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bstract. An efficient texture classification method is proposed that
onsiders the effects of both the rotation and scale of texture im-
ges. In our method, the Gabor wavelets are adopted to extract

ocal features of an image and the statistical properties of its gray-
evel intensities are used to represent the global features. Then, an
daptive, circular orientation normalization scheme is proposed to
ake the feature invariant to rotation, and an elastic cross-

requency searching mechanism is devised to reduce the effect of
caling. Our method is evaluated based on the Brodatz album and
he Outex database, and the experimental results show that it out-
erforms the traditional algorithms. © 2008 SPIE and

S&T. �DOI: 10.1117/1.3050071�

Introduction

exture analysis performs fundamental and important roles
n many image-based applications, such as remote sensing
nalysis, medical image interpretation, pattern recognition,
nd content-based image retrieval. Many methods have
een proposed for texture analysis and can be divided into
hree categories: statistical methods, structural methods,
nd model-based methods.1–3 Among these methods, mul-
ichannel analysis algorithms, such as the wavelet model4,5

nd the Gabor model,6 have gained a lot of attention due to
heir ability to characterize features at different frequencies
nd orientations. With the wavelet-based method, only
hree directions �i.e., the horizontal, vertical and diagonal
rientations� are considered, while the Gabor wavelets
GWs� can be used to extract features at any specific ori-
ntation.
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In image retrieval applications, because it is difficult to
ensure that a captured texture image has the same orienta-
tion and scale as the training images, invariant texture
analysis is highly desirable from both the practical and the-
oretical viewpoints.7 In Ref. 8, a circular shift technique
�CST� is used for rotation normalization based on the ex-
tracted Gabor features, so that all images have the same
dominant direction. In Ref. 9, rotation-invariant texture fea-
tures are derived from the symmetrical Gabor filtered im-
ages of texture, and the feature used is a modified average
absolute deviation from the mean. Gabor features are also
used for rotation-invariant texture classification in Ref. 10,
where rotation invariance is achieved by using the Fourier
expansion of these features with respect to orientation. The
above-mentioned methods consider only the effect of rota-
tion. Cui et al.7 proposed a rotation- and scale-invariant
feature set based on the Radon transform and multiscale
analysis. In Ref. 11, the rotational invariance is achieved by
using the two kinds of wavelets with their directional prop-
erties, and the scale invariance is achieved by using a
method that is an extension of the fractal dimension fea-
tures. The first- and second-order statistical parameters and
the entropy characterize the quality of the features ex-
tracted.

In this paper, an efficient texture classification method,
which is invariant to rotation and scale, is proposed. Our
algorithm uses Gabor wavelets to extract features at differ-
ent frequencies and orientations. The mean and variance of
the Gabor filtered image form the feature to represent the
homogeneous texture image and can also be used for tex-
ture classification. An adaptive circular orientation normal-
ization �ACON� technique is proposed to reduce the effect
of rotation in the images. Compared to the CST in Ref. 8,
two modifications are made in our algorithm. First, orien-
Oct–Dec 2008/Vol. 17(4)1
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ation normalization is performed within each frequency;
his can reduce the cross-frequency disturbance. Second,
ecause the Gabor features can only represent the local
haracteristics of an image, we also consider the statistical
roperties of an image’s gray-level intensity as a global
eature. Then, an elastic cross-frequency searching �ECFS�
echanism is devised to search the scales of the features

sed in matching. Experimental results based on the Bro-
atz album12 and the Outex database13 show that our
ethod can greatly improve the classification performance.
This paper is organized as follows. In Section 2, the

undamentals of GWs are described. The ACON technique,
hich is used for rotation normalization, and the ECFS
echanism, which can effectively reduce the effect of scal-

ng, are presented in Section 3. Experimental results are
iven in Section 4, evaluating the different invariant texture
mage classification algorithms based on two different tex-
ure databases. Finally, conclusions are drawn in Section 5.

Gabor Feature Extraction
he GWs, whose kernels are similar to the response of the

wo-dimensional receptive field profiles of the mammalian
imple cortical cell,14 exhibit the desirable characteristics of
apturing salient visual properties, such as spatial localiza-
ion, orientation selectivity, and spatial frequency.6 In the
patial domain, a GW is a complex exponential modulated
y a Gaussian function, which is defined as follows:14

�,��x,y� =
1

2��2e−��x cos � + y sin ��2+�− x sin � + y cos ��2/2�2�

��ei��x cos �+�y sin �� − e−��2�2/2�� , �1�

here �x ,y� denotes the pixel position in the spatial do-
ain, � is the radial center frequency, � is the orientation

f the GW, and � is the standard deviation of the Gaussian
unction along the x- and y-axes, where �x=�y =� is as-
umed. The value of � can be derived as follows:

= �/� , �2�

here �=�2 ln 2��2�+1� / �2�−1�� and � is the bandwidth
n octaves. By selecting different center frequencies and
rientations, we can obtain a family of Gabor kernels from
1� that can be used to represent an image. The Gabor filters
ith different center frequencies and orientations are shown

n Fig. 1.
Given a gray-level image f�x ,y�, the convolution of

f�x ,y� and ��,��x ,y� is given as follows:

�,��x,y� = f�x,y� � ��,��x,y� , �3�

here the asterisk denotes the convolution operator. Con-
atenating the convolution outputs, we can obtain a one-
imensional Gabor representation of the input image,

�,� = �Y�,��0,0�,Y�,��0,1�, . . . ,Y�,��0,NH

− 1�,Y�,��1,0�, . . . ,Y�,��NW − 1,NH − 1��T, �4�

here T represents the transpose operation, and NW and NH
re the width and height of the image, respectively. In this
aper, we consider only the magnitude of the Gabor repre-
entations, which can provide a measure of the local prop-
ournal of Electronic Imaging 043026-
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erties of an image �for convenience, we also denote it as
Y�,��. Then these Gabor features, with different � and �,
are concatenated to form a high-dimensional feature vector,
as follows:

Y = �Y�1,�1

T ,Y�2,�1

T , . . . ,Y�m,�n

T �T, �5�

where m and n are the numbers of center frequencies and
orientations used, respectively.

3 Rotation- and Scale-Invariant Feature
Representation and Texture Classification

The mean 	�,� and the standard deviation ��,� of Y�,� in
�6� and �7�, respectively, are used to form the features of a
homogeneous texture image, and can be used for texture
classification,8

	�,� =
�y�xY�,��x,y�

NWNH
, �6�

��,� =��y�x�Y�,��x,y� − 	�,��2

NWNH
. �7�

We can obtain a feature vector, which includes all the
means and standard deviations at different frequencies and
orientations, i.e.,

P = �	�1,�1
,��1,�1

,	�2,�1
,��2,�1

, . . . ,	�m,�n
,��m,�n

�T. �8�

This vector is used for texture classification. If the query
image is rotated, then the order of the elements in P will be
altered and, therefore, we cannot use P directly for classi-
fication. In this case, an orientation normalization process is
necessary.

Fig. 1 Gabor filters: �a� Real parts of the Gabor filters at five differ-
ent center frequencies and eight orientations. The frequencies are
� /2, �2� /4, � /4, �2� /8, and � /8 from the top to the bottom row,
respectively. The orientations are from 0 to 7� /8 in steps of � /8,
from the left to the right column, respectively. �b� Magnitudes of the
Gabor filters at the corresponding five different center frequencies.
Oct–Dec 2008/Vol. 17(4)2
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From �1�, we can see that the kernel function of a Gabor
avelet is a periodic function, whose period is 2�. On the
asis of this property, the simple circular shift technique is
sed in Ref. 8 to reduce the effect of rotation. In this tech-
ique, for each feature vector P, the orientation with the
ighest energy �i.e., the largest 	�,�� is considered the
ominant orientation. The corresponding element in the
ominant orientation is shifted circularly to become the first
lement in the feature vector P, and the other elements are
lso shifted accordingly. Assuming that the dominant orien-
ation is �i, �8� is rewritten as

= �	�1,�i
,��1,�i

,	�2,�i
,��2,�i

, . . . ,	�m,�i
,��m,�i

,	�1,�i+1
,

��1,�i+1
, . . . ,	�m,�i−1

,��m,�i−1
�T. �9�

his method is simple and efficient and can reduce the
ffect of rotation. However, it does not consider the effect
f scaling. In fact, because 	�,� represents the energy of an
mage at a specific frequency and at a specific orientation,
ts magnitude should be dependent on both the frequency
nd the orientation. In other words, for a scaled image, due
o the effect of scaling, its largest mean 	�,� may have a
ifferent orientation � from that of the original image. In
his case, performing the circular shift on all the elements
f a feature extracted at different frequencies and orienta-
ions may result in mismatching. Therefore, in this paper,
n ACON technique is proposed to reduce the effect of
otation and to eliminate any cross-frequency disturbance.

For each frequency �i, the corresponding extracted fea-
ures are denoted as P�i

, where P�i
�	�i,�1

,��i,�1
,	�i,�2

,��i,�2
, ¯ ,	�i,�n

,��i,�n
�T. For those

lements in P�i
, if 	�i,�j

has the largest magnitude, then the
orresponding � j will be considered the dominant orienta-
ion at the frequency �i. The feature element 	�i,�j

is
oved to the first element in P�i

, and the other elements
re circularly shifted accordingly. The new feature vector is
enoted as P�i

, where P�i
�

�	�i,�j
,��i,�j

,	�i,�j+1
,��i,�j+1

, . . . ,	�i,�j−1
,��i,�j−1

�T. Fi-
ally, the P�i

� from different frequencies are concatenated to
uild a high-dimensional feature vector, i.e.,

= �P�1
�T,P�2

�T, . . . ,P�m
�T �T. �10�

s the orientation normalization is performed for each in-
ividual frequency, P�i

� is only affected by the orientation
nd the disturbance from cross frequency is eliminated.

Because the Gabor features can only represent the local
haracteristics of an image, we also consider the statistical
roperties of its gray-level intensities, which can give the
lobal information about the image. Denote the mean and
he standard deviation of the gray-level intensities of a tex-
ure image as 	0 and �0, respectively. Adding these two
eature values to �10�, we have the following feature vector
o represent the texture image:

= �	0,�0,P�1
�T,P�2

�T, . . . ,P�m
�T �T. �11�

is invariant to rotation and is therefore effective for tex-
ure classification. Compared to the CST, two improve-

ents have been made in our algorithm: not only is the
ournal of Electronic Imaging 043026-
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orientation normalization performed for each individual
frequency, which can reduce the disturbance from cross
frequency, but the global information about the texture im-
age is also included.

After rotation normalization, an ECFS mechanism is
proposed to reduce the effect of image scaling. As the ex-
tracted Gabor features based on different frequencies rep-
resent the characteristics of images at different scales,14 we
should consider these features separately. For two texture
images to be compared, the distance metric is defined as

D = �
i

Di + D0, �12�

where

Di = min
k

�
j

��	�i,�j

�1� − 	�k,�j

�2� �2 + ���i,�j

�1� − ��k,�j

�2� �2, �13�

and

D0 = ��	0
�1� − 	0

�2��2 + ��0
�1� − �0

�2��2. �14�

In �13�, 	�i,�j

�1� and ��i,�j

�1� are the mean and the standard
deviation of the first image with frequency �i and orienta-
tion � j, respectively; and 	�k,�j

�2� and ��k,�j

�2� denote the mean
and the standard deviation of the second image with fre-
quency �k and orientation � j. In this formulation, the fea-
ture vector of the second image at a frequency of, say �k,
which results in a minimum distance to the first image at
frequency �i, is considered. This minimum distance is de-
noted as Di. In other words, the feature at frequency �k of
the second image is the most similar or matched one to the
feature at frequency �i of the first image. In �14�, D0 is a
measure of the similarity between the global features of the
two images. With this distance measure, the effect of scal-
ing can be effectively reduced. Then, the nearest-neighbor
rule is applied to find the most similar pairing between a
query image and the images in an image database.

4 Experimental Results
In this section, we will evaluate the performance of our
proposed algorithm for texture classification based on the
Brodatz album and the Outex database, which contain 112
and 319 texture patterns, respectively. All the texture im-
ages are normalized to a size of 64�64. First, we will
investigate the selection of the parameters for the Gabor
wavelets to be used �i.e., the number of frequencies and
orientations�. Then, our method is compared to the CST,
which mainly focuses on rotation-invariant texture classifi-
cation. Furthermore, our method is also compared to other
methods for rotation- and scale-invariant texture classifica-
tion.

4.1 Parameter Setting
As described in Section 2, the Gabor features are extracted
at different frequencies and orientations. The number of
frequencies and orientations should be predetermined. To
determine these numbers, the 10 images D1–D10 from the
Brodatz album were selected. The testing set was generated
by rotating and scaling these 10 images. Each of these im-
ages is scaled with 10 different scales �0.5–1.5, with 0.1
Oct–Dec 2008/Vol. 17(4)3

58.132.161.9. Terms of Use:  http://spiedl.org/terms



i
e
t
m
m
t
o
a
T
a
p
T
5
o
s
e
fi
s
a

Xie et al.: Efficient rotation- and scale-invariant texture classification…

J

ntervals, 1.0 is excluded� and rotated by 36 different ori-
ntations �10–360 deg, with 10 deg intervals�; therefore, a
otal of 360 testing images is generated. Then, the perfor-

ance of our method in terms of its recognition rate is
easured with different numbers of frequencies and orien-

ations, as tabulated in Table 1. Here, the frequencies and
rientations adopted are � / ��2�p+1, where p=1,2 , . . . ,m,
nd 2q� /n, where q=1,2 , . . ., n−1, respectively. From
able 1, we can see that the best performance can be
chieved when five frequencies and ten orientations are em-
loyed. This result coincides with the analysis in Ref. 8.
herefore, in our following experiments, m and n are set as
and 10, respectively. To demonstrate a better visualization

f the classification performance, the corresponding confu-
ion matrix for this optimal number of frequencies and ori-
ntations is shown in Table 2, and some incorrectly classi-
ed samples are illustrated in Fig. 2. We can see that,
ometimes, one texture may look similar to another texture
fter the rotation and scaling operations.

Table 1 Texture classification performance �in p
bers of frequencies and orientations.

m and n 2 3

4 87.2 85.4

6 87.9 90.9

8 87.4 90.9

10 86.4 89.9

12 86.4 89.8

Table 2 The confusion matrix of the result

Actual
targets D1 D2 D3 D4

D1 355 0 0 0

D2 0 353 0 0

D3 0 0 360 0

D4 0 0 0 357

D5 0 0 0 0

D6 0 0 0 0

D7 0 0 0 0

D8 0 0 0 0

D9 0 0 0 0

D1
0

0 0 0 0
ournal of Electronic Imaging 043026-
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4.2 Experimental Results Compared to CST

In this experiment, all 112 images in the Brodatz database
are used for training, and three different sets of testing im-
ages are produced that are used to evaluate the relative
performances of the different methods. In set I, all 112
images in the Brodatz database are rotated in increments of
10 deg from 10–360 deg; thus, 4032 rotated texture images
�112�36=4032� are generated. In set II, the images are
scaled by scaling factors from 0.5 to 1.5 with 0.1 intervals
�the image with scaling factor 1.0 is excluded�. Thus, this
image set has 1120 �112�10=1120� images. For set III,
the images are both rotated and scaled as in the previous
section �i.e., 36 orientations �10–360 deg, with 10 deg in-
tervals� and 10 scales �0.5–1.5, with 0.1 intervals; 1.0 is
excluded�. In other words, a total of 40,320 �112�36
�10=40,320� images are generated. From this procedure
for producing the various testing sets, we can see that there
is no overlap between the images in the training set and

� based on Gabor wavelets with different num-

4 5 6

90.6 93.0 91.9

94.1 96.9 96.8

92.9 97.2 97.1

93.2 98.1 97.9

91.2 96.4 96.3

m and n are set as 5 and 10, respectively.

sified Targets

D6 D7 D8 D9 D10

0 0 0 0 5

0 0 0 7 0

0 0 0 0 0

0 0 3 0 0

0 0 0 0 0

360 0 0 0 0

0 348 0 0 0

0 0 319 41 0

0 0 0 360 0

0 0 0 0 360
ercent
when

Clas

D5

0

0

0

0

360

0

12

0

0

0
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hose in the testing set. Figure 3 shows the texture image
26 and some of its rotated and scaled images.
The performance of our proposed algorithm is evaluated

nd compared to the circular shift technique. The experi-
ental results are shown in Table 3. The “Gabor Wavelets”
ethod refers to the use of the feature in �8�, and the Eu-

lidean distance measure is used for classification. The “In-
ensity Values” method employs the global statistical prop-
rties of the image only; in other words, �14� instead of �12�
s used for classification. From Table 3, we have the fol-
owing observations:

1. For those rotated testing images, the GWs method
achieves a poor recognition rate, even lower than that
based on the intensity values method. This is because
Gabor features are sensitive to the orientation of an
image. Consequently, if a query image is rotated, it
cannot give a satisfactory result.

2. With the CST, the recognition rate is greatly in-
creased; however, this method does not perform well
when the images are scaled. Furthermore, with the
use of a more robust and flexible rotation normaliza-
tion mechanism, our proposed method outperforms
the CST when the images are under rotation only.

3. For set I, the ACON technology can achieve the best
performance; whereas while for set II, our proposed
ECFS mechanism outperforms the other methods. If
the images are both rotated and scaled, then combin-
ing these two techniques can obtain the best perfor-

ig. 3 Sample texture images: �a� original texture image, and �b�–�f�
he rotated and scaled images, where the rotation angles are 20, 50,
0, 100, and 140 deg, respectively, and the scaling factors are 1.1,
.5, 0.7, 1.4, and 0.8, respectively.

ig. 2 Some incorrectly classified samples. For the query images in
a�, the scaling factors used are 1.3, 0.6, 0.6, 0.6, and 0.5, respec-
ively, while the corresponding rotation angles are 100, 150, 130,
20, and 110 deg, respectively, from the left to the right column.
ournal of Electronic Imaging 043026-
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mance. For both sets I and II, the combined method
has a performance level slightly lower than the re-
spective best performance; however, it still signifi-
cantly outperforms the other methods.

4. The statistical properties of the gray-level intensities
can provide additional information to the Gabor fea-
tures, which represent the local characteristics of an
image. Combining these two different kinds of fea-
tures together, the best recognition performance can
be achieved.

In order to investigate the effect of rotating and scaling
texture images on the classification performance, we con-
sider sets I and II. The images in sets I and II are divided
into 36 and 10 subcategories according to their angles of
rotation and scaling factors, respectively. The respective
recognition rates are shown in Figs. 4 and 5. From Fig. 4,
we can see that the peak values locate at the angles of 10,
90, 180, 270, and 360 deg. This is because when an image
is rotated, some information in the edge areas, which can-
not be handled by the rotation normalization, is lost. The
distorted information between these rotated images and the

Table 3 Texture classification based on the Brodatz album.

Recognition rate �%� Set I Set II Set III

Gabor wavelets 44.7 71.3 26.1

GW+CST 90.3 59.3 52.3

GW+ACON 94.1 60.8 53.5

Intensity values 76.6 51.6 51.0

GW+ACON+intensity values 95.7 66.4 61.5

GW+intensity values+ECFS 41.7 89.6 33.4

GW+ACON+ECFS+
Intensity values

95.0 87.1 80.1

Fig. 4 Texture classification for images with different rotated angles.
Oct–Dec 2008/Vol. 17(4)5
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riginal image is smallest at these angles. From Fig. 5, the
erformance is optimal when the scaling factor is close to
.0. Furthermore, we can see that the proposed method can
chieve a better performance for enlarged images than for
he reduced images. This is because more detailed texture
nformation will be lost when the resolution is reduced.

.3 Experimental Results Based on the Outex
Database

he experiments in the previous section were based on the
rodatz album, where the testing images are produced by
rtificially scaling and rotating the original images. In order
o make the results independent of artificially introduced
rtifacts, we also consider another texture database �i.e., the
utex database�,13 where the textures have been rotated and

caled physically before being imaged by a camera. In our
xperiment, 319 feature patterns are considered �i.e., the
raining set includes 319 images�. For each texture, only
ne image is adopted for training, whose resolution is
60 dpi. Three testing sets are built according to the char-
cteristics of the images. Set I considers only those images
ith rotation, where the rotated angles are 5, 10, 15, 30, 45,
0, 75, and 90 deg. Set II includes images with different
esolutions: 300, 500, and 600 dpi. In Set III, both the scal-
ng and rotation effects are considered. The numbers of
mages in the three testing sets are 2552 �319�8�, 957
319�3�, and 8613 �319�9�3�, respectively. The experi-
ental results based on the different methods are shown in
able 4. We can see that, similar to the conclusions in Sec-

ion 4.2, ACON can reduce the effects of rotation, ECFS is
he most effective method for feature classification under
caling variations, and when both rotation and scaling ef-
ects exist, the combined algorithm can achieve the best
erformance.

.4 Experimental Results Compared to Other
Methods

n this section, we compare the performance of our method
o some other texture classification algorithms that are in-
ariant to rotation and scale. The simulation was performed
ccording to the descriptions in Ref. 7, where 25 classes of

ig. 5 Texture classification for images with different scaling factors.
ournal of Electronic Imaging 043026-
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natural texture images from the Brodatz database were se-
lected and three testing image sets were built. The images
in Set I are both rotated and scaled, with 24 orientations
�0–345 deg, with 15 deg intervals� and 5 scaling factors
�0.6–1.4, with 0.2 intervals�. Therefore, this set has 3000
�25�120� images. The images in set II are rotated with 72
orientations only �0–355 deg, with 5 deg intervals�. In this
way, this image set has 1800 �25�72� images. For set III,
each image is scaled by different factors to form 18
samples �0.48–1.84, with 0.08 intervals�; thus, this set has
450 �25�18� images. In the experiment, 20 samples from
each class in set I �i.e., a total of 500 images� are used for
training and the other images in all the image sets are used
for testing. The average recognition rates for the different
methods are shown in Table 5. We see that our proposed
method can achieve the best performance.

We have also evaluated our method for the case when
only one image from each class in set I �i.e., 25 images
only� is selected for training, and the other images in all
image sets are used for testing. The results are shown in the
last row of Table 6. We can see that although the number of
training images is greatly reduced, our proposed method
can still achieve almost the same recognition rate as the
methods in Refs. 7 and 15.

5 Conclusion
In this paper, we have proposed an efficient rotation- and
scale-invariant texture classification method. In our
method, GWs are used for extracting an image’s local fea-

Table 4 Texture classification based on the Outex database.

Recognition rate �%� Set I Set II Set III

Gabor wavelets 46.6 37.8 19.5

GW+CST 76.1 31.2 26.6

GW+ACON 74.5 30.8 25.9

Intensity values 78.1 63.7 59.4

GW+ACON+intensity values 93.1 61.9 58.9

GW+intensity values+ECFS 75.2 80.1 61.2

GW+ACON+ECFS+
Intensity values

92.9 76.5 72.8

Table 5 Texture classification based on different methods.

Radon
transform7

Log-polar
wavelet
energy
signature15

Standard
wavelet
packet
energy
signature16 Our method

Average
recognition
rate �%�

92.2a 92.1a 83.5a 99.2

aData are from Ref. 7.
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ures, and then the means and standard deviations of these
eatures at different frequencies and orientations are calcu-
ated. After an ACON operation, an ECFS mechanism is
roposed for classification that can effectively reduce the
ffect of scaling. Considering the fact that the Gabor fea-
ures represent only the local features of an image, the sta-
istical properties of the gray-level intensities of an image
re also used in our algorithm. The experiments were con-
ucted using the Brodatz album and the Outex database.
xperimental results show that our proposed method can
chieve the best performance when compared to other al-
orithms.
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