
Nakkeeran et al. Vol. 21, No. 11 /November 2004 /J. Opt. Soc. Am. B 1901

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PolyU Institutional Repository
Analytical design of densely dispersion-managed
optical fiber transmission systems with

Gaussian and raised cosine return-to-zero Ansätze

K. Nakkeeran, Y. H. C. Kwan, and P. K. A. Wai

Photonics Research Center and Department of Electronic and Information Engineering,
The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

A. Labruyère, P. Tchofo Dinda, and A. B. Moubissi
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We propose an easy and efficient way to analytically design densely dispersion-managed fiber systems for ul-
trafast optical communications. This analytical design is based on the exact solution of the variational equa-
tions derived from the nonlinear Schrödinger equation by use of either a Gaussian or a raised-cosine (RC) An-
satz. For the input pulses of dispersion-managed optical fiber transmission systems we consider a RC profile
and show that RC return-to-zero pulses are as effective as Gaussian pulses in high-speed (160-Gbits/s) long-
distance transmissions. © 2004 Optical Society of America
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1. INTRODUCTION
Dispersion-managed (DM) optical fiber systems have
paved a new way to increase the transmitting capacity of
optical fiber links.1–4 Basically, the dispersion-
management technique utilizes a fiber transmission line
with a periodic dispersion map, such that each period is
built up by two types of fiber, generally with different
lengths and opposite group-velocity dispersion (GVD). In
conventional DM fiber systems the length of the map is
more than or equal to the amplifier span of the fiber
transmission system.1 But, because of large breathing
and the large power-enhancement factor of these conven-
tional DM solitons, it is difficult to propagate pulses with
bit rates larger than 40 Gbits/s in each channel. Hence,
to achieve pulse transmission at a high bit rate, Liang
et al. proposed a densely dispersion-managed (DDM) fiber
system whose dispersion map length is shorter than the
amplifier span.5

Unlike for conventional solitons in uniform fibers, there
is no exact analytical solution for DM solitons. Conse-
quently, different methods for determining the param-
eters of stationary pulses (fixed points) for DM fiber lines
have been developed, such as the averaging method of
Nijhof et al.6 and the numerical solution of the variational
equations derived from the nonlinear Schrödinger equa-
tion (NLSE) by use of a Gaussian Ansatz.1 Recently an
analytical method for designing long-distance DM fiber
lines was proposed by Nakkeeran et al.7 Using that
procedure,7 one can easily design DM fiber transmission
systems in the absence or presence of optical losses. In
other words, this analytical design procedure permits one
to obtain the length of the normal- and anomalous disper-
sion fiber sections for periodic evolution of a Gaussian
pulse Ansatz (with desired width and energy) and any de-
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sired fiber parameters (dispersion, nonlinearity, and
losses). But that analytic design method7 was strictly re-
stricted to conventional DM fiber systems (i.e., with dis-
persion map lengths greater than or equal to one amplifi-
cation period). Recently the use of average-dispersion-
decreasing densely dispersion-managed (A4DM) fiber
systems was proposed as an effective way to improve the
performance of high-speed optical transmission systems.8

In all the studies mentioned above, a Gaussian profile
for the pulse propagating in the DM fiber transmission
line was assumed, whereas it is a known fact that pulses
propagating in such systems are not exactly Gaussian
pulses. In fact, it is its analytical tractability that makes
the Gaussian Ansatz attractive, especially in the varia-
tional analysis of DM fiber systems. But, in practice,
generating Gaussian profiled pulses at high bit rates is
difficult. The output of the commonly used Mach–
Zehnder modulators are raised-cosine (RC) profiled
pulses. In general, developing ultrashort-pulse genera-
tors that facilitate both a high repetition rate and specific
pulse profiles such as those that correspond to DM soli-
tons remains a challenging technical problem. In this
context it is natural to ask the following fundamental
question: What is the level of tolerance of those trans-
mission systems (designed on the basis of Gaussian
pulses as approximate profiles of stationary pulses) with
respect to variations in the input pulse profile? A related
question is: What is the effect of pulse Ansatz when any
other than the Gaussian profile is assumed in the design
of the dispersion map?

To answer these questions we first consider a RC An-
satz as an approximate representation of the DM soliton.
We derive the dynamic equations of the pulse parameters
by using a collective-variable (CV) method.9 From the
2004 Optical Society of America
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solution of the RC pulse parameter (width and chirp)
equations we present an efficient analytical procedure for
designing the dispersion map. For a particular example
we show that the resultant analytically designed disper-
sion map from both the Gaussian and the RC Ansätze are
almost the same and that an initial RC pulse executes
similar kinds of dynamics in both dispersion maps. We
then show that the RC return-to-zero pulses are as effec-
tive as the Gaussian pulses as input pulses in DM optical
fiber transmission systems, which suggests the possibility
of designing high-speed transmission lines that have high
levels of tolerance with respect to variations in the input
pulse profiles.

The paper is organized as follows: In Section 2 we con-
sider the analytical design of an ideal transmission sys-
tem without fiber losses, using both Gaussian and RC
pulses as Ansätze, and derive the basic analytical formu-
las that give the fiber lengths of the dispersion map. We
then study the propagation of these Ansätze in the ana-
lytically designed DM fiber systems. In Section 3 we ex-
ploit the basic formulas of the lossless system to derive
analytical formulas for the DDM optical fiber transmis-
sion system including the fiber losses. In Section 4 we
carry out numerical simulations that show that both the
RC and the Gaussian input pulses can execute excellent
transmissions at 160 Gbits/s over 6000 km in a transmis-
sion line designed analytically. We conclude with Section
5.

2. ANALYTICAL DESIGN OF THE
LOSSLESS SYSTEM
Pulse dynamics in an ideal lossless DM fiber system are
governed by the NLSE:

cz 1
ib~z !

2
c tt 2 ig ~z !u cu2c 5 0, (1)

where c is the slowly varying envelope of the axial elec-
trical field and b(z) and g (z) represent the GVD and the
self-phase modulation parameters, respectively. We as-
sume that the solution of the NLSE is in the form of ei-
ther a Gaussian Ansatz ( fg) or a RC Ansatz ( fRC):
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where x1 , x3 /(2p), and x4 represent the pulse’s ampli-
tude, chirp, and phase, respectively. The full width at
half-maximum (FWHM) intensity pulse width of the
Gaussian and RC Ansätze are A2 ln 2x2 and 2x2 cos21(A2
2 1)/p, respectively. Using a CV method,9 we derive
the following equations for the pulse width and chirp:
ẋ2 5 2b~z !x2x3 , (3a)
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where the overdot represents the derivative with respect
to z and the constants a j( j 5 1,2) for Gaussian Ansatz
(2a) are given by

a1 5 4, a2 5 A2 (4)

for the Gaussian Ansatz and

a1 5
60p4

16p4 2 600p2 1 4545
' 32.2,

a2 5
4375p2

48~16p4 2 600p2 1 4545!
' 4.9 (5)

for the RC Ansatz.
In Eq. (3b), E0 5 x1

2x2 is a constant that is propor-
tional to the pulse energy defined by E 5 Ap/2E0 and E
5 (3/4)E0 for the Gaussian and RC Ansätze, respectively.
Equations (3) are the more general form of Eqs. (3) re-
ported earlier.7 Hence, following the procedure pre-
sented by Nakkeeran et al.,7 we derive a more-general ex-
pression for the lengths of normal (L1) and anomalous
(L2) dispersion fiber sections of the dispersion map:
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Here the GVD and self-phase modulation parameters
for the two fiber segments are denoted b6 and g6 (1 and
2 denote the normal and anomalous dispersion fibers),
respectively. It is useful to present the different steps of
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the calculation procedure, using the above formulas for
designing the dispersion map (L2/2, L1 , L2/2) for any
desired pulse and fiber parameters. We consider the be-
ginning point of the DM fiber line as the midpoint of the
anomalous dispersion fiber. In our analytical design we
need the following five parameters: x22 , E0 , b6 , g6 ,
and x2max , as input data. Using the first four param-
eters, we calculate the constant c2 from Eq. (7a). Then
for calculating c1 we use the input datum x2max in Eq.
(7b). Next we calculate the value of x21 , using Eq. (7a).
Finally, using Eqs. (6), we can straightforwardly evaluate
the lengths of the normal and anomalous dispersion fiber
sections of the dispersion map, which are required for the
periodic evolution of any desired pulse (width and energy)
and fiber (GVD and self-phase modulation) parameters.

To compare the dynamics of the Gaussian and RC
Ansätze, one may consider the same energy and FWHM
for both the Gaussian and the RC pulses as the input
pulse parameters in our analytical design. With the
following typical input data: initial FWHM, 20 ps; en-
ergy, E 5 0.05 pJ; maximum FWHM, 33 ps; breathing
factor,10 x2max /x22

5 1.65; b6 5 615.9 ps2 km21; and g6

5 0.002 m21 W21, we directly obtain L2 5 24.16 km,
and L1 5 23.55 km for the Gaussian Ansatz and L2

5 22.35 km and L1 5 21.69 km for the RC Ansatz. We
find that the dispersion maps designed with the Gaussian
and the RC Ansätze are essentially of the same order for
Gaussian and RC pulses propagating with the same en-
ergy and FWHM. It is useful to solve the NLSE to inves-

Fig. 1. Slow dynamics showing (a1), (a2) a RC pulse propagat-
ing in a DM fiber system designed by use of an RC Ansatz; (b1),
(b2) a RC pulse propagating in a DM fiber system designed by
use of a Gaussian Ansatz; (c1), (c2) a Gaussian pulse propagating
in a DM fiber system designed by use of a Gaussian Ansatz.
tigate the propagation of these Ansätze in the analytically
designed DM fiber systems. Figure 1 shows the slow dy-
namics of the pulse when a RC pulse propagates in the
DM fiber system designed with the RC Ansatz [Figs. 1(a1)
and 1(a2)], when a RC pulse propagates in the system de-
signed with the Gaussian Ansatz [Figs. 1(b1) and 1(b2)],
and when a Gaussian pulse propagates in the system de-
signed with the Gaussian Ansatz [Figs. 1(c1) and 1(c2)].
One can clearly observe that the initially RC pulse ex-
ecutes essentially the same dynamic behavior in the two
DM fiber systems designed with the RC Ansatz [Figs.
1(a1) and 1(a2)] and the Gaussian Ansatz [Figs. 1(b1) and
1(b2)]. Also, we can observe from Figs. 1(b1) and 1(c1)
that the initially RC and Gaussian pulses execute slow
dynamics with different magnitudes but at the same av-
erage pulse width, '20.75 ps. Furthermore, we can ob-
serve from Figs. 1(c1) and 1(c2) that the slow dynamics of
the initially Gaussian pulse propagation execute lesser
variations than for the RC pulse, thus indicating that the
Gaussian Ansatz provides a better approximation for the
profile of a DM soliton in the lossless DM fiber system
than does the RC Ansatz. Here the important fact to be
noted is the similar kind of slow dynamics executed by the
initial RC pulse in both dispersion maps designed by use
of the Gaussian and the RC Ansätze.

It is interesting, however, to compare the fast dynamics
for the two types of pulse within one dispersion map.
Considering the analytically designed DM fiber systems
with the Gaussian and RC Ansätze described above, we
solved pulse dynamic equations (3) with the initial condi-
tions derived from the fixed-point solutions of the respec-
tive dispersion maps. Figure 2 shows the evolution of
pulse width and chirp within one dispersion map de-
signed by use of the RC [Figs. 2(a1) and 2(b1)] and the
Gaussian [Figs. 2(a2) and 2(b2)] Ansätze, respectively.
Solid, dashed, and dotted curves show the solutions of RC
Ansatz dynamic equations (3) with (5), Gaussian Ansatz
equations (3) with (4), and the NLSE (1), respectively.
We have obtained the pulse parameters from the exact
numerical solution of the NLSE (dotted curves in Fig. 2)

Fig. 2. Evolution of pulse width and chirp in one dispersion map
designed by use of (a1), (b1) a RC Ansatz and (a2), (b2) a Gauss-
ian Ansatz. Solid, dashed, and dotted curves show the solutions
of RC Ansatz dynamic equations (3) with (5), Gaussian Ansatz
equations (3) with (4) and NLSE (1), respectively.
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by means of a CV method9 that we briefly describe in Sec-
tion 3 below. From the results we can clearly see that
pulse evolution calculated from the solutions of the RC
Ansatz dynamic equations is essentially the same as the
solutions of the Gaussian Ansatz equations. Also, the so-
lutions of both RC and Gaussian Ansätze dynamic equa-
tions are similar to the exact numerical solution of the
NLSE [Eq. (1)]. Consequently we conclude that the RC
return-to-zero pulse executes essentially the same dy-
namic behavior as the Gaussian pulse in the lossless DM
fiber system.

Thus it follows from the general qualitative consider-
ations stated above that isolated pulses originating from
RC and Gaussian input pulses that have the same energy
and the same width will execute similar dynamic behav-
iors in the phase space of a lossless DM fiber system. We
show in Section 3 below that, in the real transmission line
with losses and periodic amplification, to achieve excel-
lent transmissions there is no need for the RC and Gauss-
ian input pulses to have the same width. Indeed,
through remarkable reshaping, RC and Gaussian pulses
with different initial widths can be transformed while
they are propagating until they ultimately converge
toward the same parameter region of high stability in
phase space, as we show below.

3. ANALYTICAL DESIGN OF THE LOSSY
SYSTEM
A fundamental property of DM solitons in a lossless DM
fiber system lies in the close relationship between the
pulse energy and the average dispersion.11–14 The
higher the magnitude of the average dispersion, the
higher the energy of stationary pulses.11–14 A real DM fi-
ber line contains optical losses, which cause the pulse en-
ergy to decrease exponentially along each amplification
span. Before the novel idea of dispersion compensation
arose, researchers were trying to design a dispersion-
decreasing fiber system to counterbalance the decreasing
nonlinearity (which was due to optical losses).15–17 But
the difficulty of fabricating such types of fiber has pre-
vented this concept from becoming a reality. However, in
accordance with this concept, A4DM fiber systems were
recently proposed as an effective way to improve the per-
formance of high-speed optical transmission systems.8,18

The A4DM fiber systems correspond to DDM lines that
have decreasing average dispersion from one map to an-
other within each amplification period. The basic idea of
our analytical design of the lossy system is similar to that
of A4DM fiber systems. That is, the idea is to divide the
amplification span into several pieces and to treat the
pieces as lossless subsystems like those that were consid-
ered in Section 2 but with exponentially decreasing ener-
gies from one subsystem to the next.8,18 In other words,
we treat every dispersion map within the amplification
span as a lossless subsystem that is designed in a such
way that its average dispersion is closely related to the
energy that the pulse will have in that map. Thus, fol-
lowing this idea, we can carry out the design of an A4DM
fiber system through the following simple procedure for
constructing any number (N) of dispersion maps in one
amplification period:
Ln2 5

Fba1 expS 2(
i51

n21

TiD 2 b1GL

b2 2 b1

(8)

for n 5 2, . . . ,N, where Ti designates the total losses in
the ith map and L is the dispersion map length. Note
that, in the presence of fiber losses only, Ti 5 a1Li1

1 a2Li2 , where a6 are the loss parameters for the two
types of fiber. The parameter ba1 5 (b1L11

1 b2L12)/(L11 1 L12) represents the average disper-
sion of the first dispersion map.

In what follows, we show that Gaussian and RC pulses
can execute long-distance and highly stable propagation
in a much simpler line than in the A4DM fiber system,
that is, a DDM fiber line in which each amplification span
is made up of a repetition of a single type of map. This
simple DDM fiber line possesses a constant average dis-
persion, say, bm , that corresponds to the span’s average
dispersion of an equivalent A4DM fiber system.19 There-
fore we have

bm 5
ba1

T
@1 2 exp~2T !#, T 5 (

i51

N21

Ti . (9)

Then, with knowledge of bm and map length L, we can
immediately calculate the fiber lengths of the dispersion
map (L6) of the DDM fiber line:

L1 5 S bm 2 b2

b1 2 b2
DL, L2 5 L 2 L1 . (10)

Thus the DDM fiber system is designed by a fully analyti-
cal procedure with two steps: First, one must design the
equivalent A4DM fiber line for the desired pulse and fiber
parameters. Second, using Eqs. (9) and (10), one can cal-
culate fiber lengths L2 and L1 .

4. NUMERICAL SIMULATIONS
To illustrate the effectiveness of RC pulses we have con-
sidered pulse propagation in a single channel line operat-
ing at 160 Gbits/s. Using the above analytical procedure
on the basis of a Gaussian Ansatz, we designed a DDM
fiber system with an amplification span of ZA 5 25 km, a
symmetric dispersion map made up of an alternating jux-
taposition of teralight and reverse teralight fibers, and
the following parameters (in anomalous dispersion fiber:
in normal dispersion fiber): second-order dispersion b7

5 @8 (ps/nm)/km : 216 (ps/nm)/km]; third-order disper-
sion [0.06 (ps/nm2)/km : 2 0.12 (ps/nm2)/km]; effective
core area (60 mm2 : 25 mm2); losses a7

5 (0.2 dB/km : 0.28 dB/km); amplifier noise figure, 4.5
dB; and Gaussian filters of bandwidth 1.4 THz (placed in
line at each amplifier site) to reduce the timing jitter. In
these numerical simulations we have not included the ef-
fects of stimulated Raman scattering and polarization
mode dispersion. For the simulations we solved the
NLSE including the higher-order effects mentioned
above. To evaluate the transmission performances, we
use a standard approach in which one assumes Gaussian
probability-density functions for the input voltage to the
decision circuit for both the 0 and the 1 levels. Then one
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evaluates the Q factor from the mean values m0 and m1 ,
and the standard deviations s0 and s1 of the 0 and 1 lev-
els, respectively. Here the amplitude Q factor, which
serves as a measure of the amplitude jitter, is defined by
QA [ (m1 2 m0)/( s1 1 s0), whereas timing Q factor
serves as a measure of the timing jitter and is defined by
QT [ 0.7Td /sT , where Td 5 6.25 ps is the size of the bit
slot and sT is the standard deviation of the 1 with respect
to the center of the bit slot. We define the transmission
distance, Lmax , as the maximum distance over which the
smaller of the two Q factors, min(QA , QT), remains higher
than 6. Note that here the Q factor is given in linear
units. The value Q 5 6 corresponds to a bit-error ratio
of 1029. To obtain a fair evaluation of the system’s per-
formance we carried out two series of simulations that
corresponded to Gaussian and RC input pulses. For the
first series of simulations, the input (chirp-free) pulse was
chosen to be a Gaussian pulse with width x2 5 1.18 ps,
maximum pulse width x2max5 2.24 ps, and energy E
5 0.0165 pJ. For the second series of simulations we

used RC input (chirp-free) pulses with x2 5 3.125 ps and
same energy as for the Gaussian pulses (E
5 0.0165 pJ). The DDM fiber transmission line was de-

signed by use of analytical formulas (6), (8), and (10) for a
Gaussian Ansatz. Hence we obtained the following fiber
lengths for the dispersion map: L2

5 220.53 m and L1 5 110.20 m. The solid and dashed
curves in Fig. 3(a) show the transmission performance of
128-bit pseudorandom binary sequence patterns of
Gaussian and RC input pulses, respectively. The hori-
zontal dotted line represents Q 5 6. This figure demon-
strates, as a general feature, a relatively high stability of
the initially Gaussian and RC pulses, with similar perfor-
mance over several thousands of kilometers (Lmax
. 6 Mm). Hence the remarkable fact is that similar

Fig. 3. (a) Q factor versus propagation distance z, showing the
transmission performance of 128-bit pseudorandom binary se-
quence patterns of initially Gaussian pulses and initially RC
pulses, in our analytically designed DDM fiber line. The Q fac-
tor is given in linear units, and the dotted line represents Q
5 6. (b1) Profiles of the input pulses used in the transmission.
(b2) Profiles of the output pulses after single-pulse transmission.
Solid and dashed curves in (b1) and (b2) correspond to initially
Gaussian and RC profiles, respectively.
performance is obtained with pulses that have the same
energy (E 5 0.0165 pJ) but quite different profiles, as can
be seen from Fig. 3(b1), which shows the profiles of the
Gaussian input pulse (solid curve) and of the RC input
pulse (dashed curve). Furthermore, Fig. 3(b2), which
shows the profiles of the initially Gaussian pulse (solid
curve) and of the initially RC input pulse (dashed curve)
after a propagation distance of 6000 km, reveals that the
two types of pulse are transformed while they propagate
and converge toward the same stationary profile.

Thus the results in Fig. 3 reveal a particularly interest-
ing property of our DDM fiber system, that is, a certain
tolerance of the system with respect to variation of pulse
shape, facilitating excellent transmissions over transoce-
anic distances for initially Gaussian pulses as well as for
RC pulses on the same line. As this property of DM soli-
tons has been largely neglected in previous studies, a
question arises: To what can one attribute this robust-
ness of the DDM fiber line with respect to such a variation
of input pulse profile?

One can gain some insight into this issue by examining
the dynamic behavior of isolated RC and Gaussian pulses
in the DDM fiber line under consideration. In this con-
text, we have found that filters play a major role in the
high stability of the RC and Gaussian pulses. Indeed, we
have used a CV approach9 to the dynamics of an isolated
pulse by explicitly taking into account the residual field.

Fig. 4. Collective-variable analysis by use of the Gaussian An-
satz for single-pulse propagation in the DDM fiber line.

Fig. 5. Collective-variable analysis by use of the RC ansatz for
single-pulse propagation in the DDM fiber line.
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In this approach one decomposes the soliton field (exact
solution of the generalized NLSE modeling the DDM fiber
transmission line) in the following way:9

c ~z, t ! 5 f~x1 , x2 , x3 , x4 , t ! 1 q~z, t !, (11)

where Ansatz function f is chosen to be either the Gauss-
ian ( fg) or the RC ( fRC) Ansatz, values of xj designate the
pulse parameters, and q is the remaining field such that
the sum of f and q satisfies the generalized NLSE. This
field q, called the residual field, accounts for the dressing
of the soliton and any radiation coupled to the soliton’s
motion. By knowing the exact field c (z, t), from nu-
merical solution of the generalized NLSE one can obtain
the soliton parameter at each distance z through minimi-
zation of the residual field energy (RFE).9 Following this
CV procedure, first with a Gaussian Ansatz ( f 5 fg) and
then with a RC Ansatz ( f 5 fRC), we obtained the results
presented in Figs. 4 and 5, respectively. These figures
represent the slow dynamics of an isolated pulse. A care-
ful inspection of Figs. 4 and 5 reveals the following prop-
erties:

(i) One can clearly observe that, whether one injects
Gaussian pulses (solid curves) or RC pulses (dashed
curves), the procedure of minimization of the RFE always
ends up with a nonzero RFE, as can be seen from Figs.
4(a1) and 4(b1) and Figs. 5(a1) and 5(b1). A nonzero RFE
demonstrates that, whether one injects Gaussian or RC
pulses, the pulses that propagate in the line do not corre-
spond either to Gaussian pulses or to RC pulses. Hence,
as soon as they are injected in the line, the initially
Gaussian (or RC) pulses execute a reshaping process in
which they lose their initial profiles and acquire specific
profiles, say, cg (or cRC), which depend strongly on the
line parameters (amplification span, dispersion map,
types of fiber, amplifiers). For simplicity, pulses cg and
cRC hereafter are referred to as DDM soliton.

(ii) One can gain some insight into the behavior of cg
by comparing the associated RFEs. A comparison of the
solid curves in Figs. 4(a1) and 5(a1) reveals essentially
equivalent RFEs. This indicates that, in the absence of
filters, initial Gaussian pulses lead to DDM solitons that
are not any closer to Gaussian profiles than to RC pro-
files. In the presence of Gaussian filters, the profile of
the DDM soliton becomes slightly closer to a Gaussian
profile than to a RC profile, as the solid curves in Fig.
4(b1) and Fig. 5(b1) show.

(iii) A comparison of the dashed curve in Fig. 4(a1)
[4(b1)] with that in Fig. 5(a1) [5(b1)] reveals that,
whether or not the filters are present in the line, the input
RC pulses lead to DDM solitons cRC that are not any
closer to a RC profile than to a Gaussian profile.

(iv) We can achieve a direct comparison of cg and cRC
by comparing the solid and dashed curves in each of Figs.
4(a1), 4(b1), 5(a1), and 5(b1). In all cases the initially
Gaussian pulses cg lead to a RFE (solid curve) that is
smaller than that which corresponds to the cRC pulses
(dashed curves). This clearly indicates that soliton cg ra-
diates away less energy than soliton cRC during propaga-
tion in the transmission line. Although this radiative
process can be detrimental to the stability of the pulses,
its effects can be counterbalanced by a filtering action, as
we explain below.
Figures 4(a2) and 5(a2) demonstrate that filters play a
crucial role in the stabilization of both cg and cRC soli-
tons, with an increased benefit for initially RC pulses
cRC . Figure 4(b1), which shows the evolution of chirp
and FWHM of the pulse in the phase plane, shows that in
the absence of filters each of the DDM solitons executes
essentially a periodic slow dynamics, in which the pulse
periodically returns back toward its initial condition.
Furthermore, Fig. 4(a1) shows that the RFE executes
variations with a mean value that does not increase with
distance. These two properties reflect the possibility of
infinite propagation of an isolated (initially Gaussian or
RC) pulse in the line, and therefore, illustrate the fact
that our analytically designed DDM fiber line ensures
fundamental stabilization quite well by causing the pulse
to execute closed-loop trajectories about the fixed point of
the line (represented by the small cross in the figure). It
is worth noting that the evaluations of the fixed point
made by the CV approach with the Gaussian Ansatz [Fig.
4(a2)] and the CV approach with the RC Ansatz [Fig.
5(a2)] are slightly different because of perturbed environ-
mental conditions (i.e., the presence of a nonzero residual
field). Nevertheless, both the Gaussian and the RC An-
sätze lead to a fixed point with 1.6 ps , FWHM , 1.8 ps
and a chirp of approximately 0. But the most important
point to be emphasized here is that, in the absence of fil-
ters, isolated soliton cRC executes larger variations of its
width than does cg soliton with same energy [as Fig.
4(a2) shows]. This result indicates that soliton cRC will
be more prone to interactions between adjacent pulses if a
pulse train is transmitted in a DDM fiber line without fil-
ters. Now Figs. 4(b2) and 5(b2) exhibit an important vir-
tue of Gaussian filters, which is that they induce a strong
reduction of the range of variation of the pulse width
about the fixed point. In general we observe from Figs.
4(b2) and 5(b2) two outstanding steps in the pulse dynam-
ics. In the first step the pulse continually moves away
from its initial condition under the filter’s action, until it
reaches a small parameter region close to the fixed point.
Then the pulse enters the second step, in which it ex-
ecutes an oscillatory internal motion with decreasingly
small variations of the pulse width about the fixed point.
From a more fundamental point of view, Figs. 4(b1) and
5(b1) reveal the presence of a large peak (indicated by the
upward-painting arrows) in the RFE. This peak results
from a strong reshaping process that takes place in the
first step of the dynamics, in which the pulse is trans-
formed into a DDM soliton. This reshaping process is ac-
companied by a strong radiation of energy away from the
pulse; hence the large initial peak in the RFE. This peak
is much larger for soliton cRC than for cg [as the dashed
curves in Figs. 4(b1) and 5(b1) show]. In the second step
of the dynamics the reshaping process continues but in
smooth manner, and there the RFE increases with dis-
tance in a smooth manner also.

Finally, the most important result of the CV analysis
above is given in Figs. 4(b2) and 5(b2), which show that
the combined action of our analytically designed DDM fi-
ber line with in-line Gaussian filters forces the initially
RC pulses to evolve within a relatively small parameter
region close to the fixed point of the transmission line,
which is essentially the same as that of initially Gaussian
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pulses with the same energy. This increased proximity
with respect to the fixed point reinforces the pulse stabil-
ity against the radiation that results from the pulse re-
shaping. These processes explain why RC pulses can be
as effective as Gaussian pulses in long-distance transmis-
sions through DDM fiber lines.

5. CONCLUSIONS
To conclude, we have presented an easy and efficient way
to analytically design DDM fiber systems by using the ex-
plicit solution of pulse dynamic equations of both RC and
Gaussian Ansätze. As the initial RC pulse executes simi-
lar kinds of dynamics in dispersion maps designed with
both Gaussian and RC Ansätze, one can effectively use
the RC pulse as the initial profile for the dispersion map,
analytically designed by use of the Gaussian ansatz.

One major issue in upgrading the existing transmission
systems or designing new systems, however, lies in the
difficulty of developing ultrashort pulse generators to pro-
duce both high repetition rates and pulse profiles of high
quality. In this context, the tolerance of transmission
systems with respect to pulse shape will become an in-
creasingly important issue in the development of future
fiber-optic links. The results obtained here represent a
step forward in overcoming this problem. Using our ana-
lytical design procedures, we have shown that RC pulses
are as effective as Gaussian pulses in DDM optical fiber
systems designed for Gaussian pulses. Hence the output
of the Mach–Zehnder modulators can be effectively uti-
lized as the initial pulses for the return-to-zero encoded
transmission in DM fiber systems.
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