between two methods is 7.45%. The proposed method is suitable for low contrast structures, 
i.e. the increasing index contrast would incur less accuracy, e.g. for / 0.4d Λ = , no=1.6482, 
ne=1.75, the relative error between two methods is found to be 6.45%.  

 

 

 
 
 
 

 
 
 
 

 
 

(a)                                               (b) 

Fig. 2. (a). Bandgap map of the LCPCF obtained from PWE method. (b). Bandgap map of the 
LCPCF obtained from the analytical method. The total bandgaps are the overlap zone between 
two polarization bandgaps. 
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Fig. 3. Width of the first bandgap for both polarizations, obtained by the analytical scalar 
method and PWE method. 

 
The presented method is used to investigate the bandgap properties under the influence of 

the different index contrasts. As an example, the first bandgap of y- polarization is studied. 
First of all, no is fixed at 1.4884, the ratio ne

2/no
2 is increased from 1.0123 to 1.1274. As shown 

in Fig. 4(a), the increase in the ratio results in the red shift of the βΛ corresponding to the 
maximum bandgap width indicated by the arrow. The red edge of the bandgap also shifts 
towards smaller value of βΛ indicating that the bandgap penetrates further into longer 
wavelengths. The value of maximum gap width in terms of ∆neff shows a monotonic rising 
trend with the increasing ne

2/no
2 as shown in the inset. Figure 4(b) reveals the bandgap 

variations in terms of the normalized wavelength /λ Λ at two specific ne
2/no

2 values, i.e. at 
1.0123 and 1.1274 respectively. There is an evident red shift of the bandgap. The crossing 
points of the gap edges with the core line are used to describe the gap and are plotted as a 
function of ne

2/no
2. The lower inset shows the rising trend of both red and blue edge of the gap 

with the ratio. The upper inset confirms the increase of the gap width with the ratio ne
2/no

2. A 
qualitative explanation is that as the ratio keeps increasing, the polarization dependent 
bandgap splitting is more explicit which results in obvious red shifts of the gap. In summary, 
the increasing index difference between the ne and no shifts the first bandgap to longer 
wavelengths, and broadens the bandgap width. Next, Figs. 4(c), 4(d) illustrate the variation of 
bandgap position and width under the influence of the ratio ne

2/nsi
2. The ne

2/no
2 is kept constant 

at 1.1274. Similar consequences of increasing ratios of ne
2/nsi

2 on the bandgap are observed, 
but the variation of the position and the width of the bandgap are smaller.  
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Fig. 4. (a). The gap width plot as a function of ne
2/no

2. (b). The bandgap variations at two 
ne

2/no
2 points. The insets show the variation of the position and the width of the gap. (c). The 

gap width plot as a function of ne
2/nsi

2. (d). The bandgap variations in terms of the normalized 
wavelength. The insets show the variation of the position and the width of the gap. 

4. Conclusions 

We have presented a detailed demonstration of a simple analytical model for bandgap 
analysis for LCPCFs. Taking the anisotropy of the NLC into consideration, the coefficient of 
anisotropy is introduced into the explicit analytical solutions. The bandgaps calculated from 
the analytical method agree well with PWE results. It is found that the increasing anisotropy 
ratio of the NLC infiltrations and the increasing index difference with background silica both 
shift the first bandgap to longer wavelengths, and broadens the gap width. This method 
provides an efficient tool to the understanding of bandgap formation in LCPCFs, which are 
useful to aid the design based on such fibers. 
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