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An analytical approach
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In ferroelectric materials, hysteresis behavior is very difficult to model due to its nonlinear and
history-dependent characteristics. Among approaches that are able to describe unsaturated loops,
many of them are either very complicated �numerical procedures must be employed� or the resulting
loops contain some undesirable or defective features. In this work, a simple hysteresis model based
on a special construction of the Preisach function is proposed. Explicit expressions for the
polarization-field �P-E� responses under increasing and decreasing applied fields have been derived.
The saturated and unsaturated P-E loops can be conveniently calculated by piecing together such
responses. The technique is widely applicable to the modeling of ferroelectric hysteresis behavior of
ceramics and polymers. As examples we study the applied field dependence of dielectric
permittivity of a ferroelectric film and the remanent polarization of ferroelectric composites after ac
poling. We find that the model predictions agree well with the experimental results. © 2005
American Institute of Physics. �DOI: 10.1063/1.2103417�
I. INTRODUCTION

Ferroelectrics are one of the most attractive materials
due to their vast potential in different applications. In many
applications, such as in precision machining, ferroelectric
materials are required to operate under high electric fields.
However, pronounced hysteresis behavior is evident in these
conditions. In literature, there are many attempts of modeling
ferroelectric hysteretic behavior under arbitrary fields, and
often oversimplified empirical expressions are employed.
Most approaches, despite their individual merits, are unable
to satisfactorily and completely model hysteretic behavior in
arbitrary applied fields. Miller et al. have proposed a useful
differential hysteresis model which can simulate the
polarization-field �P-E� response to deal with arbitrary ap-
plied field,1 in which minor �unsaturated� loops are modeled
by scaling the major �saturated� loop. However, the polariza-
tion is described by a differential equation without sufficient
consideration of “history”-dependent effects so that unstable
minor loops are produced.2 On the other hand, the Preisach
model,3 well known in ferromagnetics, has been employed to
study ferroelectrics,4–6 and ferroelectric composites.7 This
model is based on the assumption that a ferroelectric consists
of hysteretic units �hysterons� with a distribution of coercive
fields described by a Preisach function. A shortcoming is the
difficulty in obtaining explicit forms of the polarization �a
double integral of the Preisach function� due to the compli-
cated mathematical procedure.

Also, in characterizing the polarization behavior of a
heterogeneous ferroelectric material, the gross polarization is
mainly determined by the P-E response of the constituents,
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their volume ratio, and the structure of interconnection for
the different phases. The hysteresis of the constituents traces
minor loops when the electric field acting on the constituents
is not sufficiently large. Therefore, an explicit ferroelectric
hysteresis model capable of simulating P-E relations in arbi-
trary fields is an essential tool to study the gross polarization
response of a ferroelectric composite. On the other hand,
studies of the applied field-dependent permittivity have at-
tracted great research interest in the literature,8–10 because
ferroelectrics possessing high tunability of permittivity can
be used in tunable device applications. In modeling such
properties, one should note that the ferroelectric will also
trace minor hysteresis loops under the small ac measuring
field, which is superimposed on a dc electric field.

In this paper, we take the Preisach approach and intro-
duce a superposition of Preisach functions. We have obtained
explicit expressions of the polarization by choosing a special
Preisach function for the Preisach integral which normally is
very difficult to solve. This model is able to simulate polar-
ization responses of many different combinations of applied
fields. As examples, our hysteresis model is applied to study
the electric-field dependence of permittivity in a ferroelectric
film and the remanent polarization of ferroelectric 0-3 com-
posites. Numerical simulation of the permittivity and the
remanent polarization values is compared with the experi-
mental data for a polyvinylidene fluoride �PVDF� polymer
film,11 and the triglycine sulfate/vinylidene fluoride-
trifluoroethylene �TGS/P�VDF-TrFE�� 0-3 composites,
respectively.12 In general, the results agree well with the ex-
periments. Discussion of our results with the predictions

given by the model of Miller et al. will also be made. We
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will demonstrate that the presently proposed model is better
suited for use to study the hysteresis behavior and dielectric
tunability in ferroelectrics.

II. AN ANALYTICAL HYSTERESIS MODEL BASED
ON THE PREISACH APPROACH

A. Classical Preisach model

The Preisach model was proposed in 1935. The model,
transcribed for use in ferroelectrics, considers a material to
be a collection of square-loop hysterons having two normal-
ized spontaneous polarization states: �=−1 and �= +1, as
shown in Fig. 1�a�. Each hysteron is switched up if the ex-
ternal field E is increased to a value greater than the
switch-up field U of the hysteron, and is switched down if
the field is decreased to smaller than the switch-down field V
of the hysteron.

An isolated hysteron has a well-defined coercive field,
i.e., its P-E loop is symmetrically placed about E=0 �thus
U=−V�. Since hysterons would be subjected to interaction
fields due to other hysterons inside the material, individual
P-E hysteresis loops are shifted along the E axis. As a result,
the magnitudes of the switching fields U and V may not be
equal.

For an aggregation of hysterons, both U and V of indi-
vidual hysterons may be distributed, the latter depend on
their environment, leading to a distribution of U and V. This
distribution represents therefore the distribution of hysterons,
which characterizes a ferroelectric material, and is described
by a Preisach function P�U ,V�. This function is defined over
the Preisach plane, which is the U-V plane with U�V, as
shown in Fig. 1�b�. With this definition, all hysterons are
switched up if a sufficiently large field E is applied to the
material. Hence, the saturation polarization Ps equals the
sum of the “switch-up” state of hysterons and is given by

Ps =� �
U�V

P�U,V�dUdV = �
−�

� �
−�

U

P�U,V�dVdU . �1�

The polarization of a ferroelectric material generally is the
sum of the integral of P�U ,V� weighted by �= +1 and �=
−1 depending on the field history. It follows that the Preisach
plane is divided into two parts: S+ where each hysteron has
�= +1, and S− where each hysteron has �=−1. Mathemati-

FIG. 1. �a� A single Preisach hysteron, and �b� Preisach plane.
cally, the polarization is given by
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P�E� =� �
S+

��U,V�P�U,V�dUdV

+� �
S−

��U,V�P�U,V�dUdV

=� �
S+

P�U,V�dUdV −� �
S−

P�U,V�dUdV . �2�

In this work, the normalized Preisach function ��U ,V ;h ,��
�i.e., P�U ,V� / Ps� is assumed to be a product of distributions
of U and of V,

��U,V;h,�� =
1

2�
sech�U − h

�
�2�1

− tanh�U − h

�
�	 1

2�
sech�V + h

�
�2

��1 − tanh�V + h

�
�	 , �3�

where � describes the dispersion of the distributions of U and
of V. h is related to the maximum position of these distribu-
tions. Note that the expression for polarization depends on
the history of the field applied onto the material. The advan-
tage in choosing this function is that it can provide explicit
forms for arbitrary polarization reversal curves, the virgin
curve �from P=0�, and major loop of a ferroelectric. Accord-
ing to Eq. �2�, the polarization on the ascending major curve
can be written as

Psat
+ �E;h,�� = − Ps + 2Ps�

−�

E �
−�

U

��U,V;h,��dVdU , �4�

and the polarization on the descending major curve as

Psat
− �E;h,�� = Ps − 2Ps�

E

� �
V

�

��U,V;h,��dUdV

= − Psat
+ �− E;h,�� . �5�

The closed form expression obtained by putting Eq. �3� into
Eq. �4� is shown as Eq. �A1� in Appendix A. Now consider a
virgin material on which a field E is applied. Since it starts
from a state of zero polarization, we assume its initial state is
well represented by the configuration shown in Fig. 2�a� on
the Preisach plane, in which half of the hysterons are “up”
and half are “down.” Figures 2�b� and 2�c� show the corre-

FIG. 2. �a� The status of the Preisach plane for a virgin material. The
corresponding status of the Preisach plane for a virgin material after apply-
ing �b� an increasing field E and �c� a decreasing field E. The gray and white
regions in the U-V plane denote regions in which �=−1 and �= +1,
respectively.
sponding status of the Preisach plane after applying E. If the
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applied field E is positive, then the polarization �on the virgin
curve� is �see Fig. 2�b��

P0
+�E;h,�� = 2Ps�

0

E �
−U

U

��U,V;h,��dVdU . �6�

If the applied field E is negative, then the polarization �on the
virgin curve� is �see Fig. 2�c��

P0
−�E;h,�� = 2Ps�

0

E �
V

−V

��U,V;h,��dUdV

= − P0
+�− E;h,�� . �7�

Assume that E0 and E1 are two successive extrema in the
field history and E0�E1. If now the applied field E increases
from E0 to E such that E0�E�E1, then the change in the
polarization is

�P+�E,E0;h,�� = 2Ps�
E0

E �
E0

U

��U,V;h,��dVdU . �8�

The closed form expressions obtained by putting Eq. �3� into
Eqs. �6� and �8� are shown as Eqs. �A3� and �A4� in Appen-
dix A. Now assume that E0 and E1 are two successive ex-
trema in the field history and E0	E1. If the applied field E
decreases from E0 to E such that E0�E	E1, then the
change in the polarization is

�P−�E,E0;h,�� = − 2Ps�
E

E0 �
V

E0

��U,V;h,��dUdV

= − �P+�− E,− E0;h,�� . �9�

Using Eqs. �4�–�9�, the polarization of a ferroelectric for ar-
bitrary field history can be calculated.

B. Superposition Preisach model

In the previous section, we see that an explicit form for
the polarization of a ferroelectric under arbitrary field history
can be obtained if the Preisach function of the material has
the form of Eq. �3�, which is a hyperbolic secant type �sech
type� of distribution. It provides a convenient way to study
the hysteretic behavior of the polarization of ferroelectrics.
Experimental loops may also be modeled by other Preisach
functions. For example, a Gaussian-Gaussian distribution has
been employed to describe the hysteresis loops of TGS and
P�VDF-TrFE� in a previous article.7 The Preisach function of
a lead zirconate titantate is described well by an exponential-
exponential distribution.13 Explicit expressions for the polar-
ization are difficult to obtain for these distributions. Now to
make use of Eq. �3� to describe a wider class of ferroelec-
trics, we propose to construct Preisach functions by summing

a sequence of sech-type Preisach functions. Equivalently, a
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polarization major loop is approximated by the sum of a
sequence of polarization major loops with sech-type Preisach
functions.

Consider the experimental ascending polarization major
curve Pexp

+ �E� of a ferroelectric with spontaneous polariza-
tion Ps and coercive field Ec. Let �i�U ,V ;h ,�i� be a normal-
ized sech-type Preisach function in the form of Eq. �3� with
parameters h and �i, and Psat

+ �E ;h ,�i� be the ascending major
curve calculated from Eq. �4�. We assume that Pexp

+ �E� is
approximated in the form of a sum of Psat

+ �E ;h ,�i� with
weight factor ki �see Fig. 3�,

Pexp
+ �E� = 


i=1

n

kiPsat
+ �E,h��i�,�i� . �10�

h��� = � ln�1−2 cosh2�−Ec /��+10 cosh�−Ec /���cosh2�−Ec /��−1
�which make the maximum of the derivative of Psat

+ �E ;h ,��
occur at Ec�. n, ki, and �i are chosen by fitting the experi-
mental curve. Since the sech-type Preisach function �Eq. �3��
gives explicit expressions for arbitrary polarization reversal
curves and the virgin curve, the simulated polarization curve
under arbitrary field history and the simulated virgin curve
for the ferroelectric can be expressed in analytical formulas.
Moreover, this superposition method retains the properties of
the classical Preisach model, e.g., the deletion property and
congruency property.14

III. APPLICATIONS

A. Applied field dependence of dielectricity in PVDF

In this section, our model is applied to simulate the ap-
plied field dependence of dielectric permittivity in uniaxially
drawn PVDF film measured by the methodology elaborated
below. The dielectric constant of the film is also calculated
by using an alternative definition of permittivity �i.e., the
derivative of electric displacement with respect to the electric
field� for comparison.

1. Methodology for measurement of dielectricity
in PVDF

To investigate the linear dielectricity of ferroelectric
polymers, Furukawa et al. proposed to use a double-
frequency signal, in which a low field with high frequency
was superimposed on a high field with low frequency, to
measure the linear dielectric constant of ferroelectric
polymer.11 Mathematically, the applied field signal is

E = E0 cos 
t + En cos n
t , �11�

where 
=2�f . Here the first term is the high field with low
frequency, and the second term is the low field with high
frequency. In the experiment of Furukawa et al.11 they set

−1

FIG. 3. An example of experimental
hysteresis loop �i.e., Pexp

± �E�� is writ-
ten as the sum of two Preisach-
type hysteresis loops �i.e.,
Psat

± �E ,h��i� ,�i�
.
E0=200 V �m , f =0.8 Hz, n=128, En=E0 /10, and N
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=512. N is the number of sampled data in the experiment for
1.25 s and m is defined as N /n=4. Then, averaging succes-
sive m data points in electric displacement D to get

D0�J� = 

K=1

m

D�mJ + K�/m, J = 1,…,N/m , �12�

which is the linear component of D. The n
 component �or
nonlinear component� of D is obtained by using the Fourier
technique. The corresponding Fourier coefficients are

Dn� =
2

m


K=1

m

�D�mJ + K� − K�D�J��cos�2�K/m� , �13�

and

Dn� =
2

m


K=1

m

�D�mJ + K� − K�D�J��sin�2�K/m� , �14�

where �D�J�= �D0�J+1�−D0�J−1�� /2m. Thus, the n
 com-
ponent is given by

Dn�J� = �Dn��J�2 + Dn��J�2. �15�

E0�J� and En�J� of E�J� are obtained by using a similar pro-
cedure as for D. Then, the linear permittivity � of the mate-
rial is defined as

��J� = Dn�J�/En�J� . �16�

2. Comparison with the experimental dielectric
permittivity of PVDF

We apply our model to investigate the dielectric permit-
tivity measured under a bias field in uniaxially drawn PVDF
film as commonly done in “dielectric tunability” studies. The
applied electric field is traced by a schedule described by Eq.
�11� and the electric displacement D of the sample is calcu-
lated by �r�0E+ P, where P is simulated by our superposition
Preisach model. Then the D-E curve for each measurement
in the experiment is Fourier analyzed �Sec. III A 1�. The
first-order in-phase components of the Fourier coefficients
�i.e., linear permittivity� obtained are compared with the ex-
perimental data reported in Ref. 11. Table I shows all
adopted values for the properties of the ferroelectric copoly-
mer sample.11 The Preisach parameters for the sample fitted
from the steady-state major hysteresis loop are also shown in
Table I. The D-E �here D�D0�J� and E�E0�J�� for the
PVDF major loop simulated using these parameters is com-
pared with the experimental major loop in Fig. 4.11,18 We see
that the parameters are chosen such that all the experimental
loops lie inside the simulated loop because we assume that

1

TABLE I. The dielectric and ferroelectric properties, and the Preisach pa-
rameters ki and �i of the PVDF sample used in Figs. 4 and 5.

�r

Ps

�mC cm−2�
Ec

�V �m−1� k1

�1

�V �m−1� k2

�2

�V �m−1�

9 80 75a 0.25 40 0.75 90

aReference 11.
minor loops are all within the interior of the major loop.
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Figure 5�a� shows the simulated permittivity following the
methodology in Sec. III A 1. Also included is the experimen-
tal permittivity.11 We see that almost all features of the ex-
perimental curve can be reproduced.

In Fig. 5�b�, we show an “alternative” calculation. An
electric field E=E0 cos�2�ft� is applied to the copolymer
sample with frequency f =0.8 Hz and magnitude E0

=200 V �m−1. The simulated dielectric constant is obtained
by using an alternative definition of permittivity �i.e., the
derivative of D with respect to the electric field E, commonly
adopted by many authors�. It is seen that this simulated curve
cannot reproduce the experimental magnitudes. We can con-
clude that the experimental permittivity is not equal to the
widely accepted “theoretical permittivity.”

FIG. 4. D-E loop of a uniaxially drawn PVDF at 20 °C. The simulation
result �dashed lines� based on the superposition Preisach model is compared
with the experimental results in Ref. 11 �solid lines�.

FIG. 5. The simulated electric-field dependence of permittivity of PVDF
�diamond symbols� is compared with the experimental data in Ref. 11 �tri-
angular symbols�. �a� Results calculated by using the measuring method in
Sec. III A. �b� Results calculated based on the definition of permittivity �

�dD /dE.
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B. Prediction of remanent polarization
in TGS/P„VDF-TrFE… 0-3 composite

In this section, our model and the Miller model are sepa-
rately applied to simulate the P-E responses in the constitu-
ent material within TGS/P�VDF-TrFE� 0-3 composites sub-
jected to poling by a full cycle of an ac field.12 The simulated
remanent polarization values with different TGS content are
compared with the experimental results. In this work, we
only focus on composites with low TGS content.

We consider a composite comprising a dilute dispersion
of spherical particles of permittivity �i and polarization Pi in
a matrix of permittivity �m and polarization Pm. The local
electric fields Ei and Em acting on the inclusion and matrix
phases may be written as �see Appendix B�

Ei =
3�mE + �1 − 
��Pm − Pi�


 3�m + �1 − 
���i + 2�m�
, �17�

and

Em =
E − 
 Ei

1 − 

, �18�

given the external electric field E, which, for the present
purpose, is a sinusoidal field. In Eq. �17�, 
 is the volume
fraction of the inclusion phase. A hysteresis model should be
adopted for the P-E relations of the constituent phases. Then
the electric displacement of the composite can be calculated
from

TABLE II. The dielectric and ferroelectric propertie
and P�VDF-TrFE� used in Figs. 6–8.

�r

Ps

��C cm−2�
Pr

��C cm−2�
E

�V �

TGS 31.15a 3.33b 3.28b 0.0
P�VDF-TrFE� 12.45c 6.9b 6.5b 57.6

aThe dielectric constant of TGS powder is calculat
−1/�r= ��a−1� / �2�r+�a�+ ��b−1� / �2�r+�b�+ ��c−1�
21�, and �c=11.3 �see Ref. 20�.
bReference 12.
c

FIG. 6. The remanent polarization Pr of the TGS / P�VDF-TrFE� composite
with different values of the volume fraction 
 of TGS. The simulation
results based on the present model �dashed lines� and the Miller model
�dashed-dotted lines� are compared with the experimental results in Ref. 12
�open symbols�.
Reference 18.
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D = 
Di + �1 − 
�Dm, �19�

where Di=�iEi+ Pi and Dm=�mEm+ Pm.
Since our superposition Preisach model can provide an

analytic form for arbitrary Pi-Ei and Pm-Em relations �see
Eqs. �4�–�9��, the local electric fields Ei and Em can be solved
by using Eqs. �17� and �18�. However, the Miller model is a
differential hysteresis model,1 thus a system of differential
equations must be tackled for the simulation of polarization
under an applied field history.

In Ref. 12, the 0-3 composites of TGS/�P�VDF-TrFE� in
the composition 70/30 mol %� with small volume fractions
of TGS are “polarized” by applying a few cycles of a
100 V �m−1 sinusoidal field of 10 Hz at room temperature.
The remanent polarization Pr of the 0-3 composites obtained
from the measured hysteresis loop is shown in Fig. 6. It
shows that the remanent polarization Pr decreases with vol-
ume fraction 
.

The dielectric and ferroelectric properties as well as the
Preisach parameters �ki and �i� adopted in this simulation for

ell as the Preisach parameters ki and �i of the TGS

k1

�1

�V �m−1� k2

�2

�V �m−1� k3

�3

�V �m−1�

0.55 0.013 0.45 0.037 ¯ ¯

0.65 10 0.2 40 0.15 50

om the modified Bruggeman formula, �Ref. 19� 1
+�c�, with �a=12.8 �see Ref. 20�, �b=130 �see Ref.

FIG. 7. P-E loop of �a� TGS and �b� P�VDF-TrFE� at room temperature.
The simulation results based on the present model �dashed lines� and the
Miller model �dashed-dotted lines� are compared with the experimental re-
sults in Ref. 12 �solid lines�.
s as w

c

m−1�

29b

b

ed fr
/ �2�r
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TGS and P�VDF-TrFE� are given in Table II. Using both our
model and the Miller model, the simulated D-E major loops
of TGS and P�VDF-TrFE� are calculated and Fig. 7 shows
their comparison with the experimental data. It shows that
our model results give a better fit with the shape of the ex-
perimental loops than the Miller model does. The Pr values
obtained from the simulated loops of TGS/P�VDF-TrFE�
composites are compared with the experimental results in
Fig. 6.12 Our model predictions agree better with the experi-
mental results.

In the following, we choose the case of 
=0.05 as an
example to demonstrate the relative merits of our model. The
D-E behavior calculated for each constituent material in the
ac poling is shown in Fig. 8. In both models, the TGS can be
fully polarized under the adopted poling field. For P�VDF-
TrFE�, the local field Em in our model is sufficiently large for
a complete polarization, but in the Miller model Em is not
sufficient and only a minor loop is traced during the process
�see Fig. 8�b��. According to the experiment, a fully polar-
ized matrix phase can be obtained when Em�100 V/�m
�see Fig. 7�b��. Since Em goes up to roughly ±100 V/�m in
both models �see Fig. 8�b��, the calculated remanent polar-
ization Prm of the matrix should be very close to 6.5 �C/cm2

�see Table II�. This can be reproduced by our model. How-
ever, the prediction given by the Miller model is only
5.5 �C/cm2, which is significantly lesser than the “true
value.” This is due to the fact that the major loop described

by the Miller model is difficult to fit well with the experi-

loaded 01 Apr 2011 to 158.132.161.9. Redistribution subject to AIP lic
mental loop of the copolymer, and large discrepancy between
their shapes is noted �see Fig. 7�b��. According to the calcu-
lation with the Miller model, an electric field of Em

�150 V/�m is required to get Prm�6.5 �C/cm2. As a re-
sult, for all volume fractions under investigation, the rema-
nent polarization values after the poling obtained by the
Miller model are significantly lower than the experimental
results �see Fig. 6�. This shows that an accurate description
of the shape of the major loop is important in the studies of
polarization.

IV. DISCUSSION

Recall that minor loops in the Miller model are calcu-
lated by scaling the major loop.1 Although the structure of
the Miller model is simple, the simulated minor loops show
strong unstable phenomena,2 probably due to an insufficient
consideration of history-dependent effects. To show this
shortcoming, we consider a polarizing process for a ferro-
electric polymer shown in Fig. 9�a�. The parameters of the
Miller model, including the coercive field, remanent polar-
ization, and spontaneous polarization, are chosen as shown
in Table III. We first assume that the material is subjected to
an initial field of −300 V �m−1, and its initial polarization is
negatively saturated. Then, a cyclic field with small magni-
tude, shown in Fig. 9�a�, is applied to the material and the
calculated P-E curve is shown in Fig. 9�b�. It is obvious that

FIG. 8. The solid lines denote the simulated D-E his-
tory in the constituent material and TGS/P�VDF-TrFE�
composite during poling of the composite. The dotted
lines denote the simulated major loops, respectively, of
the constituent material. �a� The present model and �b�
the Miller model.
the P-E curve cannot form a closed hysteresis loop and
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“moves” upward. This instability property has yet to find
experimental support and is likely unrealistic. In Fig. 9�c�,
the Preisach parameters �see Table III� are chosen such that
the major loop of our model can fit well with the shape of the
corresponding Miller loop. Our calculated P-E curve under
the same schedule of applied field �Fig. 9�a�� is shown in Fig.
9�c�. It is seen that this P-E curve does not “drift” and forms
a closed minor loop. Actually, the formation of closed P-E
loops is commonly observed.2,15–17

The Miller model only has three parameters: coercive
field Ec, remanent polarization Pr, and spontaneous polariza-
tion Ps. However, different kinds of ferroelectrics may have

TABLE III. The ferroelectric properties as well as
Fig. 9.

Ps

�mC cm−2�
Pr

�mC cm−2�
Ec

�V �m−1� k1

�1

�V �m−

80 60 75 0.2 40

FIG. 9. �a� A field history is applied to a ferroelectric polymer in a poling
process. Simulated hysteresis loops using �b� the Miller model, and �c� the
present model. The solid and dashed lines denote the P-E history during the
poling process and the major loop of the polymer, respectively.
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different hysteresis loop shapes even though they have the
same values of Ec, Pr, and Ps. Our superposition Preisach
model can provide a greater freedom to describe the hyster-
esis loop of ferroelectrics �Sec. II B�. This is important when
applying the hysteresis model to other studies such as that
demonstrated in Sec. III B, which shows the shape of the
major hysteresis loop significantly affecting the prediction of
effective polarization in composites.

V. CONCLUSIONS

In conclusion, the use of the Preisach function in the
form of Eq. �3� together with the superposition method in-
troduced in Sec. II B allows us to obtain explicit expressions
for arbitrary polarization reversal curves, the virgin curve,
and major loop of ferroelectrics. Using this technique, it is
convenient to simulate the experimental ascending and de-
scending polarization profiles of the major loop of a ferro-
electric. The simulated polarization curve under arbitrary
field history can also be expressed in analytical formulas.
This model also retains the characteristic properties of the
Preisach model, e.g., deletion property, congruency property,
and stable hysteresis loops �Sec. IV�.

The model is useful for the investigation of the electric
field dependence of the dielectric permittivity and the rema-
nent polarization of 0-3 composites. For the case of dielectric
permittivity, we find that the dielectric permittivity obtained
experimentally cannot be simply taken as dD /dE on the ma-
jor hysteresis loop. In other words, consideration of the un-
saturated loops is essential to model the measured permittiv-
ity. For the case of 0-3 composites, our simulation gives
more realistic Pr values. We find that an accurate expression
for the shape of the major loop of constituent materials in a
composite is quite important. It seems that our model shows
some advantages in studies involving ferroelectric hysteresis
over the Miller model.
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APPENDIX A

The polarization of the ascending major curve is

Psat
+ �E;h,�� = − Ps + 2Ps�

−�

E �
−�

U

��U,V;h,��dVdU

=
Psf

8
�2 coth�2h

�
��4 csch2�2h

�
�ln� cosh��E − h�/��

cosh��E + h�/��� + sech2�E − h

�
�	 + 4 coth3�2h

�
�tanh�E − h

�
�

+ csch2�2h

�
���2 + 4 cosh�4h

�
��csch2�2h

�
�ln� cosh��E − h�/��

cosh��E + h�/��� + cosh�4h

�
�sech2�E − h

�
� + 2�sech�2h

�
�

+ csch�2h

�
��sech�E + h

�
�sinh�E − h

�
� + 2�2 + cosh�4h

�
��tanh�E − h

�
�	� , �A1�

where

f =
− 8 exp�− 4h/��� sinh4�2h/��

8h − 2� + 2�2h + ��cosh�4h/�� − �4h + 3��sinh�4h/��
�A2�

denote the normalized factor. The polarization of the virgin curve is

P0
+�E;h,�� = 2Ps�

0

E �
−U

U

��U,V;h,��dVdU

=
Psf

16
�64e�8h�/��1 + 2e�4h�/���1 − e�4h�/��−4ln� cosh��E − h�/��

cosh��E + h�/��� + sech2�E − h

�
��2 coth�2h

�
��2 + coth�2h

�
��

− 6 + sech2�E − h

�
� + 4 tanh�E − h

�
�	 + csch3�2h

�
��2�3 cosh�2h

�
� + cosh�6h

�
� + 6 sinh�2h

�
��tanh�E − h

�
�

+ 4 sech�E + h

�
�sinh�E − h

�
��1 + tanh�2h

�
��	� . �A3�

If the applied field E increases from E0 to E0�E�E1, then the change in the polarization is

�P+�E,E0;h,�� = 2Ps�
E0

E �
E0

U

��U,V;h,��dVdU =
Psf

32
csch2�2h

�
��8�1 + 4 coth�2h

�
�

+ 3 coth2�2h

�
��ln� cosh��E − h�/��cosh��E0 − h�/��

cosh��E + h�/��cosh��E0 + h�/��� + 16e�2h�/� csch�4h

�
��sech�E + h

�
�sinh�E − h

�
�

+ sech�E0 + h

�
�sinh�E0 − h

�
�	 − 4 cosh�− E0 + h

�
��sech�E − h

�
�sech2�E0 + h

�
�

+
4

�cosh��2E0�/�� + cosh��2h�/���2	 � �cosh�E0 + 3h

�
� + 2 cosh�E0 + h

�
�sinh�2h

�
�	

+ csch�2h

�
�sech2�E0 + h

�
��tanh�E − h

�
� − tanh�E0 − h

�
���e�2E0−4h�/� + e−�2E0−2h�/� − 3e�2E0�/� + 6e�2h�/�

+ 2e�6h�/� + 3e−�2E0�/� + 6e�2E0+4h�/��� . �A4�
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APPENDIX B
We first write the electric displacement D for the ferro-

electric constituent materials in the composite as

Di = �iEi + Pi,

�B1�
Dm = �mEm + Pm,

where P is the polarization, � denotes the permittivity, and E
is the electric field. Subscripts i and m denote “inclusion”
and “matrix,” respectively.

Consider the single inclusion problem of a ferroelectric
sphere surrounded by a ferroelectric matrix medium with a
uniform electric field applied along the z direction far away
from the inclusion. The boundary value problem gives the
following equations:22

Di + 2�m�Ei − Em� = Dm. �B2�

In Eq. �B2�, we have assumed both constituent materials
are uniformly polarized.

For a composite comprising a dilute suspension of
spherical particles uniformly distributed in the matrix mate-
rial, the electric fields satisfy

E = 
Ei + �1 − 
�Em, �B3�

where 
 is the volume fraction of the inclusion phase. We
obtain from Eqs. �B1�–�B3�,

Ei =
3�mE + �1 − 
��Pm − Pi� . �B4�


3�m + �1 − 
���i + 2�m�
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