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Abstract. We present cryptanalysis of an image encryption
scheme, which is based on the base-switching (BS) lossless com-
pression algorithm. The following conclusions are reached: 1. the
size of the key space, i.e., the security against brute-force attacks,
was greatly overestimated by the designers; and 2. the scheme is
not secure against known/chosen-plaintext/ciphertext attacks. A real
example is given to show the feasibility of a proposed chosen-
plaintext attack. In addition, some other minor problems of the joint
compression-encryption scheme are also pointed out. © 2006 SPIE
and IS&T. �DOI: 10.1117/1.2360697�

1 Introduction
In the last three decades, many encryption methods have
been proposed to protect digital images and videos. They
are useful for providing special security demands in real
applications, such as multimedia message services, pay TV,
video teleconferencing, medical imaging, military image
databases, etc. Most schemes aim to realize sufficiently fast
encryption algorithms with an acceptable level of security.
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For the state of the art of image and video encryption, the
readers are referred to Refs. 1–3. Note that many image and
video encryption schemes are not sufficiently secure and
can be broken via some efficient attack methods. So, one
should be very careful to find a suitable solution for a real
application of image encryption.

Since most digital images are stored and transmitted in a
compressed format, many image encryption schemes are
designed by incorporating encryption into compression. To
achieve a better balance between encryption and compres-
sion, some researchers developed new compression algo-
rithms to benefit encryption. In Ref. 4, a joint compression-
encryption scheme was proposed, based on a base-
switching �BS� lossless compression algorithm that was
proposed by the same authors in Ref. 5. This scheme works
on 3�3 subimages. In the compression stage, a 7-bit base
value is obtained to represent each subimage, and in the
encryption stage the base value is substituted via a polyno-
mial mapping function or bitwise XOR operations, which is
controlled by the secret key. To further enhance the secu-
rity, feedback from previous subimages is also used. It was
claimed that the joint compression-encryption scheme had
a much higher level of security than some other designs
proposed in Refs. 6–9.
Though the joint compression-encryption scheme has
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been proposed for many years, no cryptanalysis work has
been reported. In this work, we restudy the security of this
scheme. We found that it is not as secure as claimed.4 The
following conclusions are reached: 1. its key space size was
greatly overestimated by the designers; and 2. the scheme is
not secure against known/chosen-plaintext/ciphertext at-
tacks. Some minor problems and errors in Ref. 4 are also
pointed out.

This work is organized as follows. In the next section, a
brief introduction to the joint compression-encryption
scheme is given and some minor problems of the scheme
are discussed. The cryptanalysis of the polynomial-based
encryption scheme is given in Sec. 3, with a real example
of the chosen-plaintext attack of the scheme. The cryp-
tanalysis of the XOR-based encryption scheme is given in
Sec. 4, and the last section concludes this study.

2 Joint Compression-Encryption Scheme
The scheme is a simple combination of the BS lossless
compression algorithm and a substitution cipher with plain-
text feedback. Both of the two stages work on 3�3 sub-
images. In the following, we separately introduce the two
stages. For more details on the scheme, see Refs. 4 and 5.

2.1 Compression Algorithm
The basic idea of the BS lossless compression algorithm is
as follows. Given a 3�3 subimage represented by

g = �g0 g1 g2

g3 g4 g5

g6 g7 g8
� , �1�

denote the minimal pixel value by m=min�g� and the base
value by b=max�g�−min�g�+1, and then represent the sub-
image as a 9-digit number with the radix b:

g� = �g8� ¯ g0��b = �
i=0

8

�gi� � bi� , �2�

where gi�=gi−m� �0, ¯ ,b−1�. Then, one can represent
the original 3�3 subimage as �b ;m ;g��, which needs at
most 16+ �log2 b9� bits to store if two bytes are used to
represent b and m, respectively. Since for most subimages b
is sufficiently small, 16+ �log2 b9� will be less than 8�9
=72, which is the original bit size of g. This makes it pos-
sible to use a number of radix b to represent the original
subimage, and it leads to a lossless compression of the
image.

The previous idea does not work well when b�75. In
this case, 16+ �log2 b9��72, so the bit size of the subimage
is expanded, not compressed. To overcome this problem,
the authors of Ref. 4 suggested three different rules to re-
alize the compression algorithm, according to the value of
b, as follows.

• Rule 1: when 1�b�11, the encoding format is
�b ;m ;g��, where b is represented as a 7-
bit integer.

• Rule 2: when 12�b�127, the encoding format is
�b ;m ; P�imin, imax� ; ĝ��, where b is represented as a

7-bit integer, P�imin, imax� is a 7-bit integer used to
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denote the positions of the minimal and the maximal
pixel-values, and ĝ� is the 7-digit number with the
radix b obtained by removing the minimal and the
maximal pixel values. �Only 9�8=72 possible com-
binations of the positions, so �log2 72�=7 bits are
enough to represent P�imin, imax�.	

• Rule 3: when 128�b�256, the encoding format is
�128;g�, where 128 is a “dummy” base value repre-
sented as a 7-bit integer �0000000�2 �which is not used
in the previous two rules�. �In Ref. 4, it is not explic-
itly mentioned that 128 should be represented as 0, but
it is the only way to represent 128 with 7 bits.�

It is easy to calculate that at most 7+8+ �log2 119�
=47 bits are needed in rule 1, and at most 7+8+7
+ �log2 1277�=71 bits are needed in rule 2. Though 79 bits
are needed in rule 3, i.e., seven more bits are needed, gen-
erally an image can still be compressed effectively, since
only a few percent of subimages satisfy b�128 in most
natural images.

2.2 Encryption Algorithm
After the previous compression stage, the 7-bit base value
of each subimage is encrypted via one polynomial mapping
over �1,¯,128� as follows:

f�b� = ��k0 + k1�b − 1� + ¯ + kn�b − 1�n	mod 128� + 1, �3�

�In Sec. 3.2 of Ref. 4, the degree is denoted by m, which
conflicts with the notation used in the lossless compression
part. In this work, we use n to replace m to avoid confu-
sion.� where K= �k0 , ¯ ,kn� serves as the secret key. To
make a unique decryption of b possible, f must be a bijec-
tive mapping over �1,¯,128�. Then, the decryption proce-
dure can be represented by b= f−1�f�b�	.

To further enhance the security of the prior basic
scheme, plaintext feedback was suggested in a t-layer
scheme to encrypt the p’th subimage:

F�bp� = 
� �
q=1

min�p,t�

fq�bp−q+1��mod 128 + 1, �4�

where f1 , ¯ , f t are t polynomial mappings. In this en-
hanced scheme, the secret key K is composed of the secret
parameters of the t polynomial mappings:

Kf1
= �kf1,0, ¯ ,kf1,n1

�, ¯ ,Kft
= �kft,0

, ¯ ,kft,nt
� ,

where n1 , ¯ ,nt are degrees of f1 , ¯ , f t, respectively. To
correctly decrypt the base value b, only f1 needs to be a
bijective mapping over �1,¯,128�, and the decryption pro-
cedure becomes:

bp = f1
−1
�F�bp� − 1 − �

q=2

min�p,t�

fq�bp−q+1��mod 128 . �5�

In Sec. 3.2 of Ref. 4, it was claimed that the key space of
the basic scheme is 128!, since there are 128! bijective
mappings over �1,¯,128�. Similarly, in the enhanced
scheme, the key space was claimed to be �128!�t for gray-
scaled images and �128!�3t for RGB color images. In Sec.

3.3 of Ref. 4, as an example, t was assumed to be the
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number of all subimages in a 512�512 image, and it was
shown that the key space is �128!��512/3���512/3�, which was
claimed to be much larger than the key spaces of the image
encryption schemes proposed6–9 �see Table 1 in Ref. 4�.
However, in this work, we demonstrate that the prior claims
on the key space of the joint compression-encryption
scheme are all wrong. We also point out that the scheme is
not secure against known/chosen-plaintext attacks.

Besides the previous schemes based on polynomials
modulo 128, the one-time pad is also suggested to realize
the encryption function: f�b�= ��b−1� � k	+1, where � de-
notes bitwise XOR and k is a 7-bit key. In this case, the
enhanced scheme should also be accordingly changed to
realize the encryption and decryption functions. However,
in Ref. 4 it was not mentioned how to do so. Without loss
of generality, in this work we assume that the encryption
function is modified as follows:

F�bp� = 
 �
q=1

min�p,t�

�fq�bp−q+1� − 1	 + 1

= 
 �
q=1

min�p,t�

��bp−q+1 − 1� � kfq
	 + 1. �6�

2.3 Simpler Representation of Polynomial-Based
Scheme

By replacing the base value b by �b−1� mod 128 and f�b�
by �f�b�−1	 mod 128, the polynomial-based encryption
scheme can be represented in a simpler form. Note that
such a modification makes no influence on the encryption/
decryption procedures and the security of the encryption
scheme. In this case, the set of all possible base values
becomes �0,¯,127�, and the encryption function in Eq. �3�
becomes

f�b� = �k0 + k1b + k2b2 + ¯ + knbn�mod 128. �7�

The polynomial-based enhanced scheme can also be sim-
plified in a similar way. With the prior representation, the
polynomial-based encryption scheme is actually based on
“permutation polynomials modulo 128” �see Chap. 4 of
Ref. 10 and also Refs. 11–13�, which are defined as follows
�they are also called “substitution polynomials” or “poly-

Table 1 The values of �f�b��0�b�31, �f

b 0 1 2 3 4 5 6

f�b� mod 27 1 6 15 28 45 66 91

b 16 17 18 19 20 21 22

f�b� mod 27 49 118 63 12 93 50 11

x1 0 1 2 3 4 5 6

f0�x1� mod 27 1 15 45 91 25 103 69

f1�x1� mod 27 6 28 66 120 62 20 122
nomials representing all integers modulo m” in some early
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literature14,15� and have been used in some existing ciphers,
including the well-known RSA public-key cipher.16–23

Definition 1. An integer polynomial f�x�=a0+a1x+ ¯

+anxn of degree n modulo m is called a permutation poly-
nomial of degree n modulo m if it induces a bijection over
�0, ¯ ,m−1�, i.e., ∀x1�x2 �mod m�, f�x1�� f�x2�
�mod m�.

The cryptanalysis results given in this work are mainly
based on the mathematical results on permutation polyno-
mials modulo m and another kind of integer polynomial—
null polynomials modulo m �see Definition 2�.

Definition 2. An integer polynomial f�x�=a0+a1x+ ¯

+anxn of degree n modulo m is called a null polynomial of
degree n modulo m if ∀x�Z, f�x��0 �mod m�.

Due to the extreme complexity of the underlying math-
ematical problems, it is impossible to include all the math-
ematical results and the lengthy deduction in this cryp-
tanalysis work. Instead, we give a complete discussion on
permutation polynomials modulo m in Ref. 11 and a dis-
cussion on null polynomials modulo m in Ref. 24, respec-
tively. Note that some fundamental results have been
published,13,25–29 so the main focus of Refs. 11–24 is a
complete summary of all established results, with some
newly derived corollaries that are used in the cryptanalysis
part �Sec. 3� of this work. �Some new proofs of known
results have also been provided in Refs. 11 and 24.�

2.4 Remarks on Some Minor Problems
of the Scheme

We close this section by pointing out a few minor problems
of the scheme proposed in Ref. 4, leaving the major task of
cryptanalysis to the rest of the work.

2.4.1 Two minor errors
One minor error is about the use of the congruence opera-
tion � in Ref. 4. Following the definition of congruence,
a�b�mod m� means that a−b is dividable by a number n,
i.e., �a−b� /n is an integer. However, in Secs. 3.2 and 3.3 of
Ref. 4, a�b �mod 128� is used to denote the fact that a

x1�15, and �f1�x1��0�x1�15 modulo 27.

7 8 9 10 11 12 13 14 15

0 25 62 103 20 69 122 51 112

3 24 25 26 27 28 29 30 31

4 73 46 23 4 117 106 99 96

7 8 9 10 11 12 13 14 15

1 49 63 93 11 73 23 117 99

2 118 12 50 104 46 4 106 96
0�x1��0�

12

2

10

5

11
equals to �b mod 128�, and a�b �mod 128�+1 is used to
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denote the fact that a equals to �b mod 128�+1. It is obvi-
ous that there are misuses in the sense of mathematics. The
correct use of � in Secs. 3.2 and 3.3 of Ref. 4 should be �.
This error has been corrected in Sec. 2.2 of this work.

There exists another error in Sec. 3.1 of Ref. 4.
Throughout the section, the base-b number is represented
as b= �g0�g1�¯g8��b. However, following Eq. �6� of Ref. 4,
g�=�i=0

8 gi��bi, which means g�= �g8�¯g0��b. Fortunately,
this error does not influence the algorithm at all. In Sec. 2.2
of this work, we have already unified the format of g� by
adopting the second format: g�= �g8�¯g0��b=�i=0

8 gi��bi.

2.4.2 Stream cipher or block cipher?
In Sec. 1 of Ref. 4, it was said that “our method is a kind of
stream cipher.” However, in our opinion, the joint
compression-encryption scheme is more like a block cipher
than a stream cipher.

At first, let us consider the basic scheme, in which each
base value is encrypted in a fixed method independent of its
position. However, in most cryptography literature, a
stream cipher is defined as follows:30 “In cryptography, a
stream cipher is a symmetric cipher in which the plaintext
digits are encrypted one at a time, and in which the trans-
formation of successive digits varies during the encryp-
tion.” Another definition given in Ref. 31 says that a stream
cipher encrypts texts with internal memory, while a block
cipher is memoryless. As a typical feature, in a stream ci-
pher, generally a long keystream is generated from a short
secret key and then is used to encrypt the plaintext bit by
bit. In the basic joint compression-encryption scheme, there
does not exists such a keystream. So, we believe that the
basic scheme should be a 7-bit block cipher, not a stream
cipher. As shown later in the next section, the insecurity of
the encryption scheme is partially caused by the extremely
short block size.

The enhanced scheme is a little more complicated. The
use of plaintext feedback makes the encryption dependent
on the position of each subimage. However, a long key-
stream is still not involved in this scheme. The secret key is
directly used to control min�p , t� transformations exerted
on min�p , t� base values. We believe that the enhanced
scheme is also more like a block cipher than a stream ci-
pher.

2.4.3 Error-propagation problem
The use of plaintext feedback makes the scheme sensitive
to errors in the ciphertext: if one error occurs in a position,
all the following plain pixels will be influenced and cannot
be correctly decrypted with a high probability. In addition,
the encipher and the decipher will lose synchronization if
the bit size of one base value is wrongly decoded. This
damages all decryption results after the synchronization
loss occurs. It means that the encryption scheme can only
be used in noise-free situations. By changing plaintext
feedback to ciphertext feedback, this problem can be fixed.

3 Cryptanalysis of Polynomial-Based
Encryption Scheme

In this section, we analyze the security of the polynomial-

based encryption scheme applied to grayscaled images. The
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obtained results can be easily generalized to RGB color
images by considering each RGB image as three indepen-
dent grayscaled images.

3.1 Key Space
In the encryption scheme under study, the key is used to
generate a bijective mapping through integer polynomials.
So the size of the key space is equal to the number of all
distinct bijective mappings that can be generated from all
distinct keys. �They can also be considered as 128�128
S-boxes.�

In Ref. 4, the key space of the basic scheme is simply
estimated as the number of all distinct bijective mappings
over �1,¯,128�: 128!. However, this estimation is just the
upper bound of the key space, due to the following facts:11

1. not all bijections can be induced by polynomials modulo
128; 2. not all polynomials can induce bijections over
�1,¯,128�; and 3. different polynomials may induce the
same bijection over �1,¯,128�, i.e., there exist equivalent
polynomials modulo 128.

In the following, based on theoretical results on permu-
tation polynomials obtained in Ref. 11, we give an exact
estimation of the size of the key space, which is actually
much smaller than the upper bound 128! Without loss of
generality, we adopt Eq. �7� as the encryption function here
to simplify the discussion.

Before introducing the useful results in Ref. 11, we first
give some preliminary definitions.

Definition 3. Given two integer polynomials of degree �n:
f�x�=anxn+ ¯ +a1x+a0 and g�x�=bnxn+ ¯ +b1x+b0, if
∀i=0�n, ai�bi �mod m�, we say f�x� is congruent to g�x�
modulo m, or f�x� and g�x� are congruent (polynomials)
modulo m, denoted by f�x��g�x� �mod m�.

Definition 4. A set of polynomials of degree n (or �n)
modulo m is a complete system of polynomial residues of
degree n modulo m, if for every polynomial of degree n (or
�n) modulo m there is one and only one congruent poly-
nomial in this set.

Definition 5. Denote �1�m� the least integer n�1, such
that there exists a monic null polynomial of degree n
modulo m and call it the least monic null polynomial of
degree n modulo m.

Based on the previous definitions, let us introduce some
notations. In each complete system of polynomial residues
of degree �n modulo pd, denote the number of permutation
polynomials of degree �n modulo pd by Npp��n , pd�, and
the number of all integer polynomials of degree �n
modulo pd by Np��n , pd�. Similarly, denote the number of
null polynomials of degree �n modulo pd by Nnp��n , pd�,
and the number of all distinct permutations �bijective map-
ping� induced from all polynomials of degree �n modulo
m by Nb��n , pd�. One can see that Nb��n , pd� actually de-
notes the size of the key space.

In Sec. 5.3 of Ref. 11, the following results on permu-
tation polynomials modulo a prime power pd have been

proved.
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Theorem 1. Assume p is a prime, d�2, n�2p−1. Then,

Npp��n,pd�
Np��n,pd�

=
�p − 1�p�p − 1�!

p2p−1 .

Theorem 2. Assume p is a prime and d�1. Then,

Nb��n,pd� =
Npp��n,pd�
Nnp��n,pd�

.

Since two congruent polynomials modulo m induce the
same mapping modulo m, Nb��n ,27� actually denotes the
number of all possible encryption functions induced from
polynomials of degree �n modulo 128 shown in Eq. �7�.
Since there are n+1 coefficients in a polynomial of degree
�n modulo pd, one can easily calculate that Np��n , pd�
= �pd�n+1= pd�n+1�. So,

Npp��n,pd� = Np��n,pd� ·
�p − 1�p�p − 1�!

p2p−1

= pdn+�d−2p+1��p − 1�p�p − 1�!.

When p=2 and d=7�2p−1=3, i.e., pd=128, one has
Npp��n ,27�=27n+4.

Next, consider the value of n. We have the following
lemma �see Sec. 2.6 of Ref. 11 or Sec. 2.5 of Ref. 24�,
which gives the upper bound of n modulo pd.

Lemma 1. Every polynomial of degree ��1�m� modulo m
has one equivalent polynomial of degree ��1�m�−1
modulo m.

The previous lemma implies that the maximal value of n
is �1�m�−1. For the encryption scheme under study, it
means that all encryption functions induced from polyno-
mials of degree ��1�128� can be induced from a polyno-
mial of degree ��1�128�−1. In other words, ∀n
��1�128�, it is true that Nb��n ,27�=Nb���1�128�
−1,27�. As a result, we can assume that n��1�128�−1.

From Lemma 31 of Ref. 24, one has �1�128�=23=8 and
a monic null polynomial of degree �1�128� modulo 128
can be derived from Lemma 39 of Ref. 24, f�x�=�i=0

7 �x
− i�. Then, from Theorem 43 of Ref. 24, one has
Nnp���1�128�−1,27�=223�22+2−2�/2=216. Consequently,
from Theorem 2, we can get the size of key space as fol-
lows:

Nb��n,pd� � Nb���1�128� − 1,pd�

=
Npp���1�128� − 1,27�
Nnp���1�128� − 1,27�

=
27��1�128�−1�+4

216 = 237. �8�

That is, when n=�1�128�−1=7 the key space of the basic
scheme is only 237, which is much smaller than 128!
�2716. When n�7, the key space will be even smaller than
237. As is well known, in today’s digital computing speed, a
key space of size 237 is far from being secure.32 It is gen-

erally recommended that the key space should not be
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smaller than O�2100�.
For the enhanced scheme, only f1 should be a bijection

over �1,¯,128� and other t−1 polynomial mappings can be
arbitrary. Assume the number of distinct polynomial map-
pings of degree �n modulo pd is Npm��n , pd�. In a similar
way as above, one can derive that

Npm��n,27� � Npm���1�128� − 1,27�

= Np��7,27�/216 = 27�7+1�/216 = 240.

Thus, one can deduce that the key space of the enhanced
scheme is not greater than 237·240�t−1�=240t−3, which is also
much smaller than �128!�t�2716t. Note that the key space
will not be so large if the user only wants to break the first
p��t� subimages. In this case, the key space will be
240p−3�240t−3. This means that the joint compression-
encryption scheme has an increasing security distribution,
not a uniform one, with respect to the position of the con-
cerned subimages. As is well known in cryptography, this is
not a desirable property.32 Regarding the non-uniform se-
curity of the enhanced scheme, it is meaningless to assign t
as large as the number of all subimages in order to enhance
the security �as suggested in Sec. 3.3 of Ref. 4�. For ex-
ample, given a 512�512 image, assigning t= �512/3�
� �512/3� can only provide 240�t/2�−3 possible keys for the
top half of the image which, however, may contain almost
all useful information of the whole image in some cases.

From the prior analysis, one can see that the key space is
dependent on the values of n1 , ¯ ,nt� �1, ¯ ,�1�128�−1�
and t�Z+. Using polynomials of higher degrees and higher
t is the way to increase the key space. However, since at
least �i=1

t �2ni−1� multiplications �For each polynomial
mapping f i, in total 2ni−1 multiplications are needed: ni

−1 for calculating the powers of b−1 and ni for calculating
kj�b−1� j �j=1�n�	 and �i=1

t �ni+3�+ �t+1� additions are
required for each subimage, there exists a tradeoff between
the key space and the encryption speed. �For each polyno-
mial mapping f i, in total ni+3 additions are needed: one
addition for b−1, ni for the sum of the n+1 addends kj�b
−1� j �j=1�n�, one for mod 128, and one for +1 at the end
of the right side of Eq. �3�. Besides these additions, t+1
additions are still required in Eq. �4�: t−1 additions for the
sum of the t polynomial mappings, and another two for
mod 128 and +1, respectively.	 As a solution to this prob-
lem, one can store each polynomial mapping modulo 128
as a look-up table �LUT� with 128 input-output entries.
Though these LUTs will occupy 256t bytes of additional
memory, they are useful in dramatically increasing the en-
cryption speed and relaxing the prior tradeoff. In this case,
only t fast LUT operations are required for the encryption
of each base value. However, even in this case the value of
t should not be too large to achieve a sufficiently fast en-
cryption speed. When the image is relatively large, it is
generally impractical to assign t as large as the number of

all subimages.
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3.2 Chosen-Plaintext/Ciphertext Attack

3.2.1 Breaking the basic scheme

Breaking the look-up table with 128 chosen plain/
cipher base values. Since the polynomial mapping f can
be stored as a LUT in the encryption part, the LUT can be
used as an equivalent of the secret key. By choosing the
base values of 128 plain/cipher subimage as 1,¯,128, re-
spectively, one can immediately recover all the 128 input-
output entries of the LUT, which can then be used as an
equivalent of the secret key for future encryption and de-
cryption purposes. Apparently, this simple chosen-
plaintext/ciphertext attack is essentially due to the ex-
tremely short block size of the encryption scheme.32 To
maintain a practical security in today’s digital world, the
modulus 128 should be increased to be 2n, where n is cryp-
tographically large �generally n�128 is recommended�.

Breaking the encryption polynomial with 32 chosen
plain base values. The previous simple chosen-plaintext/
ciphertext attack needs to choose all the 128 plain/cipher
base values. In fact, by choosing only 32 plain base values,
one can derive an equivalent polynomial of f�b� modulo
128 and further derive other 128−32=96 unknown input-
output entries of the LUT. In the following, we focus on
this advanced chosen-plaintext attack. Note that this attack
does not have a chosen-ciphertext counterpart. �As shown
next, the chosen-plaintext attack needs 32 special plain
base values: 0 , ¯ ,15,16x4 , ¯ ,16x4+15, where x4�0
�mod 2�. Such a special requirement cannot be ensured in
the chosen-ciphertext attack without knowing the secrete
mapping.	

In Sec. 5.4 of Ref. 11, an algorithm is given to determine
all polynomials modulo pd that induce a given mapping
over �0, ¯ , pd−1�, with less than pd input-output entries of
the mapping. Apparently, this algorithm can be concretized
for the encryption scheme under study to realize the ad-
vanced chosen-plaintext attack. In the following, we use
Eq. �7� as the encryption function for a simpler discussion.
Basically, the algorithm can be divided into three parts: 1.
decomposing the original polynomial into a subpolynomial
tree and getting the lowest coefficients of all subpolynomi-
als with 32 chosen plain base values; 2. determining all the
coefficients of the subpolynomials; and 3. determining the
coefficients of a polynomial that is equivalent to the origi-

Table 2 The values of �f0
*�x1��0

x1 0 1 2 3 4 5

f0
*�x1� mod 26 0 7 22 45 12 51 3

f1
*�x1� mod 26 0 11 30 57 28 7 5
nal one modulo 128.
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First, let us decompose the polynomial f�b� modulo 27

as follows.

• Step 1a: decomposing f�b� modulo 27. Assuming b
=2x1+b0, where b0= �b mod 2�� �0,1� and x1= �b /2�,
the polynomial f�b� becomes 2 subpolynomials of de-
gree �6 modulo 27=128, as follows:

fb0
�x1� � �

i=6

0

2iki
�b0�x1

i �mod 27� ,

where ki
�0�=ki and ki

�1�=� j=n
i �i

j�kj. Note that the terms
of x1 of degree �7 vanish modulo 27. Taking x1�0
�mod 26�, one immediately has k0

�b0�� f�b0� �mod 27�.
Then, subtracting k0

�b0� from both sides of the prior
congruence, one has

fb0

* �x1� � �
i=6

1

2i−1ki
�b0�x1

i

�
f�2x1 + b0� − f�b0�

2
�mod 26� .

• Step 1b: decomposing fb0

* �x1� modulo 26. In each
fb0

* �x1�, assuming x1=2x2+b1, where b1= �x1 mod 2�
� �0,1� and x2= �x1 /2�, one has four subpolynomials
of degree �3 modulo 26:

fb1,b0
�x2� � �

i=3

1

22i−1ki
�b1,b0�x2

i + k0
�b1,b0� �mod 26� ,

where k0
�0,b0�=0, k0

�1,b0�=� j=6
1 2 j−1kj

�b0�, and when 1� i
�3, ki

�0,b0�=ki
�b0� and ki

�1,b0�=� j=6
i �i

j�2 j−ikj
�b0�. Note that

the terms of x2 of degree �4 vanish modulo 26. Tak-
ing x2�0 �mod 25�, one has k0

�b1,b0�� fb0

* �b1� �mod 26�.
Then, subtracting k0

�b1,b0� from both sides, one has

fb1,b0

* �x2� � �
i=3

1

22�i−1�ki
�b1,b0�x2

i

�
fb0

* �2x2 + b1� − fb0

* �b1�

2
�mod 25� .

• Step 1c: decomposing fb1,b0

* �x2� modulo 25. In each
*

and �f1
*�x1��0�x1�15 modulo 26.

7 8 9 10 11 12 13 14 15

25 24 31 46 5 36 11 58 49

53 56 3 22 49 20 63 50 45
�x1�15

6

4

8

fb1,b0
�x2�, assuming x2=2x3+b2, where b2
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= �x2 mod 2�� �0,1� and x3= �x2 /2�, one has eight sub-
polynomials of degree �2 modulo 25:

fb2,b1,b0
�x3� � �

i=2

1

23i−2ki
�b2,b1,b0�x3

i

+ k0
�b2,b1,b0� �mod 25� ,

where k0
�0,b1,b0�=0, k0

�1,b1,b0�=� j=3
1 22�j−1�kj

�b1,b0�, and
when 1� i�2, ki

�0,b1,b0�=ki
�b1,b0� and ki

�1,b1,b0�

=� j=3
i �i

j�22�j−i�kj
�b1,b0�. Similarly, taking x3�0 �mod

24�, one has k0
�b2,b1,b0�� fb1,b0

* �b2� �mod 25�. Then, sub-

tracting k0
�b2,b1,b0� from both sides, one has

fb2,b1,b0

* �x3� � �
i=2

1

23�i−1�ki
�b2,b1,b0�x3

i

�
fb1,b0

* �2x3 + b2� − fb1,b0

* �b2�

2
�mod 24� .

• Step 1d: decomposing fb2,b1,b0

* �x3� modulo 24. In each
fb2,b1,b0

* �x3�, assuming x3=2x4+b3, where b3

= �x3 mod 2�� �0,1� and x4= �x3 /2�, one has 16 sub-
polynomials of degree �1 modulo 24:

fb3,b2,b1,b0
�x4� � 2k1

�b3,b2,b1,b0�x4

+ k0
�b3,b2,b1,b0� �mod 24� ,

where k0
�0,b2,b1,b0�=0, k0

�1,b2,b1,b0�=� j=2
1 23�j−1�kj

�b2,b1,b0�,
k1

�0,b2,b1,b0�=k1
�b2,b1,b0� and k1

�1,b2,b1,b0�=� j=2
1 j23�j−1�

�kj
�b2,b1,b0��k1

�b2,b1,b0� �mod 24�.

With the previous decomposition, one can derive the
undetermined coefficients of these subpolynomials from
bottom to top in the following steps.

• Step 2a: determining fb3,b2,b1,b0
�x4� modulo 24. Taking

x4�0 �mod 23�, one can solve that k0
�b3,b2,b1,b0�

� fb2,b1,b0

* �b3� �mod 24�, and then choosing x4�0 �mod

Table 3 The values of �

x2 0 1 2

f�0,0�
* �x2� mod 25 0 11 6

f�1,0�
* �x2� mod 25 0 19 22

f�0,1�
* �x2� mod 25 0 15 14

f�1,1�
* �x2� mod 25 0 23 30
2�, one has
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2k1
�b3,b2,b1,b0� � x̄4�fb2,b1,b0

* �2x4 + b3�

− k0
�b3,b2,b1,b0�	 �mod 24�

� x̄4�fb2,b1,b0

* �2x4 + b3�

− fb2,b1,b0

* �b3�	 �mod 24� ,

where x̄4 denotes an inverse of x4 modulo 24. Thus,
fb3,b2,b1,b0

�x4� is uniquely determined modulo 24. Note
that according to the definitions of all the involved
subpolynomials, with the 16 determined subpolynomi-
als �fb3,b2,b1,b0

�x4��0�b0,b1,b2,b3�1 modulo 24 and the fol-

lowing 14 determined values: �k0
�b2,b1,b0��0�b0,b1,b2�1

modulo 25, �k0
�b1,b0��0�b0,b1�1 modulo 26, and

�k0
�b0��0�b0�1 modulo 27 , one can uniquely determine

the permutation polynomial f�b� modulo 27 . If the
attacker only wants to reveal unknown input-output
entries in the LUT, he can quit at this point.

• Step 2b: determining fb2,b1,b0

* �x3� modulo 24 and
fb2,b1,b0

�x3� modulo 25. From the relation between

�ki
�b2,b1,b0��1�i�2 and �ki

�b3,b2,b1,b0��
0�i�1
0�b3�1, one has

k1
�b2,b1,b0��k1

�0,b2,b1,b0��k1
�1,b2,b1,b0� �mod 24� and

23k2
�b2,b1,b0��k0

�1,b2,b1,b0�−k1
�b2,b1,b0� �mod 24�. Consider-

ing that 2k1
�b3,b2,b1,b0� has been uniquely determined

modulo 24 in the prior step and that k1
�0,b2,b1,b0�

�k1
�1,b2,b1,b0� �mod 24�, we can get the following result:

∀b0 ,b1 ,b2� �0,1�, �k1
�0,b2,b1,b0� ,k1

�1,b2,b1,b0�� has two
candidate values modulo 24. This means that
�k1

�b2,b1,b0� ,23k2
�b2,b1,b0�� has two candidates modulo 24.

So, fb2,b1,b0

* �x3� has two candidate polynomials modulo
24, i.e., fb2,b1,b0

�x3� has two candidate polynomials
modulo 25. Note that we calculate the value of
23k2

�b2,b1,b0� modulo 24, instead of the value of k2
�b2,b1,b0�

modulo 2, to facilitate the following discussions (the
same hereafter).

• Step 2c: determining fb1,b0

* �x2� modulo 25 and fb1,b0
�x2�

modulo 26. In a similar way, one can derive that
k1

�b1,b0��k1
�0,b1,b0� �mod 25�, 22k2

�b1,b0��22k2
�0,b1,b0� �mod

5

2�� 0�x2�7
0�b0,b1�1

modulo 25.

3 4 5 6 7

17 12 23 18 29

9 12 31 2 21

29 28 11 10 25

21 28 19 26 17
f�b1,b0�
* �x
2 � and
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24k3
�b1,b0� � k0

�1,b1,b0� − k1
�b1,b0� − 22k2

�b1,b0� � k0
�1,b1,b0�

− k1
�0,b1,b0� − 22k2

�0,b1,b0� �mod 25�

� k1
�1,b1,b0� − k1

�b1,b0� − 23k2
�b1,b0� � k1

�1,b1,b0�

− k1
�0,b1,b0� − 23k2

�0,b1,b0� �mod 25�

� 22�k2
�1,b1,b0� − k2

�b1,b0�	 � 22k2
�1,b1,b0�

− 22k2
�0,b1,b0� �mod 25� .

In the previous congruences, rows 1 and 2 lead to the
result that 22k2

�0,b1,b0��k1
�1,b1,b0�−k0

�1,b1,b0� �mod 25�, and
rows 1 and 3 lead to 22k2

�1,b1,b0��k0
�1,b1,b0�−k1

�0,b1,b0�

�mod 25�. Substituting the results into the congru-
ences, one has

k1
�b1,b0� � k1

�0,b1,b0� �mod 25� ,

22k2
�b1,b0� � k1

�1,b1,b0� − k0
�1,b1,b0� �mod 25� ,

24k3
�b1,b0� � 2k0

�1,b1,b0� − �k1
�1,b1,b0�

+ k1
�0,b1,b0�	 �mod 25� .

That is, ∀b0 ,b1� �0,1�, �22�i−1�ki
�b1,b0��1�i�3 is deter-

mined by �k0
�1,b1,b0� ,k1

�b2,b1,b0��0�b2�1 uniquely modulo

25. Since k1
�b2,b1,b0� has two candidate values modulo 24

and 2k�1,b1,b0�− �k�1,b1,b0�+k�0,b1,b0�	�0 �mod 24�, there

Table 4 The values of �f�b2
*

x3 0 1 2 3

f�0,0,0�
* �x3� mod 24 0 3 6 9

f�0,1,0�
* �x3� mod 24 0 11 6 1

f�0,0,1�
* �x3� mod 24 0 7 14 5

f�0,1,1�
* �x3� mod 24 0 15 14 13
0 1 1
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are eight candidates of fb1,b0

* �x2� modulo 25, i.e., eight
candidates of fb1,b0

�x2� modulo 26.
• Step 2d: determining fb0

* �x1� modulo 26 and fb0
�x1�

modulo 27. First, one has k1
�b0��k1

�0,b0� �mod 26�,
2k2

�b0��2k2
�0,b0� �mod 26�, and 22k3

�b0��22k3
�0,b0� �mod

26�. Then, one has a system of congruences

�
1 1 1

4 5 6

�4

2
� �5

2
� �6

2
�

�4

3
� �5

3
� �6

3
� ��23k4

�b0�

24k5
�b0�

25k6
�b0� �

� �
k0

�1,b0� − �k1
�b0� + 2k2

�b0� + 22k3
�b0�	

k1
�1,b0� − �k1

�b0� + 2 · 2k2
�b0� + 3 · 22k3

�b0�	

2k2
�1,b0� − �2k2

�b0� + 3 · 22k3
�b0�	

22k3
�1,b0� − 22k3

�b0�
�

=�mod 26� . �9�

Substituting k1
�b0��k1

�0,b0� �mod 26�, 2k2
�b0��2k2

�0,b0�

�mod 26�, and 22k3
�b0��22k3

�0,b0� �mod 26� into the pre-
vious equation and then solve the subsystem formed
by the first three congruences, one has

3�� 0�x3�3
0�b0,b1,b2�1

modulo 24.

x3 0 1 2 3

f�1,0,0�
* �x3� mod 24 0 3 6 9

f�1,1,0�
* �x3� mod 24 0 11 6 1

f�1,0,1�
* �x3� mod 24 0 7 14 5

f�1,1,1�
* �x3� mod 24 0 15 14 13
�23k4
�b0�

24k5
�b0�

25k6
�b0� � � � 15k0

�1,b0� − �5k1
�1,b0� + 10k1

�0,b0�	 + �2k2
�1,b0� − 6 · 2k2

�0,b0�	 − 3 · 22k3
�0,b0�

− 24k0
�1,b0� + �9k1

�1,b0� + 15k1
�0,b0�	 − �2 · 2k2

�1,b0� − 8 · 2k2
�0,b0�	 + 3 · 22k3

�0,b0�

10k0
�1,b0� − �4k1

�1,b0� + 6k1
�0,b0�	 + �2k2

�1,b0� − 3 · 2k2
�0,b0�	 − 22k3

�0,b0� � �mod 26� . �10�
The last congruence of Eq. �9� gives a constraint of
the coefficients:
22k3
�1,b0� � 20k0

�1,b0� − 10�k1
�1,b0� + k1

�0,b0�	

+ 4�2k2
�1,b0� − 2k2

�0,b0�	 − 22k3
�0,b0� �mod 26� .

�11�

2 �1,b0�
,b1,b0��x
Since 2 k3 does not occur in Eq. �10�, there always
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exists a unique solution for each candidate set of
�k0

�1,b0� ,k1
�b1,b0� ,2k2

�b1,b0� ,22k3
�0,b0��0�b1�1 modulo 26

when Eq. �11� holds. Assuming the number of all can-
didate polynomials of fb0

�x1� obtained in this step is
N, we show later that N=28=256.

Finally, one can carry out the last step, step 3, to solve
all equivalent polynomials of f�b� modulo 27. Given a valid
set of �ki

�b0��
0�i�6
0�b0�1 modulo 27, the coefficients of f�b� can

be uniquely solved modulo 27. Without loss of generality,
assume the polynomial is of degree �n=2·7−1=13
modulo 27, i.e., the number of unknown coefficients is 14.
Then, one obtains the following system of congruences:

�A0

A1
�� k0

]

k13
� � �B0

B1
� �mod 27� , �12�

where

A0 = �I7�7 07�7	

= �
1 0 0 ¯ 0 0 0 0 ¯ 0

0 1 0 ¯ 0 0 0 0 ¯ 0

0 0 1 ¯ 0 0 0 0 ¯ 0

] ] ] � ] ] ] ] � ]

0 0 0 ¯ 1 0 0 0 ¯ 0
�

7�14

,
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A1 = �A1
�L� A1

�R�	

= �
1 1 1 ¯ 1 1 1 ¯ 1

0 1 �2

1
� ¯ �6

1
� �7

1
� �8

1
� ¯ �13

1
�

0 0 1 ¯ �6

2
� �7

2
� �8

2
� ¯ �13

2
�

] ] ] � ] ] ] � ]

0 0 0 ¯ 1 �7

6
� �8

6
� ¯ �13

6
� �

7�14

and Bb0
= �k0

�b0� k1
�b0�

¯k6
�b0�	T �for b0=0 ,1�. Calculating the

determinant of the matrix on the left side �or, by Lemma 1
in Ref. 33�, one immediately has

�A0

A1
� = �I� · �A1

�R�� = 1.

Thus, �ki�0�i�13 can be uniquely solved modulo 27, once B0

and B1 are both fixed modulo 27. Solving this system of
congruences, one arrives at the following set of solutions:

� k0

]

k13
� � �A0

A1
�−1�B0

B1
� � A−1�B0

B1
� �mod 27� , �13�

where
A−1 = �A0

A1
�−1

mod 27 =

⎣
⎢
⎢
⎢
⎡

1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0

76 100 50 46 44 100 121 52 104 74 8 36 120 1

49 16 6 112 122 112 21 79 33 105 35 49 47 122

76 101 42 76 12 46 93 52 103 84 79 112 13 15

88 32 15 96 72 96 35 40 56 89 69 6 22 108

4 4 118 89 100 116 107 124 0 14 1 72 18 15

118 80 106 48 61 48 7 10 38 64 20 81 43 122

100 50 46 44 100 121 127 28 50 82 44 28 121 1 ⎦
⎥
⎥
⎥
⎤

.

The previous equation shows that each valid set of
�ki

�b0��
0�i�6
0�b0�1 corresponds to an equivalent polynomial of

f�b� of degree �13 modulo 27. For each candidate polyno-
mial fb0

�x1� modulo 27, there are 21+¯+6=221 sets of can-
didate values of �ki
�b0��0�i�6 modulo 27, among which ki

�b0�

has 2i candidate values. So, the number of equivalent poly-
nomials of f�b� modulo 27 is �N221�2=N2242. From a theo-
rem in Ref. 24 �Theorem 3 next�, N2242 is equal to the
Oct–Dec 2006/Vol. 15(4)9
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number of null polynomials of degree �13 modulo 27,
which is 27�13−7�+23�22+2−2�/2=258 �see Sec. 4.5 of Ref. 24�.
Thus, one has N2242=258⇒N=258−42/2=28=256.

Theorem 3. Two polynomials f1�x� and f2�x�, are equiva-
lent polynomials modulo m if and only if f1�x�− f2�x� is a
null polynomial modulo m.

Though the prior procedure can output all 248 equivalent
polynomials of f�b� of degree �13 modulo 27, the com-
plexity of deriving all equivalent polynomials is relatively
high. Actually, it is sufficient to randomly take one equiva-
lent polynomial as a representative. To do so, one can
choose the first candidate polynomial fb0

�x1� and randomly
select one valid set of �ki

�b0��0�b0�1
0�i�6

in step 2d. In this way,

the complexity becomes much lower �about hundreds of
matrix operations modulo 2i�. If the degree of the obtained
polynomial is greater than �1�128�−1=7 modulo 27, one
can further reduce it to be a polynomial of degree �7
modulo 27. In addition, based on this representative poly-
nomial, one can also list all equivalent polynomials, since
all null polynomials of degree �13 modulo 27 can be listed
following the theoretical results in Ref. 24.

In the previous attack, some plain base values are
needed in the decomposition procedure to derive the values
of �k0

�b0� ,k0
�b1,b0� ,k0

�b2,b1,b0��0�b0,b1,b2�1 and in step 2a to de-
rive the values of �ki

�b3,b2,b1,b0��0�b0,b1,b2,b3�1

0�i�1
. In the decom-

position procedure, the base values should be chosen in
�0,¯,7�, and in step 2a, the base values should be chosen in
�0, ¯ ,15�� �16x4 , ¯ ,16x4+15�, where x4�0 �mod 2�. In
total one needs to choose 32 base values. Choosing x4=1,
the 32 chosen base values form a set �0,¯,31�.

3.2.2 Breaking the enhanced scheme
For the enhanced scheme with t polynomial mappings, each
polynomial modulo 128 can be broken one by one by car-
rying out the basic attack on the subimages one by one.

Choose 32 plain images such that all base values of the
i’th plain image are i. Then, the first secret polynomial f1
can be broken via the basic chosen-plaintext attack by
working on the first base value of each plain image. Next,
apply induction on the index of the subimage j=2� t.
Since f1� f j−1 have been successfully broken, they can be
removed from the encryption function of the j’th base
value. That is, the encryption of the j’th base value is re-
duced to be the basic scheme by the secret polynomial f i,

Table 5 The values of �f�b3,b2

�b3 ,b2 ,b1 ,b0� �0,0,0,0� �1,0,0,0� �0,0,1,0�

fb3,b2,b1,b0
�0� 0 3 0

fb3,b2,b1,b0
�1� 6 9 6
so f i can be broken in the same way via the basic attack.
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Apparently, the computational complexity of the inductive
attack is t times of the complexity of the basic attack.

3.3 Known-Plaintext Attack
The known-plaintext attack can be considered as a weak
case of the previous chosen-plaintext attack. Once the at-
tacker observes 32 plain base values that satisfy the re-
quirement of the advanced chosen-plaintext attack, he can
immediately carry out the attack to break the encryption
scheme. Similarly, if the attacker can observe 128 distinct
plain/cipher base values, he can immediately carry out the
basic chosen-plaintext attack to recover the LUT as an
equivalent key. Since a typical image may contain thou-
sands of subimages, one can easily collect enough base
values with a high probability in real attacks. �For example,
a 512�512 image has 28,900 subimages, which is much
larger than 32, the number of required base values.�

3.4 Example of Chosen-Plaintext Attack
In the basic scheme, when the encryption function is f�b�
= �1+3b+2b2� mod 128, let us try to find at least one per-
mutation polynomial equivalent to f�b� modulo 128 via the
prior chosen-plaintext attack by choosing 32 plain base val-
ues, b=0, ¯ ,31, and the 32 corresponding ciphertexts:
�f�b��0�b�31. We describe the attack step by step as fol-
lows.

In step 1a, we have the input-output entries of f�b�,
f0�x1�, and f1�x1� shown in Table 1. From these entries, we
have k0

�0�� f�0��1 �mod 27�, k0
�1�� f�1��6 �mod 27�, and

the entries of �fb0

* �x1��0�b0�1 modulo 26 shown in Table 2.

In step 1b, in a similar way, we have k0
�1,0�� f0

*�1��7
�mod 26�, k0

�1,1�� f1
*�1��11 �mod 26�, and the input-output

entries of �fb1,b0

* �x2��0�b0,b1�1 modulo 25 shown in Table 3.

In step 1c, we have k0
�1,0,0�� f �0,0�

* �1��11 �mod 25�,
k0

�1,1,0�� f �1,0�
* �1��19 �mod 25�, k0

�1,0,1�� f �0,1�
* �1��15 �mod

25�, k0
�1,1,1�� f �1,1�

* �1��23 �mod 25�, and the entries of

�fb2,b1,b0

* �x3��0�b0,b1,b2�1 modulo 24 shown in Table 4.
Since f �0,b1,b0�

* �x3�� f �1,b1,b0�
* �x3� �mod 24�, in the follow-

ing step we only need to decompose �f �0,b1,b0�
* �x3��0�b0,b1�1

in step 1d. We have the results in Table 5.
From Table 5, in step 2a we can determine that

k0
�1,0,0,0��3 �mod 24�, k0

�1,0,1,0��11 �mod 24�, k0
�1,0,0,1��7

�mod 24�, k0
�1,0,1,1��15 �mod 24�; 2k1

�0,0,0,0��2k1
�1,0,0,0�

�2k1
�0,0,1,0��2k1

�0,0,1,0��6 �mod 24�, 2k1
�0,0,0,1��2k1

�1,0,0,1�

�2k1
�0,0,1,1��2k1

�1,0,1,1��14 �mod 24�.
�b2,b1,b0� �0,b2,b1,b0� 4

4�� 0�x4�1
0�b0,b1,b2,b3�1

modulo 24.

,0� �0,0,0,1� �1,0,0,1� �0,0,1,1� �1,0,1,1�

0 7 0 15

14 5 14 13
,b1,b0��x

�1,0,1

11

1

Then, in step 2b, from k1 �k1 �mod 2 �,
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and 23k2
�b2,b1,b0��k0

�1,b2,b1,b0�−k1
�b2,b1,b0� �mod 24�, we have

the results shown in Table 6.
Next, from the results in step 2c discussed in Sec. 3.2.1,

we can get the candidates values of �22�i−1�ki
�b1,b0��0�b0,b1�1

1�i�3
modulo 25 as shown in Table 7, where the first �second�
row of 22k2

�b1,b0� corresponds to the first �second� row of
24k3

�b1,b0�. In Table 7, note that 24k3
�b1,b0� is uniquely deter-

mined by k1
�b1,b0� and 22k2

�b1,b0� modulo 25.
Next, step 2d starts. In Eq. �9�, the vector at the right

side should be congruent to zero modulo 23. From the data
shown in Table 7, we have k1

�1,b0�−k1
�0,b0��2·2k2

�0,b0��0
�mod 23�, and from Eq. �9� we have k1

�1,b0�− �k1
�0,b0�

+2·2k2
�0,b0�+3·22k3

�0,b0�	�0 �mod 23�, then it is true that
22k3

�0,b0��0 �mod 23�. Next, 22k3
�1,b0�−22k3

�0,b0��0 �mod 23�,
holds in Eq. �9�, so we further have 22k3

�1,b0��0 �mod 23�.
In a similar way, we can also get 2k2

�0,b0��4 �mod 23�, and
2k2

�1,b0��4 �mod 23�. From these constraints, only the bold
values in Table 7 are valid.

Further, from the fact that the second row in Eq. �10� is
congruent to 0 modulo 24, we have

24 · 7 − �9 · 11 + 15 · 3� + �8 − 0� − 3 · 22k3
�0,0�

� 0 �mod 24� ⇒ 22k3
�0,0� � 0 �mod 24� .

In the same way, we have 22k3
�0,1��0 �mod 24�. In addition,

note that the fourth row in Eq. �9� is congruent to 0 modulo
24; we immediately get 22k3

�1,0��22k3
�1,1��0 �mod 24�. That

is, 22k3
�b1,b0��0 �mod 24�, holds for any b0 ,b1. Combining

the previous results, Table 8 can be obtained, from which
we can verify that

Table 6 The values of �k1
�b2,b1,b0��0�b0,b

�b1 ,b0� �0,0�

k1
�0,b1,b0��k1

�1,b1,b0� �mod 24� 3 11

23k2
�0,b1,b0��23k2

�1,b1,b0� �mod 24� 0 8

Table 7 The candidates values

�b1 ,b0� �0,0� �1,0

k1
�b1,b0� �mod 25� 3 11 19 27 3 11

22k2
�b1,b0� �mod 25� 24 0 8 16 16 24

8 16 24 0 0 8

24k3
�b1,b0� �mod 25� 16 0 16 0 0 16

0 16 0 16 16 0
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20k0
�1,b0� − 10�k1

�1,b0� + k1
�0,b0�	 + 4�2k2

�1,b0� − 2k2
�0,b0�	

− 22k3
�0,b0� � 0 �mod 24�

holds for any candidate values of
�k0

�1,b0� ,k1
�b1,b0� ,2k2

�b1,b0� ,22k3
�0,b0��0�b1�1. That is, there al-

ways exists 22k3
�1,b0��0 �mod 24�, such that Eq. �11� holds.

So, this constraint is canceled.
Now the only constraint of the coefficients is that

10k0
�1,b0� − �4k1

�1,b0� + 6k1
�0,b0�	 + �2k2

�1,b0� − 3 · 2k2
�0,b0�	

− 22k3
�0,b0� � 25k6

�b0� � 0 �mod 25� .

By taking b0=0 ,1, we can easily verify that 10k0
�1,b0�

− �4k1
�1,b0�+6k1

�0,b0�	�0 �mod 25�, so

�2k2
�1,b0� − 3 · 2k2

�0,b0�	 − 22k3
�0,b0� � 0 �mod 25� ⇒ 2k2

�1,b0�

� 3 · 2k2
�0,b0� + 22k3

�0,b0� �mod 25� .

Considering the prior constraint and the relationship be-
tween the coefficients shown in Table 8, we can calculate
the number of all candidate sets of
�k0

�1,b0� ,k1
�1,b0� ,2k2

�b1,b0� ,22k3
�0,b0��0�b1�1 to be �4�4�4��2

�2=28. This agrees with the theoretical result given in
Sec. 3.2.1.

So, we can freely choose one candidate set to get
�fb0

�x1��0�b0�1. When b0=0, choosing k1
�0,0��3 �mod 26�,

k1
�1,0��11 �mod 26�, 2k2

�0,0��2k2
�1,0��4 �mod 26�, 22k3

�0,0�

�0 �mod 26�, we can get k1
�0��3 �mod 26�, 2k2

�0��4 �mod
26�, 22k3

�0��0 �mod 26�, and 23k4
�0��24k5

�0��25k6
�0��0

�mod 26�. That is, f0
*�x1��3x1+4x1

2 �mod 26�, i.e., f0�x1�
�1+6x1+8x1

2 �mod 27�. Similarly, when b0=1, choosing

nd �23k2
�b2,b1,b0��0�b0,b1,b2�1 modulo 24.

�1,0� �0,1� �1,1�

11 7 15 7 15

0 0 8 8 0

�i−1�ki
�b1,b0��0�b0,b1�1

1�i�3
modulo 25.

�0,1� �1,1�

27 7 15 23 31 7 15 23 31

8 24 0 8 16 16 24 0 8

24 8 16 24 0 0 8 16 24

16 16 0 16 0 0 16 0 16

0 0 16 0 16 16 0 16 0
1,b2�1 a

3

8

of �22

�

19

0

16

0

16
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k1
�0,1��7 �mod 26�, k1

�1,1��15 �mod 26�, 2k2
�0,1��2k2

�1,1��4
�mod 26�, 22k3

�0,1��0 �mod 26�, we can get k1
�1��7 �mod

26�, 2k2
�1��4 �mod 26�, 22k3

�1��0 �mod 26�, and 23k4
�1�

�24k5
�1��25k6

�1��0 �mod 26�. That is, f1
*�x1��7x1+4x1

2

�mod 26�, i.e., f1�x1��6+14x1+8x1
2 �mod 27�.

With the prior subpolynomials f0�x1�=1+6x1+8x1
2 and

f1�x1�=6+14x1+8x1
2 modulo 27, we can carry out the last

step—step 3. We can randomly choose valid values of
k0

�0� , ¯ ,k6
�0� ,k0

�1� , ¯ ,k6
�1� and substitute them into Eq. �13�

to get an equivalent polynomial of f�b� modulo 27. Here,
we choose the simplest set of these values modulo 27:
k0

�0�=1, k1
�0�=3, k2

�0�=2, k3
�0�=k4

�0�=k5
�0�=k6

�0�=0, k0
�1�=6, k1

�1�

=7, k2
�1�=2 and k3

�1�=k4
�1�=k5

�1�=k6
�1�=0. Then, solving Eq.

�13�, we immediately get f�b��1+3b+2b2 �mod 27�. One
can see that we have successfully recovered the original
polynomial modulo 27. This completes the chosen-plaintext
attack.

If we choose other values of k0
�0� , ¯ ,k6

�0� ,k0
�1� , ¯ ,k6

�1�,
we may get equivalent polynomials different from the
original one. For example, in the previous values, if we
change k1

�0� from 3 to 64+3=67, we get f�b��1+67b
+2b2+64b9= �1+3b+2b2�+64�b+b9� �mod 27�. One can
easily verify that this polynomial is really equivalent to
f�b�=1+3b+2b2 modulo 27, since 64�b+b9��0 �mod 27�,
holds for any integer b. If the attacker wants to determine
all equivalent polynomials of f�b� modulo 128, he needs to
enumerate all candidates of f0�x1� and f1�x1� modulo 26 in
step 2d and all different values of the coefficients
k0

�0� , ¯ ,k6
�0� ,k0

�1� , ¯ ,k6
�1� modulo 27 in step 3. However, in

most cases, it is needless to do so.

4 Cryptanalysis of XOR-Based
Encryption Scheme

4.1 Key Space
The key space of the XOR-based scheme is even smaller,
compared with that of the polynomial-based scheme. For
the basic scheme, the key is a 7-bit integer, so the size of
the key space is only 27=128� �128!�. For the enhanced
scheme, the key is t 7-bit integers and the key space size is
27t� �128!�t.

4.2 Known/Chosen-Plaintext/Ciphertext Attack
As is well known in cryptography,32 XOR-based ciphers
are not secure against known/chosen-plaintext/ciphertext
attacks at all. For the basic encryption scheme, given only

Table 8 The values of �k1
�b1,b0��0�b0,b1�1 mod

�b1 ,b0� �0,0�

k1
�b1,b0� �mod 25� 3 19 11

2k2
�b1,b0� �mod 24� 4 12 4

22k3
�b1,b0� �mod 24�
one known �or chosen� plain/cipher base value, one can
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immediately derive that k= �f�b�−1	 � �b−1�. Similarly, in
the enhanced scheme, the t subkeys can be derived as fol-
lows if the t leading base values of a plain image and the
corresponding base values in the cipher image are all
known �or chosen�:

kfp
= �F�bp�−1	 � �b1−1��F*�b1 , ¯ ,bp−1�, where

F*�b1,¯ ,bp−1�=�q=2
p �fq�bp−q+1�−1	 when 2� p� t and

F*�b1,¯ ,bp−1�=1 when p�1.

5 Conclusion
This work evaluates a joint compression-encryption scheme
for digital images proposed in Ref. 4. It is found that the
encryption scheme is very weak against known/chosen-
plaintext/ciphertext attacks. It is also found that the key
space was overestimated by the designers. The cryptanaly-
sis study leads to a conclusion that the image encryption
scheme proposed in Ref. 4 cannot be used in applications
that require a high level of security.
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