
1 

 

Integrating PhysX and OpenHaptics: Efficient Force Feedback Generation 

Using Physics Engine and Haptic Devices 
 

1Leon Sze-Ho Chan   
1,2

Kup-Sze Choi 

1
School of Nursing, Hong Kong Polytechnic University, Hong Kong 

2
Ctr. for Integrative Digital Health, School of Nursing, Hong Kong Polytechnic University, Hong Kong 

 

Abstract 
 

Haptic feedback plays an important role to further 

enhance the level of realism of virtual environments 

where visual and audio feedbacks are only provided. 

However, realistic haptic rendering depends on its 

coupling to the underlying physics engine that governs 

the behavior of virtual objects. This paper presents 

methods to streamline the generation of haptic feedback 

with physics engine based on Sensable’s OpenHaptics 

and nVidia’s PhysX. Minimal development effort is 

required to couple these two components . To render the 

forces due the interactions between virtual objects, the 

Error-based method and the Contact Plane Collision 

Response method are proposed to utilize virtual material 

stiffness and object collision geometry provided by 

PhysX. The latter method yields more jitter-free output 

by restricting the haptic interface on one side of the 

contact plane. While PhysX does not release force 

information, an Indirect Force Estimation technique is 

proposed to simulate static or dynamic pulling force by 

introducing a spring between the haptic interface and 

the object being pulled. By using Hooke’s Law, the 

pulling force can be estimated indirectly from the 

elongation of the spring. The use of these methods 

provides the desired force feedback without significant 

changes to the developer’s codebase. 

 

1. Introduction 
 

An increasing number of interactive computer 

applications rely on force feedback to enhance user 

experience. Force feedback provides additional 

information where visual and audio effects are incapable 

to offer [1]. One type of such applications is virtual 

surgery [2, 3]. Virtual surgical simulator emulating actual 

procedures requires a real-time physics engine to 

compute the response of virtual objects timely and 

accurately, and to render the visual and force feedback 

realistically. From a developer's standpoint, the ability to 

easily couple the physics and the feedback components is 

a major consideration that affects the quality of the end 

result as well as development cycle. However, coupling 

these two components is non-trivial. For example, 

computational speed of the physics engine may not cope 

with the high refresh rate required for realistic haptic 

rendering. Accessibility to key parameters in the source 

level, e.g. critical force data, of physics engine is also 

limited. Haptic rendering with physics engine is thus a 

tricky task, hindering the software development process. 

To address these issues, a simulation platform, to be used 

for virtual surgery, is developed by using nVidia’s PhysX 

as the primary physics engine and Sensable’s Phantom 

Omni haptic devices as the 3D user interface. Methods to 

integrate the haptic devices with PhysX are discussed in 

this paper, with emphasis on minimal development work. 

 

2. PhysX 
 

PhysX is a middleware by nVidia that provides real-time 

physics simulation. It is available on multiple target 

platforms and can be hardware-accelerated when 

appropriate hardware is installed on the target machine. 

Most notable features of PhysX include collision 

detection and physics-based simulation of rigid bodies, 

cloth, soft bodies, and fluid [4]. The increasing adoption 

of PhysX by the industry and the associated reduction in 

development time make PhysX a popular choice for 

physics simulations. 

 

3. Haptic Devices and OpenHaptics 
 

To render immersive experience in virtual environments, 

intuitive 3D user interface is required to enable realistic 

manipulation of virtual objects. In the developed 

simulation platform, a pair of Phantom Omni haptic 

devices by Sensable was utilized to enable two-handed 

operations. The stylus of the device was to mimic the 

handle of surgical tool. Virtual objects were manipulated 

interactively by maneuvering the stylus. Each of these 

devices has 6 degrees of freedom in position/orientation 

input, and 3 degrees of freedom in force feedback output.  

This is the Pre-Published Version.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PolyU Institutional Repository

https://core.ac.uk/display/61019734?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 

 

The OpenHaptics API was used to interface with the 

haptic hardware. Within the API, there are two 

implementations for reading the current haptic position 

and rendering forces. The HDAPI permits direct 

communication with the hardware for position readings 

and force renderings [5]. The HLAPI provides a higher 

level of interaction with a haptic device. The HLAPI 

reuses OpenGL graphics rendering code to construct a 

scene graph of virtual objects. The haptic rendering 

engine then uses these virtual objects to automatically 

update the position and generate the feedback force 

within the scene. Although the scene graph rendering 

technique is widely used in simulations [6], HDAPI was 

used in the developed simulation platform due to its 

flexibility in producing various force effects, and its 

independence with graphics APIs (such as DirectX) 

employed for application design. 

 

4. Force Simulation Layer 
 

A problem of using PhysX with HDAPI is that the forces 

acting on an object, which are needed to compute the 

feedback force on the haptic devices, are not accessible. 

Even when forces are accessible under some conditions, 

inaccuracy in the solver produces noticeable jitter in the 

feedback force. The Force Simulation Layer (FSL) is 

proposed to avoid the above problems by calculating the 

feedback forces with the geometric data provided by 

PhysX and rendering the forces on the haptic devices via 

HDAPI. 

The architecture of the simulation software platform 

as shown in Figure 1 does not significantly differ from a 

typical PhysX application except with the addition of 

haptic devices and the implementation of the Force 

Simulation Layer between PhysX and HDAPI. The FSL 

acquires the interface position of the currently selected 

haptic device and transforms this position into the 

rendering scene coordinate. The object in the scene 

attached to a haptic interface gets updated with its new 

position. PhysX uses the new position of the object and 

advances the physics simulation of the entire scene. 

Collisions detected by PhysX are reported back to the 

FSL to compute appropriate resultant force, and to drive 

the haptic device via the HDAPI. 

 

 

 

 
 

Figure 2 is a schematic representation of the 

interactions between various components. Figure 3 

illustrates the sequence of data flow between each 

component.  Since this particular PhysX simulation runs 

at 60Hz while the haptic interface is required to run at 

1000Hz asynchronously, the FSL provides two memory 

buffers for each haptic device, one for the haptic 

interface position and the other for storing collision and 

dynamics data as depicted in Figure 4. These buffers can 

be safely accessed and modified asynchronously. The 

processing routine that computes and updates the 

feedback force runs synchronously with the haptic 

interface at 1000Hz. All haptic devices are 

synchronously updated in the same processing routine. 

 

 
 

 
 

On the haptic side, the position buffer is refreshed 

during each HDAPI update loop. The position can be 

read by calling the hdGetDoublev function with one of 

 

PhysX 

Force 

Simulation 

Layer 

 

HDAPI 

Haptic 

Position 

Feedback 

Force 

Interface Position 

in World 

Position 
Buffer 

Collisions 

Dynamics 

Buffer 

Processing 

Routine 

Collision 

Dynamics 

Figure 4. Internal structure of the Force Simulation Layer. 

 

PhysX 

 

FSL 

 

HDAPI 

Haptic Position 

Interface Position in Scene 

Collision Detection Geometry 

Simulation Completion 

Feedback Force 

Figure 3. Sequence diagram of the Force Simulation Layer. 

Application 

 

PhysX 

 

Engine 

 

 

FSL 

 

HDAPI 

 

Render 

 

Haptic 

 

Haptic 

 

Display 

Figure 1. System Architecture 

 

PhysX 

 

FSL 
 

HDAPI 

Haptic 

position 

Feedback 

force 

Position in 

world 

Collision detection 

geometry 

•Object dynamics 

Figure 2. Data flow between PhysX and HDAPI. 



3 

 

the following parameters: HD_CURRENT_POSITION 

or HD_CURRENT_TRANSFORM [7]. Similarly, a 

force can be sent to the current haptic device by calling 

the hdSetDoublev specifying HD_CURRENT_FORCE. 

On the PhysX side, collisions are intercepted by 

using the NxUserContactModify::onContactConstraint 

function. Whenever a collision is detected on an object 

that has contact modification enabled, this function will 

be called where useful geometric information about the 

collision, such as the contact point, contact normal, and 

penetration, can be extracted for force feedback 

computation. Depending on the chosen method of force 

estimation, the structure of the processing routine and the 

data received from PhysX would vary.  

 

5. Collision Response 

 
Two methods are proposed to exploit PhysX for handling 

collision response and generating feedback forces. 

 

5.1 Error-Based Collision Response 
 

Error-based collision response takes advantage of the fact 

that when a collision between a pair of objects occurred, 

collision geometry data become available to the 

application. Specifically, PhysX automatically computes 

the penetration depth e (or termed Error in PhysX), 

contact point pC, and unit contact normal n of the two 

colliding object as shown in Figure 5.  If the objects are 

considered to have a combined material stiffness k, then 

the reaction force can be found according to Hooke's 

Law: 

 

 F = ke (1) 

 

Since the penetration depth is along the unit contact 

normal: 

 

 F = nke (2) 

 

The penetration depth is updated in every PhysX 

simulation step at 60Hz; however, the haptic device 

requires a refresh rate of 1000Hz. Therefore, between 

PhysX simulation steps, a new feedback force F can be 

extrapolated by taking the current haptic position pH and 

comparing it to the haptic position in the most recent 

simulation step pS: 

 

 Pn = (pH – pS) ● n (3) 

 

 F = k[Pn + e]n (4) 

 

The above calculation approximates the feedback 

force during each haptic update.  The function 

NxUserContactModify::onContactConstraint executes in 

each PhysX simulation step as long as two objects are in 

contact with each other. Penetration depth e remains in 

the equation because pS is constant between two PhysX 

simulation updates. 

Tests were conducted by implementing the error-

based method and testing it on a virtual flat plane y = 3 

with stiffness k = 1.0 and motions along the x- and z-axis 

pC 

e 

n 

n 

P 
pC 

Figure 5. Collision geometries for the error-based (left) and the 
contact plane (right) collision response. 

Y
 P

o
s
it
io

n
 (

m
m

) 

X-axis Response 

Time 

Z-axis Response 

Time 

Y
 P

o
s
it
io

n
 (

m
m

) 

Figure 6. Motion jittering along the z and x axes when the error-based method is used. 



4 

 

of the scene. The position variations of the haptic 

interface for motions along the x- and z-axis are shown in 

Figure 6. 

An unexpected observation is that motion along the 

z-axis has a less stable output than along the x-axis. 

Comparing the above figures, the z-axis motion produces 

plenty of jitters on the haptic device. Attempts have been 

made by using other sets of haptic devices to identify the 

problem but it was suspected that PhysX has different 

solver accuracy along different axes when performing 

simulations. 

 

5.2 Contact Plane Collision Response 
 

An alternative method to compute the feedback force is 

thus constructed by using PhysX’s collision data. Instead 

of using the penetration depth, a contact plane is 

constructed from the contact point and contact normal. 

The haptic interface is then restricted to motion on one 

side of the contact plane. Any penetration through the 

plane will be resisted by a force according to the depth of 

penetration and the material stiffness. 

Refer to Figure 5, the equation of the contact plane P 

can be obtained from the contact normal n and contact 

point pC: 

 

 Ax + By + Cz = D, (5) 

 

where A, B, and C correspond to the x-, y-, and z-

component of n as given by PhysX. D can be calculated 

by substituting the contact point into the plane equation 

and solving for D. It can be created readily with PhysX’s 

plane creation routine NxPlane. 

Once the contact plane is defined, the haptic 

interface position can be tested against this plane for 

penetration during each haptic update. This is done by 

finding the distance e from the haptic position pH to the 

contact plane: 

 

 
2C2B2A

D
H

pC
H

pB
H

pA

e
zyx

++

++

=



, (6) 

 

which can be obtained by calling the NxPlane::distance 

function in PhysX. Whenever the penetration depth 

becomes negative in the direction of the contact normal, 

the feedback force is updated using Hooke's Law. Using 

the same set of test conditions as the error-based method, 

the obtained position variations are shown in Figure 7. 

The axis-dependent vibration issue discussed in the 

error-based method also exists in this case. However, 

with the avoidance of using the penetration depth 

supplied by PhysX, the overall motion achieved with the 

contact plane method becomes more stable than error-

based method. 

 

6. Indirect Force Estimation 
 

The above collision response methods are suitable for 

simulating pushing forces due to collision contacts. 

However, generation of force feedback when pulling an 

object with a haptic device requires a different approach. 

From classical mechanics, a system can be isolated with 

equal but opposite forces. By isolating the haptic 

interface from the rest of the system, the internal force 

becomes exposed as illustrated in Figure 8. 

Assuming that the haptic interface is massless, the 

reaction force would equal the pulling force in magnitude 

with an opposite direction, which can be used to provide 

force feedback to the haptic device. Unfortunately, 

PhysX does not make the reaction force available to the 

application. A simple solution to this problem is to 

estimate the force indirectly with a spring introduced 

Y
 P

o
s
it
io

n
 (

m
m

) 

Z-axis Response 

Time 

Y
 P

o
s
it
io

n
 (

m
m

) 

X-axis Response 

Time 

Figure 7. Motion jittering along the z and x axes when the contact plane method is used. 



5 

 

between the haptic interface and the rest of the system. 

By measuring the elongation of the spring, the reaction 

force can be deduced by using Hooke's Law. PhysX 

provides distance joint which can be used to link the 

haptic interface and the rest of the system while acting as 

a spring with constant stiffness k.  

During simulation, the length of the joint and the 

attached location of the joint on each object pS and pH 

are updated and available for query. The reaction force 

(and hence feedback force) F can be obtained using the 

equation below: 

 

 F = k(pS – pH). (7) 

 

 Figure 9 shows the virtual setup used for testing an 

implementation of the indirect force estimation method.  

A massive virtual plate was lifted up using the haptic 

device.  The captured feedback force rendered to the 

haptic device shows that the plate oscillated while 

approaching a steady state. 

 

7. Conclusion 
 

Two approaches to approximating the feedback force 

from collision data supplied by PhysX were illustrated. 

For both cases, inaccuracy in PhysX's solver and 

collision handling contributed to the difference in 

responses with motions along the x- and z-axis, from 

which response generated along the x-axis exhibited 

lower variation. Also, by further eliminating the variation 

in the PhysX-calculated penetration depth within the 

error-based collision response method, the contact plane 

response that restricts through-plane motions yielded a 

more stable feedback response. 

While force data is not provided by PhysX, the 

Indirect Force Estimation method showed one way of 

deducing the pulling force between the haptic interface 

and the rest of the system. A distance joint with constant 

spring stiffness was introduced between the haptic 

interface and the object being pulled to compute the 

pulling force by measuring the elongation.  

Haptic devices are often employed in demanding 

virtual reality applications, e.g. surgical simulation, 

where complex 3D interactions, accurate position data 

and force feedback are required. The proposed 

simulation platform provides a simple and direct 

technique to couple PhysX and OpenHaptics with 

minimal development time. Interactive 3D virtual 

surgical training applications will be developed on top of 

this platform in the future. 

 

System 

External force 

Reaction 
force 

Reaction 
force 

Pull force 

Rest of the 
system 

Haptic 
Interface 

System 

External force 

Pull force 

Rest of the 
system 

Haptic 
Interface 

Distance joint 

pS 

pH 

Figure 8. Indirect force estimation with a spring joining the system and the haptic interface. 

Indirect Force Estimation Response 

Time 

U
n
it
 F

o
rc

e
 

Figure 9. Lifting of a plate (left) and the corresponding feedback force computed with indirect force estimation (right).  



6 

 

Acknowledgement 

 
This project is supported in part by the Research Grants 

Council of the HKSAR (Project No. PolyU5145/05E and 

No. PolyU5147/06E) and the Hong Kong Polytechnic 

University (Block Grant, Project Code 1-ZV2U). 

 

References 
 
[1] S. Garbaya and U. Zaldivar-Colado, “The Affect of 

Contact Force Sensation on User Performance in Virtual 

Assembly Tasks,” Virtual Reality, 11:287-299, 2007. 

[2] T.P. Grantcharov et al, “Randomized Clinical Trial of 

Virtual Reality Simulation for Laparoscopic Skills 

Training,” British Journal of Surgery, 11(2): 146-150, 

2003. 

[3] C. Basdogan et al, “Haptics in Minimally Invasive 

Surgical Simulation and Training,” Haptic Rendering-

Beyond Visual Computing, IEEE Computer Society, 

March/April, pp 56-64, 2004.  

[4] PhysX SDK 2.8. NVIDIA Corporation, 2008.  

[5] OpenHaptics Toolkit Programmer’s Guide, version 2. 

Sensible Technologies, 2005. 

[6] A. Fischer, J.M. Vance, “PHANToM Haptic Device 

Implemented in a Projection Screen Virtual 

Environment,” Ninth Eurographics Workshop on Virtual 

Environments, 2003. 

[7] OpenHaptics Toolkit API Reference, version 2. Sensible 

Technologies, 2005.  

 

 

 

 

 




