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0-3 composite ranging between 0 and 3, of ferroelectric ceramic lead zirconate titanate(PZT) and
thermoplastic elastomer polyurethane(PU) were fabricated. The pyroelectric and dielectric
properties of the hot-pressed thin film samples of various PZT volume fractions were measured. The
experimental dielectric permittivities and losses agreed reasonably well with the Bruggeman model.
The room temperature pyroelectric coefficients of the composites were found to increase linearly
with PZT volume fraction and substantially larger than expected. For example, for a composite with
30% PZT, its pyroelectric coefficient is about 90mC/m2K at room temperature, which is more than
tenfold of a PZT/PVDF composite of the same ceramic volume fraction. We propose a model in
which the electrical conductivity of the composite system is taken into consideration to explain the
linear relationship and the extraordinarily large pyroelectric coefficients obtained. ©2004 American
Institute of Physics. [DOI: 10.1063/1.1787586]

I. INTRODUCTION

Composites of polymers blended with ferroelectric ce-
ramics have been well studied and widely applied in various
areas.1–5 Despite the complicated behavior of such compos-
ites in the high electric field regime, their properties under
low electric field can be to a certain extent correctly pre-
dicted theoretically. Composites made by blending elas-
tomers of high compliance with ferroelectric ceramics, which
have yet to be investigated more extensively, may provide
applications that have not been achieved with the conven-
tional ferroelectric ceramic-polymer composites. As illus-
trated in the present study, the blending of lead zirconate
titanate(PZT) with the thermoplastic elastomer polyurethane
(PU) is such a combination which possesses very high pyro-
electric activity.

PZT is a well studied ferroelectric ceramic material. Due
to its high piezoelectric coefficient and high Curie tempera-
ture, PZT have been widely used for transducer applications.
Also, the relatively high pyroelectric coefficient of PZT
makes it also suitable for pyroelectric sensor applications.
However, the response voltage of a pyroelectric material is
directly proportional to its pyroelectric coefficient and in-
versely proportional to its permittivity. Although PZT has a
large pyroelectric coefficient, its permittivity is large as well,
thus giving a relatively low figure of merit(the ratio of the
pyroelectric coefficient to the permittivity). Therefore, com-
position with a low permittivity material would be one of the
solutions to enhance the pyroelectric voltage output of PZT.
Some studies6,7 have already shown that composites of PZT
ceramics and polymers, including polyurethane synthesized
in laboratory,8 do reveal good pyroelectric sensitivity with
low permittivity. In the present study a commercial thermo-
plastic elastomer PU is adopted as the polymer matrix. It is

nonpiezoelectric and would not generate piezoelectric noise
due to vibration from the environment; the pliable property
of the elastomer also provides a cushion effect, which is able
to suppress the vibration of the PZT particles in the compos-
ite. This vibration noise has been a nuisance in most piezo-
electric ceramic for pyroelectric sensor applications. In this
regard, ferroelectric ceramic-elastomer composites will be an
alternative selection, which provides pyroelectric capability
of relatively high signal to noise ratio.

II. EXPERIMENT

A. Sample preparation

Thermoplastic PU pellets from Dow Chemical(Dow
2103-80AE) were oven-dried at 50 °C for 12 h before pro-
cessing. A measured amount of the processed PZT powder
(Navy Type II 502) was premixed with the dried PU pellets
in a grinder, and the mixture was blended in a single screw
extruder (Rancastle RCP0250) equipped with a 1/4 in.
screw and a 1340 mm strip die. PZT/PU composites were
extruded as a long rectangular sheet. The composite sheet
was then cut and refilled into the single screw extruder again
for a second extrusion for homogenizing. Finally, PZT/PU
composite pellets with 2%, 5%, 13%, 18%, 26%, and 30% in
volume of PZT were obtained. Thin film samples of thick-
ness about 100µm were fabricated by hot press. Circular
gold electrodes of 6 mm diameter were coated on both sides
of the films by sputtering.

B. Measurements

The pure PU and PZT/PU composite films were poled in
silicone oil for 1 h under an applied electric field of
20 MV/m at room temperature. The poled samples were
then put into an oven and kept at 60 °C for at least 10 h
under short circuit condition to remove any trapped charges.
The relative permittivities and dielectric losses of the dried
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samples were measured by an HP 4194A impedance analyzer
at room temperature at a frequency of 1 kHz. The results
were taken from the average of four samples.

In order to increase the measurement accuracy and sup-
press the space charge interference in the pyroelectric cur-
rent, an ac method was used to determine the pyroelectric
coefficients of the samples. The schematic diagram of the
measurement setup is shown in Fig. 1. A sinusoidal voltage
Uac at a frequencyf of 5 mHz from the lock-in amplifier
superimposed on a dc voltageUo was employed to drive the
Peltier thermoelectric element via a proportional-integral-
differential (PID) temperature controller. The sample film
was in contact with the Peltier element and experienced a
sinusoidally modulated temperatureTstd=To+TD sinsvtd,
where v=2pf, with amplitudeTD=1 K at temperatureTo

=298 K. The pyroelectric current generatedJstd was mea-
sured by an electrometer and the current component 90° out
of phase with respect to the temperature modulation(i.e., in
phase with the temporal derivativedTstd /dtd was measured
by the lock-in amplifier. The pyroelectric coefficientp can
then be obtained from the following equation:

Jstd = − pTDv cossvtd. s1d

III. RESULTS AND DISCUSSION

The relative permittivities and dielectric losses of pure
PU and PZT/PU composites with PZT volume fractionf
ranging from 0.02 to 0.3 are shown in Figs. 2 and 3, respec-
tively. The samples exhibit an increase in both relative per-

mittivity and dielectric loss with PZT volume fraction. The
nonlinear relationship is well described by the Bruggeman
formula9 shown below:

«i − «c

«i − «m
= s1 − fdS «c

«m
D1/3

, s2d

where «i , «m, and «c are the dielectric permittivity of the
particle inclusion, matrix, and composite, respectively, andf
is the volume fraction of the inclusions in the composite.
Applying the permittivities of PU«m=7.7«o and of PZT«i

=1800«o, («o is the permittivity in vacuum) the relative per-
mittivities of the composites at room temperature for various
PZT contents are calculated and shown as the solid curve in
Fig. 2. The good agreement between the theoretical curve
and the experimental values indicates that the composites
have a good 0–3 connectivity and homogeneity. Similarly, by
substituting the complex form of dielectric permittivity with
«m9 =0.25 and«i9=0.28 into Eq.(2) and taking the first order
approximation in«m9 and«i9, the fitting line of the dielectric
loss of the composites can be obtained and are shown as the
solid curve in Fig. 3.

The pyroelectric properties of the composites are experi-
mentally and also theoretically investigated. As mentioned in
the previous section, pyroelectric coefficients of the compos-
ites were determined by the ac method at room temperature.
The results of the pure PU and PZT/PU composites are
shown in Fig. 4. The open- and solid-circles are data for the
unpoled samples and poled samples, respectively. It is obvi-
ous that those unpoled are not pyroelectric active, whereas
the poled samples exhibit significantly large pyroelectric co-

FIG. 1. Schematic diagram of the dynamic pyroelectric measurement setup.

FIG. 2. Relative permittivities of PZT/PU composites as a function off at
room temperature.

FIG. 3. Dielectric losses of PZT/PU composites as a function off at room
temperature.

FIG. 4. Pyroelectric coefficients of pure PU and PZT/PU composites at
room temperature. The open circles and the solid circles refer to the experi-
mental results of the samples before and after poling, respectively. The
dotted line refers to the theoretical calculations that neglect conductivities.
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efficients. As a matter of fact, they are almost linearly pro-
portional to the PZT contents and reach about 90mC/m2K
whenf=0.3. This is more than tenfold larger than the pyro-
electric coefficients of PZT/PVDF and PZT/P(VDF-TrFE)
composites of the same PZT volume fraction measured at
room temperature.11 This result is quite unexpected. Com-
pared with a composite of lead titanate(PT)/P(VDF-TrFE)
with 27% PT as reported in Ref. 11, the room temperature
pyroelectric coefficient of this system was just about
40 mC/m2K even though both ferroelectric phases were
properly polarized.

Several models had been developed to calculate the ef-
fective pyroelectric coefficientsp of 0–3 composites with
non pyroelectric matrices.10–12 A common one is described
by the following equation:12

p = fBEpi , s3d

where

BE =
3«m

s2 + fd«m + s1 − fd«i
. s4d

In Eqs.(3) and(4), f , pi, and«i are the volume fraction,
the pyroelectric coefficient, and the dielectric permittivity of
the inclusion material, respectively, and«m is the dielectric
permittivity of the matrix. The expression forBE is derivable
from the Maxwell-Wagner approach for smallf. Putting
«m=7.7«o, «i =1800«o, and pi =330mC/m2K into Eqs. (3)
and(4), the pyroelectric coefficients of the PZT/PU compos-
ites of variousf’s can be obtained. The results are shown as
the dotted line in Fig. 4. It is obvious that the calculated
values are far smaller than the experimental values. We con-
sider that the discrepancy arises from the fact that the model
assumes negligible electrical conductivities both for inclu-
sion and matrix. However, this may not be the case for our
PZT/PU composites. Thus a model for composites of consid-
erable conductivity is discussed below.

Consider a composite with a dilute dispersion of particle
inclusions in a continuous matrix. The average electric field
E and displacementD in the composite can be written as
follows:12,13

E = fEi + s1 − fdEm, s5d

D = fDi + s1 − fdDm, s6d

where the subscriptsi and m denote inclusion and matrix,
respectively. The relations of displacementD and polariza-
tion P of the inclusion and matrix14 are

Di = Pi + «iEi , s7d

Dm = Pm + «mEm, s8d

Putting Eqs.(7), (8), andPm=0 (for a nonpyroelectric matrix
such as PU) into Eq. (6), the electric displacement and its
time derivative can be written, respectively, as

D = fs«iEi + Pid + s1 − fd«mEm, s9d

and

] D

] t
= fS«i

] Ei

] t
+

] Pi

] t
D + s1 − fd«m

] Em

] t
. s10d

According to Wong, Poon, and Shin,15 for a dilute dis-
persion of spherical inclusions of permittivity«i and electri-
cal conductivitysi in a matrix of permittivity«m and electri-
cal conductivitysm with an electric fieldE applied along the
thickness direction, the following equations can be obtained:

] Ei

] t
+

Ei

t
=

3SsmE + «m
] E

] t
D − s1 − fd

] Pi

] t

f3«m + s1 − fds«i + 2«md
, s11d

where

t =
f3«m + s1 − fds«i + 2«md
f3sm + s1 − fdssi + 2smd

, s12d

In the pyroelectric current measurement, the sample is
connected in short circuit condition; as a result the electric
field E=0. Equation(11) can be simplified to

] Ei

] t
+

Ei

t
+

s1 − fd
] Pi

] t

f3«m + s1 − fds«i + 2«md
= 0 s13d

and Eq.(5) becomes

Ei =
− s1 − fd

f
Em. s14d

SubstitutingEi into Eq. (13) gives

] Em

] t
+

Em

t
−

f
] Pi

] t

f3«m + s1 − fds«i + 2«md
= 0. s15d

As shown in the preceding paragraph, the pyroelectric
current was measured by an ac method. Therefore, the time
derivative of polarization equals]Pi /]t=−pivTD cosvt for a
sinusoidalTD=sin vt variation in temperature.Ei and Em

must also be sinusoidal at steady state, so that the first order
differential Eqs.(13) and (15) can be solved with the solu-
tions

Ei =
s1 − fdpiTD

f3«m + s1 − fds«i + 2«md
vt

1 + v2t2scosvt

+ vt sinvtd, s16d

Em = −
fpiTD

f3«m + s1 − fds«i + 2«md
vt

1 + v2t2scosvt

+ vt sinvtd. s17d

On the other hand, the current densityJ is the sum of the
conduction current densityj and the displacement current
]D /]t. The conduction current can be expressed in terms of
E as

j = s1 − fdsmEm + fsiEi , s18d

therefore,
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J = s1 − fdsmEm + fsiEi +
] D

] t
. s19d

Substituting Eqs.(16) and (17) into Eq. (19) and collecting
the terms in cossvtd, we obtain

Jcos= − vTD cossvtdfpi

3F1 −
s1 − fd

3f«m + s1 − fds«i + 2«md
FG , s20d

where

F =
v2t2

1 + v2t2s«i − «md +
t

1 + v2t2ssi − smd, s21d

Jcos is the cosine component of the current densityJstd from
which p is obtained[see Eq.(1)]. As a result, the pyroelectric
coefficient is

p = fpiF1 −
s1 − fd

3f«m + s1 − fds«i + 2«md
FG . s22d

If the conductivities of the inclusions and matrix are
small, for example, of the order of 10−12 V−1 m−1, thent is
large andF approximately equalss«i −«md, so that Eq.(22)
reduces to Eq.(3). However, in the present study, the elec-
trical conductivity sm of the PU sample was found to be
2.3310−10 V−1 m−1. Substituting this value and the conduc-
tivity of PZT sis5310−12 V−1 m−1; Ref. 16) into Eq. (22),
the pyroelectric coefficients of PZT/PU composites as a
function of PZT volume fraction can be obtained. The results
are shown as the solid line in Fig. 5. It is evident that a very
good agreement between the experimental and the theoretical
values is obtained. This result on the one hand explains the
origin of the large pyroelectric coefficient of the PZT/PU

system and on the other hand it implies that a considerably
large electrical conductivity of the composite could enhance
its pyroelectric property.

IV. CONCLUSIONS

PZT/PU composites of PZT content up to 30% were
fabricated. The dielectric permittivities and losses of the
samples were found to increase as the PZT content increased.
The results can be well fitted by the Bruggeman model. It
indicates that the PZT particles are well dispersed within the
composites. The pyroelectric coefficients of the samples
were determined by the ac method. They were found to in-
crease linearly with the PZT volume fraction and could be as
high as 90mC/m2 K for f=30%. This value is much larger
than the value obtained from the conventional pyroelectric
ceramic/polymer composites. When the conductivities of
both inclusion and matrix materials of the composite are
taken into account, the theoretical results show a good fit
with the experimental pyroelectric coefficient. The calcula-
tion indicates that large electrical conductivity may enhance
the pyroelectricity of the composite system.

ACKNOWLEDGMENTS

This work was funded by the Hong Kong Research
Grants Council(A/C 5143/01E) and support was given from
the Center for Smart Materials of The Hong Kong Polytech-
nic University.

1D. P. Skinner, R. E. Newnham, and L. E. Cross, Mater. Res. Bull.13(6),
599 (1978).

2M. J. Abdullah and D. K. Das-Gupta, IEEE Trans. Electr. Insul.25, 605
(1990).

3J. S. Kim, Y. H. Kim, N. H. Lee, and D. C. Lee, Mol. Cryst. Liq. Cryst.
Sci. Technol., Sect. A247, 341 (1994).

4C. J. Dias and D. K. Das-Gupta, IEEE Trans. Dielectr. Electr. Insul.3, 706
(1996).

5W. W. Clegg, D. F. L. Jenkins, and M. J. Cunningham, Sens. Actuators, A
58, 173 (1997).

6B. Ploss, W. Y. Ng, H. L. W. Chan, B. Ploss, and C. L. Choy, Compos. Sci.
Technol. 61, 975 (2001).

7T. Yamada, T. Ueda, and T. Kitayama, J. Appl. Phys.53, 4328(1982).
8W. K. Sakamoto, H. F. Darcy, and D. K. Das-Gupta, Mater. Res. Innova-
tions 5, 257 (2002).

9R. Landauer, AIP Conf. Proc.40, 2 (1978).
10D. K. Das-Gupta, Ferroelectrics118, 165 (1991).
11B. Ploss, B. Ploss, F. G. Shin, H. L. W. Chan, and C. L. Choy, IEEE Trans.

Dielectr. Electr. Insul.7, 517 (2000).
12T. Furukawa, K. Fujino, and E. Fukada J. Appl. Phys.15, 2119(1976).
13C. K. Wong, Y. M. Poon, and F. G. Shin, J. Appl. Phys.90, 4690(2001).
14T. Furukawa, K. Suzuki, and M. Date, Ferroelectrics68, 33 (1986).
15C. K. Wong, Y. W. Wong, and F. G. Shin, J. Appl. Phys.92, 3974(2002).
16H. L. W. Chan, Y. Chen, and C. L. Choy, Ferroelectrics9, 207 (1995).

FIG. 5. Pyroelectric coefficients of PZT/PU composites versus ceramic vol-
ume fraction. The solid circles refer to the experimental results. The solid
line refers to theoretical calculations that consider conductivities.

J. Appl. Phys., Vol. 96, No. 7, 1 October 2004 Lam et al. 3899

Downloaded 23 Mar 2011 to 158.132.161.9. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_and_permissions


