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bstract. We present a modification of the new edge-directed in-
erpolation method that eliminates the prediction error accumulation
roblem by adopting a modified training window structure, and ex-
ending the covariance matching into multiple directions to suppress
he covariance mismatch problem. Simulation results show that the
roposed method achieves remarkable subjective performance in
reserving the edge smoothness and sharpness among other meth-
ds in the literaturé. It also demonstrates consistent objective per-
ormance among a variety of images. © 2010 SPIE and
S&T. �DOI: 10.1117/1.3358372�

Introduction
mage interpolation is a process that estimates a set of un-
nown pixels from a set of known pixels in an image. It has
een widely adopted in a variety of applications, such as
esolution enhancement, image demosaicing,1,2 and un-
rapping omni-images.3 The kinds of distortion and levels
f degradation imposed on the interpolated image depend
n the interpolation algorithm, as well as the prior knowl-
dge of the original image. Two of the most common types
f degradation are the zigzag errors �also known as the
aggies�, and the blurring effects.4 As a result, high quality
nterpolated images are obtained when the pixel values are
nterpolated according to the edges of the original images.

number of edge-directed interpolation �EDI� methods
ave been presented in the literature. Some of them match
he local geometrical properties of the image with pre-
efined templates in an attempt to obtain an accurate model
nd thus estimate the unknown pixel values.5–8 However,
hese algorithms suffer from the inherent problem with the
se of edge maps or other image feature maps, where the
dges and other image features are difficult if not impos-
ible to be accurately located. The poor edge estimation
imits the visual quality of the interpolated images. Other
DI methods make use of the isophote-based methods to
irect the edge interpolation to conform the pixel intensity
ontours.7,8 These algorithms are highly efficient in inter-
olating sharp edges �with significant intensity changes
cross edges�. However, the interpolation performance is
egraded with blurred edges, which are commonly ob-
erved in natural images. To cater this problem, edge en-
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hancement or sharpening techniques are proposed.9 How-
ever, the use of an edge map is indispensable and noise
amplification is aroused with the application of postpro-
cessing techniques. Besides using edge maps, some EDI
methods direct the interpolation by further locating the
edge orientation with the use of a gradient operator.10–12

These methods are effective in eliminating the blurring and
staircase problems by detecting the edge orientation adap-
tively. However, they suffer from the inherent problem of
using an edge map, and the gradient operator is not fully
adaptive to the image structure. Other EDI methods make
use of local statistical and geometrical properties to inter-
polate the unknown pixel values, and are shown to be able
to obtain high visual quality interpolated images without
the use of edge maps.13–18 The new edge-directed interpo-
lation �NEDI� method13 models the natural image as a
second-order locally stationary Gaussian process, and esti-
mates the unknown pixels using simple linear prediction.
The covariance of the image pixels in a local block �also
known as a training window� is required for the computa-
tion of the prediction coefficients. Compared to conven-
tional methods such as the bilinear or bicubic methods, the
NEDI method preserves the sharpness and continuity of the
interpolated edges. However, this method considers only
the four nearest neighboring pixels along the diagonal
edges. As a result, not all the unknown pixels are estimated
from the original image, which degrades the quality of the
interpolated image. Moreover, the NEDI method has a large
interpolation kernel size, which reduces the visual quality
and the peak signal-to-noise ratio �PSNR� of the interpo-
lated texture image. The Markov random field �MRF�
model-based method14 models the image with MRF and
extends the edge estimation in a number of possible direc-
tions by increasing the number of neighboring pixels in the
kernel. The MRF model-based method is able to preserve
the visual quality of the interpolated edges and also main-
tain the fidelity of the interpolated image, thus enhancing
the PSNR level. The more accurate the MRF model, the
better the efficiency of the MRF model-based method.
However, the computational complexity is inevitably in-
creased. Though both the NEDI and MRF model-based
methods are statistically optimal, the NEDI method adopts
a relatively simple model and is thus less computationally
expensive. Therefore, a lot of research has been performed
to enhance the performance of the NEDI method. The im-
proved new edge-directed interpolation �iNEDI� method16
Jan–Mar 2010/Vol. 19(1)1
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odifies the NEDI method by varying the size of the train-
ng window according to the edge size and achieves better
SNR performance. However, the computational cost is
igh and the performance is highly dependent on the cho-
en parameters, which are also image dependent. Regarding
he computational cost, there are fast algorithms that inte-
rate the advantages of the isophote-based methods and
dge enhancement techniques, which can achieve high
uality interpolated images.17,18 However, not all these
ethods are statistically optimized, thus they degrade the

ontinuity and sharpness of the interpolated edges. The it-
rative curvature-based interpolation �ICBI� method18 con-
iders the effects of the curvature continuity, curvature en-
ancement, and isophote contour. By properly weighting
hese three effects, the ICBI method produces perceptually
leasant images and significantly reduces the computational
ost. However, similar to the iNEDI method, the perfor-
ance depends on the chosen parameters.
This work presents an improved NEDI method, namely

odified edge-directed interpolation �MEDI�, which is an
xtension of our work in Ref. 19. In Ref. 19, we proposed
different training window to mitigate the interpolation

rror propagation problem. A similar training window was
ater found to be presented in improved edge-directed in-
erpolation �IEDI�15 independently. While the enlarged
raining window eliminates the error propagation problem,
t also inevitability increases the interpolation error due to
he worsened covariance mismatch problem. As a result,
he interpolation results obtained by IEDI are shown to be
orse than that of NEDI in most cases. To mitigate the

ovariance mismatch problem, we propose to apply mul-
iple training windows. A brief and rapid report of the pro-
osed method has been presented in Ref. 20. In the brief
eport, only the framework of the proposed method and the
rayscale image interpolation performance have been pre-
ented. In this work, a detailed analysis and elaboration of
he proposed method is presented with the assistance of a
seudocode and extensive simulations. The performance of
he proposed method applied to color image interpolation is
lso investigated. The performance and computational
omplexity of the proposed method is examined, with com-
rehensive simulations and comparisons with other EDI-
ased interpolation methods �including NEDI, IEDI, iN-
DI, and ICBI methods� and filtering approaches

including Lanczos filtering and B-spline filtering�. The
imulation results show that the proposed method generates
igh visual quality images and demonstrates a highly con-
istent objective performance over a wide variety of im-
ges.

Algorithm

onsider the interpolation of a low-resolution image X
with size H�W� to a high-resolution image Y �with size
H�2W�, such that Y2i,2j =Xi,j. This is graphically shown
n Fig. 1, where the white dots denote the pixels from X.
he NEDI method is a two-step interpolation process that
rst estimates the unknown pixels Y2i+1,2j+1 �gray dot in
ig. 1�a��, then the pixel Y2i+1,2j �black dot in Fig. 1�b��.
ote that the pixel Y2i,2j+1 �not shown in Fig. 1�b�� can also
e estimated similar to that of pixel Y2i+1,2j. The NEDI
ethod makes use of a fourth-order linear prediction to
ournal of Electronic Imaging 013011-
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interpolate an unknown pixel from the four neighboring
pixels, e.g., Y2i+1,2j+1 is estimated from
�Y2i,2j ,Y2i+2,2j ,Y2i+2,2j+2 ,Y2i,2j+2� as

Y2i+1,2j+1 = �
k=0

1

�
�=0

1

�2k+�Y2�i+k�,2�j+��. �1�

To simplify the notations, and without ambiguity, the 16
covariance values and four cross-covariance values ob-
tained by the four pixels in Eq. �1� are enumerated to be Rk�
and rk, with 0�k ,��3, respectively, as shown by the la-
bels next to the arrows in Fig. 1�a�. For example, R03
=E�Y2i,2jY2i,2j+2� and r0=E�Y2i,2jY2i+1,2j+1�. The optimal
prediction coefficients set � can be obtained as13

� = Ryy
−1ry , �2�

where �= ��0 , ¯ ,�3�, Ryy = �Rk�� and ry = �r0 , ¯ ,r3�. The
interpolation is therefore locally adapted to Ryy and ry.
However, the computation of Rk� and rk would require the
knowledge of Y2i+1,2j+1, which is not available before the
interpolation. This difficulty is overcome by the geometric
duality property, where the covariance r̂0 �circled in Fig.
1�a�� estimated from the low-resolution training window is
applied to replace the high-resolution covariance r0, as in-
dicated by the arrow. In a similar manner, the covariance rk
is replaced by r̂k with 0�k�3. The unknown pixel

Y2i+1,2j+1 is therefore estimated by Eq. �1� with R̂k� and r̂k.
The remaining pixels Y2i,2j+1 and Y2i+1,2j can be obtained
by the same method with a scaling of 21/2 and a rotation of
� /4, as shown in Fig. 1�b�. To better handle the texture
interpolation, a hybrid approach is adopted, where
covariance-based interpolation is applied to edge pixels
�pixels near an edge� when the covariance matrix has full
rank, and the variance of the pixels in the local block is
higher than a predefined threshold �; otherwise, bilinear
interpolation is applied to nonedge pixels �pixels in smooth
regions�. However, prediction error is unavoidable in the
interpolated pixels. The NEDI method propagates the errors
from the first step to the second step, because the estima-
tion in the second step depends on the result of the first step
�the black dot is estimated from the gray dots, as shown in
Fig. 1�b��. To cater this problem, a modified training win-
dow structure has been developed independently in Refs.
15 and 19. The training window in the second step of the
NEDI method for the interpolation of Y2i+1,2j and Y2i,2j+1 is
modified to form a sixth-order linear prediction with a
5�9 training window, as illustrated in Fig. 2, where

Y2i+1,2j = �
k=0

1

�
�=−1

1

�2k+�Y2�i+k�,2�j+��. �3�

The coefficients �2k+� can be estimated from Eq. �2� with
the autocovariance matrix Ryy that contains 36 Rk�, and
cross-covariance vector ry with six elements of rk with
0�k ,��5. The high-resolution covariances are then re-

placed by the low-resolution covariances of R̂yy and r̂y us-
ing the geometric duality property. The rest of the unknown
pixels Y2i,2j+1 can be estimated in a similar manner with a
sixth-order linear prediction as that for pixels Y2i+1,2j, but
with the training window rotated by � /2.
Jan–Mar 2010/Vol. 19(1)2
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Although the interpolation error propagation problem
an be rendered by the enlarged training window, both the
ethods presented in Refs. 15 and 19 still suffer from the

ovariance structure mismatch problem, as illustrated in
ig. 3, where the white box is the geometric low-resolution

raining window, the gray box is the corresponding high-
esolution local block, and the dash lines “AB” and “CD”
ndicate the image edges in the local block. Figures 3�a�
nd 3�b� show the training windows adopted in the NEDI
nd IEDI methods. Clearly, the geometric duality property
s satisfied for the edge AB, as shown in Fig. 3�a�. How-
ver, it is apparent that the geometric duality property is not
atisfied for the edge CD, as shown in Fig. 3�b�, and thus
auses covariance mismatch. To cater this problem, the
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Fig. 1 Illustration of the training windows and lo
of the NEDI method.
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consideration of all four locations of the low-resolution
training window and the high-resolution local block, as
shown in Figs. 3�b�–3�e�, is proposed.

2.1 Proposed Method: Modified Edge-Directed
Interpolation

To reduce the covariance mismatch problem, multiple low-
resolution training window candidates are used. Figures
3�b�–3�e� illustrate the four training windows applied in the
first step of the proposed method. The NEDI and IEDI
methods consider the training window shown in Fig. 3�b�
only, and the training window is centered at pixel Y2i,2j �see
Fig. 1 for the pixel location� in the first step. Compared
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( 2 i + 1 , 2 j + 1 )
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Fig. 2 Illustration of the training window and local block of the second step of the MEDI method.
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Fig. 3 Illustration of �b� through �e� the four training window candidates in the MEDI method for the
estimation of high resolution block in �a�.
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ith the NEDI method, the proposed MEDI method con-
iders three more training windows centered at Y2i,2j+2,
2i+2,2j, and Y2i+2,2j+2, as illustrated in Figs. 3�c�–3�e�, re-
pectively. The covariance signal energy obtained from all
raining windows is compared. The higher the energy in the
raining window, the more likely the edge exists. The one
hat contains the highest energy will be applied to the linear
rediction in Eq. �1�. In this example, the training window
n Fig. 3�c� is applied for the prediction. Similarly, the

EDI method considers six training window candidates in
he second step, with such windows centered at Y2i,2j−2,
ournal of Electronic Imaging 013011-
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Y2i,2j, Y2i+2j+2, Y2i+2,2j−2, Y2i+2,2j, and Y2i+2,2j+2 �see Fig. 2
for the pixel locations�. Hence, the covariance mismatch
problem can be mitigated at the cost of computational com-
plexity. The pseudocode of MEDI is shown in Sec. 2.1.1.
Similar to the NEDI method, the hybrid framework is ap-
plied in the proposed method, where the pixels at edge
regions are interpolated by the covariance-based method,
and the pixels at smooth regions are interpolated by bilinear
interpolation. If the variance of the pixels in the local block
is larger than �, the unknown pixel is regarded to be part of
an edge, thus the covariance-based method is applied.
.1.1 Algorithm 2.1: MEDI �X�

et

2i,2j = Xi,j

omment: Begin of the first step of the MEDI method, which is identical to that of the NEDI method.

or i=1;2;2H

for i = 1:2:2W

�
comment: The energy of four 5 � 5 training windows are computed.

comment: All the training windows have the structure as shown in Fig . 1�a�
C = the training window with the maximum energy

R = CTC;

r = �r0;r1;r2;r3�
if rank�R� = = 4 and var�r� � �

then � = R−1r;

else � = �1/4;1/4;1/4;1/4�;
y = �Y2i,2j;Y2i,2j+2;Y2i+2,2j+2;Y2i+2,2j�;
Y2i+1,2j+1 = �Ty

	 	
omment: End of the first step.

omment: The second step of the MEDI method.

or j=1:2:2H

for i = 1:2:2W

�
comment: The energy of six 5 � 9 training windows are computed.

comment: All the training windows have the structure as shown in Fig . 2.

C = the training window with the maximum energy

R = CTC;

r = �r0;r1;r2;r3;r4;r5�;
if rank�R� = = 6 and var�r� � �

then 
� = R−1r;

y = �Y2i−2,2j−2;Y2i,2j;Y2i,2j+2; ¯ ;Y2i+2,2j−2�; �
else 
� = �1/4;1/4;1/4;1/4�;

y = �Y2i,2j;Y2i+1,2j+1;Y2i+2,2j;Y2i+2,2j−1�; �
Y2i+1,2j = �Ty;

		
omment: End of the second step.

omment: Repeat the second for updating Y2i,2j+1.
Jan–Mar 2010/Vol. 19(1)5
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Results and Discussion
he proposed algorithm has been compared with other in-

erpolation algorithms in the literature, including bilinear
nterpolation, the NEDI method,13 the IEDI method,15 the
NEDI method,16 the ICBI method,18 and the Lanczos and
-spline methods.21 Subjective and objective comparisons
ave been performed. The proposed algorithm was imple-
ented in Matlab running on a PC with Intel Pentinum�R�
uo Core 3-GHz CPU and 1-GB DDR RAM. For compari-

on purposes, the IEDI method is implemented in Matlab
ithout heat diffusion refinement. This is because our in-
estigation mainly focused on the covariance mismatch
roblem, while heat diffusion refinement is a postprocess-
ng step that does not affect the performance of the
ovariance-based interpolation method. For bilinear inter-
olation and Lanczos interpolation, the built-in functions in
atlab were applied in our simulations. For the rest of the

nterpolation methods, a Matlab source code available on
ther websites were used.22–25 The default function param-

Table 1 The PSNR, SSIM, and EPSNR of the in
methods.

Method

Direct downsampling

PSNR SSIM E

MEDI 22.3807 0.93271 2

Bilinear 19.3352 0.8745 2

NEDI13 22.1079 0.93532 2

IEDI15 20.172 0.88642 2

iNEDI16 21.2478 0.89537 2

ICBI18 19.9623 0.88219 2

Lanczos 19.3242 0.88019 2

B-spline 20.7921 0.83192 2

Letter Y Grayscale Baboon Bi

Color F16 Color Baboon Airplane

Fig. 4
ournal of Electronic Imaging 013011-
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eters of iNEDI and ICBI were applied. The threshold was
selected to be �=48 for the MEDI, NEDI, and IEDI meth-
ods. The interpolation of the image boundaries was
achieved by zero extension. Both synthetic and natural im-
ages were tested with different methods. The complete
simulation results can be found at http://sites.google.com/
site/medidemosite/.

3.1 Objective Test
Figure 4 shows the original test images used in the simula-
tions that include both synthetic and natural images. The
original test image was first downsampled by a factor of
two, that is, from 2H�2W to H�W. The downsampled
images were then expanded to their original sizes by using
different interpolation methods. Both direct and average
downsampling images were tested. The interpolated images
were compared with the original images objectively by
measuring the PSNR and the structural similarity index
�SSIM�.26 To characterize the error aroused along the image

ted images of Letter Y by different interpolation

Average downsampling

PSNR SSIM EPSNR

21.8508 0.93221 23.6096

21.939 0.93188 23.7631

22.52 0.94337 23.9569

19.9498 0.88269 23.7207

19.9005 0.87583 23.9314

20.3081 0.89943 24.1703

19.2655 0.86445 20.8724

19.8705 0.81623 24.2178

Boat Grayscale F16

Houses Color Clip-Art

ages.
terpola

PSNR

3.9527

1.1535

3.7954

4.1085

3.7814

3.7499

0.9153

3.3555
cycle

Test im
Jan–Mar 2010/Vol. 19(1)6
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Table 2 The PSNR of interpolated grayscale images by different interpolation methods.

Direct downsampling

Image Resolution MEDI Bilinear NEDI13 IEDI15 iNEDI16 ICBI18 Lanczos B-spline

rayscale Baboon 256�256⇒512�512 22.4659 22.2674 23.2121 22.9574 23.6442 22.7152 21.8805 23.1127

Bicycle 256�256⇒512�512 18.9029 18.5628 20.3339 19.2916 20.0165 19.2561 18.2438 19.4875

Boat 256�256⇒512�512 29.2052 27.0571 29.6856 27.5121 29.1492 27.2931 26.8398 29.4465

Grayscale F16 256�256⇒512�512 32.4444 28.3414 31.4642 28.769 30.7141 28.2912 28.3929 32.1827

Sum 103.0184 96.2287 104.6958 98.5301 103.524 97.5556 95.357 104.2294

Average 25.7546 24.057175 26.17395 24.632525 25.881 24.3889 23.83925 26.05735

Average downsampling

Image Resolution MEDI Bilinear NEDI13 IEDI15 iNEDI16 ICBI18 Lanczos B-spline

rayscale Baboon 256�256⇒512�512 23.2391 23.5774 22.8932 22.745 22.8876 22.9102 21.5768 22.9735

Bicycle 256�256⇒512�512 20.4133 20.4369 20.0786 19.3137 19.3955 19.5172 17.9836 19.2229

Boat 256�256⇒512�512 29.7456 29.8099 29.697 27.4173 27.3921 27.4613 26.5783 27.4958

Grayscale F16 256�256⇒512�512 31.4558 31.4026 31.958 28.3813 28.2886 28.4674 28.2627 28.6384

Sum 104.8538 105.2268 104.6268 97.8573 97.9638 98.3561 94.4014 98.3306

Average 26.21345 26.3067 26.1567 24.464325 24.49095 24.589025 23.60035 24.58265
Table 3 The SSIM of interpolated grayscale images by different interpolation methods.

Direct downsampling

Image Resolution MEDI Bilinear NEDI13 IEDI15 iNEDI16 ICBI18 Lanczos B-spline

rayscale Baboon 256�256⇒512�512 0.71384 0.63208 0.71231 0.67782 0.68594 0.64392 0.64818 0.71652

Bicycle 256�256⇒512�512 0.72795 0.68452 0.77898 0.72698 0.72942 0.72134 0.69109 0.72736

Boat 256�256⇒512�512 0.88275 0.83565 0.89106 0.85665 0.87552 0.84746 0.83658 0.88271

Grayscale F16 256�256⇒512�512 0.9411 0.89548 0.9326 0.90851 0.92332 0.89706 0.90016 0.93956

Sum 3.26564 3.04773 3.31495 3.16996 3.2142 3.10978 3.07601 3.26615

Average 0.81641 0.7619325 0.8287375 0.79249 0.80355 0.777445 0.7690025 0.8165375

Average downsampling

Image Resolution MEDI Bilinear NEDI13 IEDI15 iNEDI16 ICBI18 Lanczos B-spline

rayscale Baboon 256�256⇒512�512 0.71344 0.73605 0.72802 0.64444 0.65415 0.67009 0.64264 0.66459

Bicycle 256�256⇒512�512 0.77684 0.77263 0.78123 0.72326 0.72538 0.73778 0.67892 0.70738

Boat 256�256⇒512�512 0.89151 0.89095 0.89193 0.84946 0.84797 0.85421 0.8305 0.85194

Grayscale F16 256�256⇒512�512 0.93265 0.93084 0.93752 0.89727 0.89386 0.90276 0.89782 0.90509

Sum 3.31444 3.33047 3.3387 3.11443 3.12136 3.16484 3.04988 3.129

Average 0.82861 0.8326175 0.834675 0.7786075 0.78034 0.79121 0.76247 0.78225
ournal of Electronic Imaging Jan–Mar 2010/Vol. 19(1)013011-7
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dges, the PSNR focused on image edges was measured,
nd this figure is denoted as edge PSNR �EPSNR�. Numer-
us research focused on the metrics to characterize the er-
or aroused along image edges.27,28 In our study, the Sobel
dge filter is used to locate the edge in the original image,
nd the PSNR of the pixels on the edge were used to gen-
rate the EPSNR. The PSNR, SSIM, and EPSNR of all the
est images are summarized in Tables 1–7. PSNR has been
idely used to measure the distortion of the grayscale im-

ges after processing and is given by

SNR = 20 log10� 255

MSE

� , �4�

SE =
1

2H � 2W
�
i=0

2H−1

�
j=0

2W−1

Zi,j
2 , �5�

i,j = �Li,j − Yi,j� , �6�

here Li,j and Yi,j are the pixels in the original image and
he interpolated image at location �i , j�, respectively. For
olor images in RGB representation, each channel is treated
ndependently as a grayscale image. The interpolated im-
ges of the three channels are then recombined to give the
nal image for comparison. Thus, the PSNR is computed as

Table 4 The EPSNR of interpolated gray

Direct d

Image Resolution MEDI Bilinear

rayscale Baboon 256�256⇒512�512 29.0107 29.3487

Bicycle 256�256⇒512�512 23.9567 23.8848

Boat 256�256⇒512�512 35.6502 33.8593

Grayscale F16 256�256⇒512�512 38.403 34.4961

Sum 127.0206 121.5889

Average 31.75515 30.397225

Average

Image Resolution MEDI Bilinear

rayscale Baboon 256�256⇒512�512 30.9356 31.1533

Bicycle 256�256⇒512�512 26.1789 25.8765

Boat 256�256⇒512�512 37.5061 37.7681

Grayscale F16 256�256⇒512�512 38.5663 38.7733

Sum 133.1869 133.5712

Average 33.296725 33.3928
ournal of Electronic Imaging 013011-
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PSNR = �PSNRred + PSNRgreen + PSNRblue�/3, �7�

where PSNRred, PSNRgreen, and PSNRblue are the PSNR
values for the red, green, and blue channels of the color
images computed with Eq. �4�, respectively. In the follow-
ing discussion, we abuse the notation PSNR to imply both
PSNR and PSNR with respect to the grayscale and color
images in concern. High PSNR value of the interpolated
images is more favorable, because this implies less distor-
tion. Similar to the computation of PSNR, the EPSNR can
be computed using Eqs. �4�–�7�. However, only the edge
pixels are computed. The edge pixels are located by using
the edge map extracted from the original image by Sobel
filtering, in which the filter was implemented by the built-in
Matlab function. Similarly, the higher the EPSNR, the less
distortion is observed on the image edges. Another objec-
tive measurement is the SSIM. SSIM is an index character-
ized by the structural similarity of the original image with
the consideration of human visual perception. A SSIM Mat-
lab program downloaded from Ref. 29 was used for SSIM
computation. The higher SSIM value indicates that there is
greater structural similarity between the original and inter-
polated images.

The PSNR, SSIM, and EPSNR of the synthetic image
“letter Y” are summarized in Table 1. The objective perfor-
mance of different methods is subject to the downsampling
methods. It can be observed that none of the methods show
consistently good performance for both downsampling

ages by different interpolation methods.

mpling

DI13 IEDI15 iNEDI16 ICBI18 Lanczos B-spline

658 29.4053 31.2072 29.5201 28.2969 30.6022

887 24.1098 26.2706 24.2362 22.788 25.0678

344 33.1877 37.7065 33.3654 32.7446 37.4664

836 33.8989 38.7091 34.2064 33.6057 39.7807

9725 120.6017 133.8934 121.3281 117.4352 132.9171

3125 30.150425 33.47335 30.332025 29.3588 33.229275

ampling

DI13 IEDI15 iNEDI16 ICBI18 Lanczos B-spline

391 29.5384 29.6373 29.5284 27.9232 29.8853

948 24.2816 24.2618 24.3602 22.4432 24.9405

929 33.5122 33.6456 33.2453 32.4332 34.1252

291 34.3699 34.5264 33.7316 33.331 34.9557

4559 121.7021 122.0711 120.8655 116.1306 123.9067

3975 30.425525 30.517775 30.216375 29.03265 30.976675
scale im

ownsa

NE

30.9

26.0

37.3

38.5

132.

33.24

downs

NE

30.4

25.9

37.3

38.6

132.

33.11
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ases. The proposed method achieves the highest PSNR
nd the third highest EPSNR in the direct downsampling
ase, but it only achieves the third highest PSNR and the
ixth highest EPSNR in the average downsampling case.
owever, the proposed method is able to achieve the sec-
nd highest SSIM in both cases. Moreover, it can be ob-
erved that the optimal statistical methods, including the
EDI and our proposed method, preserve the image struc-

ure well in both cases, thus leading to the first two highest
SIM.

Besides the synthetic image, the performance of differ-
nt interpolation methods was compared with the use of
atural grayscale and color images. The results are summa-
ized in Tables 2–7. Interpolation is a reverse process of
ownsampling. A good match of the interpolation method
o the downsampling method would bring the image distor-
ion to minimum, thus leading to a better objective perfor-
ance. Therefore, the methods that perform well in the

irect downsampling case would not present the same per-
ormance in the average downsampling case. Shown in
ables 2, 4, 5, and 7, though the bilinear method shows
omparatively worse PSNR and EPSNR in the direct down-
ampling case, it achieves the best PSNR and EPSNR for
lmost all average downsampled test images. Moreover,
hough the statistical optimal methods �the NEDI, MEDI,

Table 5 The SSIM of interpolated colo

Direct d

Image Resolution MEDI Bilinear

olor Baboon 256�256⇒512�512 21.7184 21.5875

Color F16 256�256⇒512�512 32.1732 28.4878

Houses 256�384⇒512�768 21.9021 21.2115

Airplane 256�384⇒512�768 30.993 29.0335

Clip-art 350�233⇒700�466 30.3354 27.543

Sum 137.1221 127.8633

Average 27.42442 25.57266

Average

Image Resolution MEDI Bilinear

olor Baboon 256�256⇒512�512 22.517 22.8642

Color F16 256�256⇒512�512 31.3667 31.3507

Houses 256�384⇒512�768 22.1414 22.5025

Airplane 256�384⇒512�768 31.5177 31.8161

Clip-art 350�233⇒700�466 30.4358 30.3967

Sum 137.9786 138.9302

Average 27.59572 27.78604
ournal of Electronic Imaging 013011-
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and IEDI methods� are not able to achieve consistent per-
formance in both downsampling cases, they always result
in higher SSIM values. This is because these statistical op-
timal methods predict the unknown pixel adapting to the
image covariance structure. Besides the SSIM performance,
the NEDI and MEDI methods result in the highest PSNR
values for direct downsampled images. However, due to the
high contrast of the edges, the iNEDI method shows the
best EPSNR performance for the direct downsampled im-
ages. Interestingly, the objective performance is highly cor-
related to the image structure. For example, for images rich
in texture, including Grayscale Baboon, Color Baboon, and
Houses, the iNEDI method results in better PSNR and
EPSNR. Nevertheless, for images containing mainly long
edges with low contrast, e.g., Grayscale F16 and Color F16,
the statistical optimal methods result in better performance
in PSNR, SSIM, and EPSNR, no matter which downsam-
pling method has been adopted. Therefore, it is difficult to
tell which one is the winner. However, it can be concluded
that the proposed method shows fair objective performance
among all methods.

Edge information is image specific, and the EDI meth-
ods under test do not compute the missing pixels in the
smooth regions and those along the edges in the same man-
ner all the time. Moreover, each EDI method adopts a dif-

es by different interpolation methods.

mpling

I13 IEDI15 iNEDI16 ICBI18 Lanczos B-spline

09 22.2508 22.9795 22.0173 21.1844 22.3983

85 28.9347 30.7862 28.486 28.5039 31.9925

69 21.5191 22.9097 21.3791 20.9029 N/A

51 29.4564 30.6967 29.2942 28.8167 N/A

36 28.0549 29.6804 27.8683 27.4148 N/A

35 130.2159 137.0525 129.0449 126.8227 N/A

67 26.04318 27.4105 25.80898 25.36454 27.1954

ampling

I13 IEDI15 iNEDI16 ICBI18 Lanczos B-spline

73 22.0409 22.1847 22.2107 20.8752 22.2748

37 28.5696 28.4844 28.653 28.3593 28.8168

24 21.3886 21.498 21.5681 20.662 N/A

55 29.3877 29.4334 29.4888 28.5579 N/A

32 27.8841 27.8393 27.9774 27.2433 N/A

221 129.2709 129.4398 129.898 125.6977 N/A

442 25.85418 25.88796 25.9796 25.13954 25.5458
r imag

ownsa

NED

22.49

31.35

22.15

31.35

30.47

137.8
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NED

22.20

31.76

22.34
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30.54

138.5
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erent method to identify edge pixels. The iNEDI method
etermines the edge pixel similar to other covariance-based
ethods �NEDI, MEDI, and IEDI�; however, variable-sized

raining windows are adopted, which depend on the edge
tructures, and thus the number of operations vary among
ifferent pixels. The ICBI method does not identify the
dge pixels explicitly, but directs the interpolations of the
issing pixel according to the edge structure. As a result,

he required number of operations will still vary from pixel
o pixel, and it is difficult if not impossible to distinguish
he computational effort for edge detection and interpola-
ion. Hence, it is difficult to compare computational com-
lexity in terms of number of operations per pixel for each
nterpolation method. Instead, the total computational time
or each image interpolation experiment can be used to cor-
elate the computational complexity of different methods,
s all the simulation is performed on the same platform.
omparison has been focused on the EDI methods. The
umber of edge pixels identified by each EDI method for
ach image, and the computational time used by each
ethod to interpolate each image in both downsampling

ases, are summarized in Tables 8 and 9, respectively. It
an be observed from Table 8 that the number of edge
ixels from an average downsampled image identified by
ach EDI method is always smaller than that from direct

Table 6 The EPSNR of interpolated co

Direct d

Image Resolution MEDI Bilinear

olor Baboon 256�256⇒512�512 0.69537 0.61765

Color F16 256�256⇒512�512 0.9239 0.88084

Houses 256�384⇒512�768 0.74894 0.67964

Airplane 256�384⇒512�768 0.90415 0.87839

Clip-art 350�233⇒700�466 0.92483 0.8771

Sum 4.19719 3.93362

Average

Average

Image Resolution MEDI Bilinear

olor Baboon 256�256⇒512�512 0.69614 0.71993

Color F16 256�256⇒512�512 0.91794 0.91673

Houses 256�384⇒512�768 0.73435 0.75591

Airplane 256�384⇒512�768 0.91157 0.91534

Clip-art 350�233⇒700�466 0.92393 0.92277

Sum 4.18393 4.23068

Average 0.836786 0.846136
ournal of Electronic Imaging 013011-1
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downsampled images. However, longer time is required to
interpolate the images obtained from average downsam-
pling than that for the direct downsampled counterparts for
each EDI method. As a result, it can be concluded that the
computational complexity of EDI methods does depend on
both the number of edge pixels in an image and also the
correlation structure. Therefore, simply comparing the
computational time for edge pixels for EDI methods is mis-
leading, and it is more suitable to compare the computa-
tional complexity in terms of average computational time
per pixel. Table 8 shows that the average computational
time for different EDI methods follows the consistent trend
for both downsampling cases. The proposed methods al-
ways achieve the second fastest computational time among
all EDI methods, and are also the fastest methods when
compared to the optimal statistical methods. The computa-
tional time of the proposed method can be further reduced
by optimizing the source code.

3.2 Subjective Test
Besides the objective measurement, a subjective test was
performed to evaluate the visual perception of the interpo-
lated images. Error images �i.e., Zi,j in Eq. �6�� are used as
an evaluation tool. To obtain a fair comparison, the magni-

ges by different interpolation methods.

mpling

I13 IEDI15 iNEDI16 ICBI18 Lanczos B-spline

49 0.66423 0.67229 0.62949 0.63301 0.69889

791 0.89579 0.91004 0.88444 0.8839 0.92273

554 0.70215 0.73661 0.67728 0.68957 N/A

047 0.8913 0.89889 0.88651 0.8771 N/A

448 0.89035 0.90674 0.88225 0.88144 N/A

33 4.04382 4.12457 3.95997 3.96502 N/A

ampling

I13 IEDI15 iNEDI16 ICBI18 Lanczos B-spline

221 0.62969 0.64023 0.65669 0.62698 0.65069

163 0.8845 0.88137 0.88975 0.88058 0.89235

973 0.67686 0.68303 0.69902 0.68169 N/A

285 0.88746 0.88841 0.89115 0.87053 N/A

747 0.88199 0.88089 0.88801 0.87764 N/A

389 3.9605 3.97393 4.02462 3.93742 N/A

778 0.7921 0.794786 0.804924 0.787484 0.77152
lor ima

ownsa

NED
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ude of the pixels of the error images are normalized with
he same normalization factor among all the interpolation
ethods, and thus not all error images have their pixel

alues span from 0 to 255. The normalization performed on
he differences among the error images has made it more
ivid. For the color image case, the error image of each
hannel is recombined to give the final error images. There-
ore, the distortion on each channel is represented by the
orresponding color in the final images. Figure 5 shows the
riginal image, interpolated images, and the error images of
est image Letter Y for both downsampling methods. We
rst consider the direct downsampling case. It is observed

hat the MEDI interpolated image is perceptually more
leasant among all the interpolated images because of the
ontinuous and smooth diagonal edges. It is more vivid by
bserving the error images. The white area in the error
mages indicates the distortion. The brighter the white re-
ion, the more the distortion is concentrated. It is observed
hat the white region in the bilinear, the Lancozs, and the
-spline interpolated images are concentrated along the
dges, which is the consequence of blurring after interpo-
ation. The white region is comparatively less obvious in
he error images of the iNEDI and ICBI methods. The
hite region is dispersed in the NEDI case because the

dges are interpolated by covariance matching, thus mini-

Table 7 The EPSNR of interpolated co

Direct d

Image Resolution MEDI Bilinear

olor Baboon 256�256⇒512�512 28.0284 28.4336

Color F16 256�256⇒512�512 38.6446 34.9111

Houses 256�384⇒512�768 27.5147 27.2156

Airplane 256�384⇒512�768 37.1493 35.4617

Clip-art 350�233⇒700�466 35.9035 33.3133

Sum 167.2405 159.3353

Average 33.4481 31.86706

Average

Image Resolution MEDI Bilinear

olor Baboon 256�256⇒512�512 29.9595 30.1837

Color F16 256�256⇒512�512 38.9 39.1254

Houses 256�384⇒512�768 28.6934 29.0178

Airplane 256�384⇒512�768 38.9656 39.1958

Clip-art 350�233⇒700�466 36.9597 37.0404

Sum 173.4782 174.5631

Average 34.69564 34.91262
ournal of Electronic Imaging 013011-1
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mizing the error along edges. The white region is even
more dispersed in the IEDI case, especially along the diag-
onal edges, because the IEDI method fully utilizes the low-
resolution pixels with an enlarged training window. For the
MEDI case, the white region is observed to be even dim-
mer and segmented along the diagonal edges, because the
proposed method accurately adapts the edge orientation by
covariance matching in multiple directions. A similar obser-
vation is obtained from the average downsampling case,
but the error is more significant.

Figures 6 and 7 show the pixel intensity maps of the
original and interpolated images of region A in Fig. 5 for
direct downsampling and average downsampling cases, re-
spectively. We first consider the direct downsampling case.
There is a sharp transition from 0 to 255 across the vertical
edge of the original image in region A, as shown in Fig. 6.
All vertical edges are blurred after interpolation, and the
effect is the least significant for the iNEDI interpolated im-
age, where the transition spanned three columns only. The
blurring effect is the most vivid for the bilinear, Lanczos,
and B-spline interpolated images. The halo effect is ob-
served in the ICBI interpolated image. The interpolation
performance observed from the proposed method, the
NEDI method, and the IEDI method are compatible be-
cause these methods use the same training window struc-

ges by different interpolation methods.

mpling

I13 IEDI15 iNEDI16 ICBI18 Lanczos B-spline

07 28.5202 30.3744 28.6316 27.3802 29.6541

84 34.3417 39.0994 34.6619 34.0178 40.0112

6 26.8039 29.7968 27.0301 26.2002 N/A

51 34.8022 38.4843 34.9867 34.4304 N/A

25 33.1733 36.8886 33.4708 32.4743 N/A

27 157.6413 174.6435 158.7811 154.5029 N/A

54 31.52826 34.9287 31.75622 30.90058 34.83265

ampling

I13 IEDI15 iNEDI16 ICBI18 Lanczos B-spline

68 28.652 28.7599 28.6314 27.0022 29.0262

1 34.8138 34.9609 34.2051 33.7451 35.3802

07 27.0528 27.2206 27.044 25.9211 N/A

74 35.1066 35.2085 34.9665 34.1216 N/A

39 33.5427 33.6125 33.2301 32.2431 N/A

98 159.1679 159.7624 158.0771 153.0331 N/A

96 31.83358 31.95248 31.61542 30.60662 32.2032
lor ima
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ure. Furthermore, the covariance structure is identical in all
ases, because it is a perfect vertical edge in the synthetic
mage. A consistent result can be observed in the average
ownsampling case, as shown in Fig. 7. The outstanding
erformance of the proposed method is emphasized in the
tudy of the intensity maps for region B, as shown in Figs.
and 9 which contain a diagonal edge, for direct downsam-

D i r e

D o w n s a

B i l i n e a r

N E D I

M E D I

I E D I

i N E D I

I C B I

L a n c z o s

B - s p l i n e

A

B

Fig. 5 Original image, interpolated images, an
from 100�100 to 200�200�.
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pling and average downsampling cases, respectively. The
interpolated edge obtained from the bilinear, Lanczos, and
B-spline methods are the most blurred.

The halo effect is observed in the ICBI interpolated im-
age. It is observed that the IEDI method achieves sharper
diagonal edges than that of the NEDI method, because a
modified training window is applied in the second step of

g

A v e r a g e

D o w n s a m p l i n g

r images of Letter Y �resolution enhancement
c t

m p l i n

d erro
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Table 8 The number of edge pixels considered in different edge-directed interpolation methods.

Direct downsampling

MEDI NEDI IEDI iNEDI ICBI

Letter Y 923 1017 984 1312 40,000

Grayscale Baboon 101,337 115,783 101,337 172,136 262,144

Bicycle 69,992 88,165 70,036 113,990 262,144

Boat 56,717 72,527 56,717 95,471 262,144

Grayscale F16 46,963 63,968 46,963 72,163 262,144

Average downsampling

MEDI NEDI IEDI iNEDI ICBI

Letter Y 612 566 716 954 40,000

Grayscale Baboon 90,051 107,577 90,051 156,006 262,144

Bicycle 57,640 71,594 57,665 90,465 262,144

Boat 52,338 64,847 52,338 86,929 262,144

Grayscale F16 44,570 56,925 44,570 66,344 262,144
Table 9 The computation time per pixel of different edge-directed interpolation methods.

Direct downsampling

Image
Total number of

interpolated pixels
MEDI
�sec�

NEDI13

�sec�
IEDI15

�sec�
iNEDI16

�sec�
ICBI18

�sec�

Letter Y 3�100�100 1.33E−04 2.60E−03 1.33E−04 �1.00E−6 1.17E−03

Grayscale Baboon 3�256�256 8.65E−05 1.81E−03 1.93E−04 �1.00E−6 1.91E−03

Bicycle 3�256�256 2.29E−04 4.77E−03 2.19E−04 �1.00E−6 4.57E−03

Boat 3�256�256 1.98E−04 4.57E−03 1.48E−04 5.09E−06 4.57E−03

Grayscale F16 3�256�256 1.73E−04 3.89E−03 1.58E−04 �1.00E−6 3.87E−03

Average 1.64E−04 3.53E−03 1.70E−04 1.02E−06 3.22E−03

Average downsampling

Image Total number of
interpolated pixels

MEDI
�sec�

NEDI13

�sec�
IEDI15

�sec�
iNEDI16

�sec�
ICBI18

�sec�

Letter Y 3�100�100 2.33E−04 6.00E−04 2.33E−04 2.00E−04 7.00E−04

Grayscale Baboon 3�256�256 3.46E−04 6.97E−03 9.05E−04 2.85E−04 9.49E−03

Bicycle 3�256�256 8.39E−04 7.12E−03 8.29E−04 7.17E−04 5.45E−03

Boat 3�256�256 8.49E−04 6.01E−03 7.07E−04 7.38E−04 4.83E−03

Grayscale F16 3�256�256 7.02E−04 3.80E−03 6.97E−04 6.00E−04 3.48E−03

Average 5.94E−04 4.90E−03 6.74E−04 5.08E−04 4.79E−03
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he IEDI method, which fully utilizes information from the
riginal image. The iNEDI method results in sharp and
mooth edges, but the edge continuity is not close to that of
he original image. The proposed method does not only
orm sharp and smooth edges, the interpolated edge struc-
ure is highly close to the original edge. The outstanding
erformance is due to the termination of prediction error
ropagation and the elimination of covariance mismatch.
verage downsampling is able to preserve the visual qual-

Bilinear

NEDI

MEDI

IEDI

Or

Fig. 6 Pixel intensity maps of the original image
direct downsampling case.
ournal of Electronic Imaging 013011-1
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ity of the downsampled image; however, the image edges
are smoothed out by the averaging filter. The filtering ap-
proaches, e.g., the bilinear, Lanczos, and B-spline methods,
are favorable to the reconstruction of the smoothed image.
However, the computational complexity of EDI methods is
inevitably increased due to the difficulty in locating the
image edges. As shown in Fig. 9 the distortion is more
server in restored average downsampling images, no matter
which interpolation methods are adopted. Furthermore, the

iNEDI

ICBI

Lanczos

al

B-spline
terpolated images of Letter Y in region A for the
igin

and in
Jan–Mar 2010/Vol. 19(1)4
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riginal pixel intensity cannot be reverted after average
ownsampling. Therefore, the objective comparison, in-
luding PSNR, may be misleading. As a result, it is more
fficient to compare the performance of different methods
y using the direct downsampled images.

Figure 10 shows the simulation results for the test image
icycle. Part of the original image is zoomed-in and the
orresponding portions of the interpolated images are also
hown. Considering the circled beam on the bicycle wheel,

Bilinear

O

NEDI

MEDI

IEDI

Fig. 7 Pixel intensity maps of the original and
downsampling case.
ournal of Electronic Imaging 013011-1
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the proposed method and the IEDI method show the most
outstanding performance in preserving the continuity,
smoothness, and sharpness of the interpolated edge. In par-
ticular, the proposed method further preserves the image
structure, even at edge termination �enclosed with rectan-
gular boxes in the IEDI and MEDI images in Fig. 10�,
where the IEDI interpolated image shows discontinuity at
the end of the beam that should connect to the wheel, while
the interpolated image of the proposed method shows al-

nal

iNEDI

ICBI

Lanczos

B-spline
olated of Letter Y in region A for the average
rigi

interp
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ost the same image quality as the original image. This
erifies that the proposed method is effective in eliminating
he covariance mismatch problem. Therefore, though both
he proposed method and the IEDI method show average
bjective performance in different images, the proposed
ethod outperforms the IEDI method in preserving image

tructure. Hence, the following comparison focuses on the
EDI method and also the iNEDI method because of its
utstanding performance in the synthetic image case.

Figure 11 shows the simulation results for the test image
rayscale Baboon. Grayscale Baboon is rich in texture �the
airs near the nose� and contains lots of low contrast edges

Bilinear

NEDI

MEDI

IEDI

O

Fig. 8 Pixel intensity maps of the original and in
downsampling case.
ournal of Electronic Imaging 013011-1

Downloaded from SPIE Digital Library on 24 Jul 2011 to 1
�the whiskers�. It is observed that the MEDI method out-
performs the other methods in preserving the edge continu-
ity and sharpness of the whiskers, independent to the pixel
intensity level. It is due to the suppression of covariance
mismatch and the termination of prediction error propaga-
tion with the enlarged training windows in the second step.
The MEDI method preserves the continuity of the whiskers
when compared to those of the NEDI and iNEDI methods.
The enlarged training window in the second step of the
MEDI method reduces the efficiency in detecting short
edges or texture. However, the hairs interpolated by the
MEDI method are perceptually comparable with those of

ICBI

Lanczos

al

B-spline

iNEDI

ted images of Letter Y in region B for the direct
rigin

terpola
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he NEDI and iNEDI methods. A consistent performance is
bserved from color images. Figure 12 shows the propeller
f the original color image Airplane and the corresponding
ortions of interpolated images. The highlighted edge of
he MEDI case is the smoothest and sharpest among that of
he shown cases due to the elimination of prediction error
ropagation and suppression of covariance mismatch. It is
ore apparent in the comparison of the error images, as

hown in Fig. 13. The error is the most dispersed in the
EDI interpolated images. Figure 14 shows zoomed-in

Bilinear

NEDI

MEDI

IEDI

Ori

Fig. 9 Pixel intensity maps of the original and
average downsampling case.
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portions of the interpolated images Grayscale F16 obtained
by the NEDI and MEDI methods. The objective perfor-
mance of the interpolated image obtained by the MEDI
method is better than that of the NEDI method depicted in
Tables 2 and 3. A consistent subjective performance is also
observed. Consider the enclosed edges of the empennage;
the MEDI method preserves the edge smoothness and
sharpness. The error images further show that MEDI im-
poses less error along the highlighted edge when compared
to that of the NEDI method, where a thinner and dimmer

iNEDI

ICBI

Lanczos

B-spline

l

olated images of Letter Y in region B for the
gina

interp
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hite region is observed in the MEDI error image. This
bservation shows that the proposed method can achieve
omparable objective performance with high visual quality
nterpolated images, especially in preserving the edge
harpness and continuity, and also the quality of the inter-
olated image texture.

Conclusion
n improved statistical optimized interpolation method,
odified edge-directed interpolation, is presented. The pro-

osed method overcomes the existing problems of new
dge-directed interpolation by considering multiple training

Original

Bilinear

NEDI

MEDI

IEDI

iNEDI

ICBI

Lanczos

B-spline

ig. 10 Original test image Bicycle and zoomed-in portions of the
riginal and interpolated images.

N E D I

M E D I

i N E D I

N E D I M E D I i N E D I

ig. 11 Original test image Grayscale Baboon and zoomed-in por-
ions of the original and interpolated images.
ournal of Electronic Imaging 013011-1
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windows and modified training window structure. The co-
variance mismatch problem is mitigated and the prediction
error accumulation problem is eliminated. The performance
of the proposed method is verified with extensive simula-
tions and comparisons with other benchmark interpolation
methods. Simulation results show that the presented
method achieves outstanding perceptual performance with
consistent objective performance independent of the image
structure. The proposed method can be integrated to differ-

O r i g i n a l N E D I

M E D I i N E D I

Fig. 12 Portions of the original test image Airplane and correspond-
ing portions of the interpolated images.

N E D I M E D I i N E D I

Fig. 13 The difference images of the test image Airplane for the
portions shown in Fig. 12.
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nt industrial applications, such as the presented resolution
nhancement application or color CCD demosaicing.
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