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A graded piezoelectric composite consisting of a spherically anisotropic graded piezoelectric
inclusion imbedded in an infinite nonpiezoelectric matrix, with the physical properties of the graded
spherical inclusion having a power-law profile with respect to the radial variable r, is studied
theoretically. Under an external uniform electric field, the electric displacement field and the elastic
stress tensor field of this spherically anisotropic graded piezoelectric composite are derived exactly
by means of displacement separation technique, based on the governing equations in the dilute limit.
A piezoelectric response mechanism, in which the effective piezoelectric response vanishes along
the z direction �or x,y directions�, is revealed in this kind of graded piezoelectric composites.
Furthermore, it is found that the effective dielectric constant decreases �or increases� with the
volume fraction p of the inclusions if the exponent parameter k of the grading profile is larger �or
smaller� than a critical value. © 2007 American Institute of Physics. �DOI: 10.1063/1.2785020�

I. INTRODUCTION

The effective property of piezoelectric composites has
been extensively investigated by many authors using various
methods1–8 because they have many applications in ultra-
sonic transducers for ocean acoustics, biomedical imaging,
and electronic sensors and monitors for naval and space
navigations.9,10 In order to satisfy the needs of engineering
design of suitable materials, scientists and engineers have
studied and fabricated several functionally graded materials
in the laboratory.11 These materials usually have variations in
their spatial composition, microstructure, or other micro-
properties so that they have physical properties varying from
point to point within the composite materials. In fact, many
natural materials have graded properties, such as the graded
dielectric properties in living cells and in bamboo. Already,
some researchers have investigated the electrical, thermal,
and mechanical properties of some graded composites.12–18

However, there are few theoretical works on the effective
coupling properties of graded piezoelectric composites as
they usually only focused on homogenous piezoelectric
composites.1–6 Also, it is very difficult to derive exact solu-
tions for the local displacement and electric fields, in general,
for graded piezoelectric composites under arbitrary external
electric and strain fields. However, since graded piezoelectric
composites have the advantage of providing controllable ef-
fective piezoelectric properties in engineering applications,

and before the fabrication of a special kind of piezoelectric
composites for specific needs, engineers would like to be
able to estimate its effective properties, it is valuable to study
the effective dielectric and piezoelectric responses of these
graded piezoelectric composites theoretically.

Many piezoelectric materials, for example, piezoceram-
ics, exhibit transverse isotropy, with the unique axis aligned
along their poling direction. However, if the ceramic spheri-
cal inclusion is poled along its radial direction, the composite
will possess a special kind of transverse isotropy on the
spherical surface, called spherically anisotropy �or called
spherical isotropy, in some literatures�.19–21 For these spheri-
cally anisotropic composites, there are relatively few works
investigating their effective properties under different exter-
nal fields. In particular, the effective property response prob-
lem of a spherically anisotropic graded piezoelectric com-
posite is not yet solved although some authors have studied
the free vibration and crack problems of some geometrically
structural graded piezoelectric materials, such as graded
spherical shell, graded cylindrical shell, and laminate
plate.19,22–24 In this paper, as an example, we have investi-
gated theoretically the effective responses of a graded piezo-
electric composite, which comprises of a spherically aniso-
tropic graded piezoelectric inclusion embedded in an infinite
nonpiezoelectric matrix. The spherical inclusion is assumed
to have a power-law dependence on the radial variable r,
namely,�ij�r�=�ij

0 rk, eij�r�=eij
0 rk, and cij�r�=cij

0 rk. Further-
more, the effects of the power-law parameter k on the effec-
tive coupling response under an external electric field will be
discussed in details. One of our results is that a vanishing
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effective piezoelectric response mechanism is revealed in
this kind of spherically anisotropic graded piezoelectric com-
posite.

In Sec. II, analytical solutions of the elastic displacement
and electric potentials are derived exactly for a spherically
anisotropic graded piezoelectric inclusion in an isotropic
nonpiezoelectric matrix under an external uniform electric
field along the z direction. In Sec. III, formulas for calculat-
ing the effective dielectric and piezoelectric responses are
given in the dilute limit, and numerical results are given for
discussing the effects of the power-law parameter k on the
effective dielectric properties. In Sec. IV, a brief conclusion
is given.

II. ANALYTICAL SOLUTIONS

Consider an infinite isotropic nonpiezoelectric matrix
containing a spherically anisotropic graded piezoelectric in-
clusion in spherical coordinates �� ,� ,r�, with the origin of
the coordinate system located at the center of the spherical
inclusion. The constitutive equations in the graded inclusion
region �i and the nonpiezoelectric host region �h are, re-
spectively,

�ij
i = cijkl

i �kl
i − ekij

i Ek
i , Di

i = eikl
i �kl

i + �ik
i Ek

i , in �i, �1�

�ij
h = cijkl

h �kl
h , Di

h = �ik
h Ek

h, in �h, �2�

where the subscripts i , j ,k , l=1,2 ,3 denote the � ,� ,r direc-
tions, respectively, and the superscripts i and h denote quan-
tities of the inclusion and the host regions, respectively. The
quantities �, � ,D, and E are the stress, strain, electric dis-
placement, and electric field, respectively, and c, e, and � are
the elastic stiffness, piezoelectric coefficient, and dielectric
constant, respectively. If there is no body forces and no free
electric charges, the governing equations in the inclusion and
host regions are �ij,j =0 and Di,i=0, and the boundary condi-
tions at the two-phase interface are the continuity of elastic
displacement, electric potential, normal traction, and electric
displacement. In spherical coordinates, the governing equa-
tions are19

��rr
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+

1

r

��r�
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+

1
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+
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r
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����

��
+

2��� cot � + 3��r

r
= 0,

1

r2

�

�r
�r2Dr� +

1

r sin �

��D� sin ��
��

+
1

r sin �

�D�

��
= 0. �3�

In general, for this spherically anisotropic graded piezoelec-
tric material, the constitutive relations in the inclusion region
in spherical coordinates are as follows:19

��� = c11��� + c12��� + c13�rr − e31Er,

��� = c12��� + c11��� + c13�rr − e31Er,

�rr = c13��� + c13��� + c33�rr − e33Er,

��r = 2c44��r − e15E�, �r� = 2c44�r� − e15E�,

��� = �c11 − c12����, D� = 2e15�r� + �11E�,

D� = 2e15��r + �11E�,

Dr = e31��� + e31��� + e33�rr + �33Er, �4�

where we have omitted the superscript i �inclusion� from
above equations for convenience. The subscripts i , j in the
coefficients cij and eij in Eq. �4� are the replacement indices
according to Nye’s rule.19 Because the matrix is an isotropic
elastic and dielectric material, the constitutive relations of
host region can be obtained from Eq. �4� by omitting the
piezoelectric coefficients eij and letting cijkl=��ij�kl

+	��ik� jl+�il� jk� and �11=�22=�33, where � and 	 are the
Lame constants and �ij is the Kronecker delta. The strain
tensor � can be expressed in terms of the elastic displace-
ments ur, u�, and u�,19

�rr = �ur/�r, ��� = r−1��u�/�� + ur� ,

��� = r−1�ur + u� cot � + sin �−1�u�/��� ,

�r� = �r−1�ur/�� + �u�/�r − r−1u��/2,

��� = r−1�sin �−1�u�/�� + �u�/�� − u� cot ��/2,

��r = ��u�/�r − r−1u� + r−1 sin �−1�ur/���/2. �5�

In the following, the analytical solutions of the elastic dis-
placement u and the electric potential 
 in this graded pi-
ezoelectric composite under an external uniform electric field
E0 along the ẑ directions �or x̂ direction� will be derived by
displacement separation method. We assume that the physi-
cal properties of a spherically anisotropic graded piezoelec-
tric inclusion with radius a obey the same power law along
the radial direction: �ij =�ij

0 rk, eij =eij
0 rk, and cij =cij

0 rk. Here
�ij

0 , eij
0 , and cij

0 are constants. In order to solve the governing
equations �ij,j =0 and Di,i=0 in the inclusion region, we in-
troduce three unknown functions ��� ,� ,r� ,G�� ,� ,r�, and
W�� ,� ,r� for the displacement components,20,22,25

u� = −
1

sin �

��

��
−

�G

��
, u� =

��

��
−

1

sin �

�G

��
, ur = W .

�6�

Substituting Eq. �6� into Eq. �4�, it is easy to get four partial
differential equations governing ��� ,� ,r� ,G�� ,� ,r� ,
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W�� ,� ,r�, and hence the electric potential unknown function

�� ,� ,r�. Furthermore, we assume that general solutions of
these four unknown functions �, G, W, and 
 take the fol-
lowing forms:

� = �
n=1

�

�n�r�Yn
m��,��, G = �

n=1

�

Gn�r�Yn
m��,�� ,

W = �
n=1

�

Wn�r�Yn
m��,��, 
 =

e33
0

�33
0 �

n=1

�


n�r�Yn
m��,�� , �7�

where Yn
m�� ,�� are the spherical harmonics and �n�r� ,

Gn�r� ,Wn�r�, and 
n�r� are unknown functions. Substituting
Eqs. �7� and �6� into Eq. �3�, we get a set of linear differential
equations for the unknown functions �n�r� ,Gn�r� ,Wn�r�, and

n�r�,

− f1Wn − f2r
�Wn

�r
− r2�2Wn

�r2 + f3r
�
n

�r
+ r2�2
n

�r2 − f4
n

− f5
r�Gn

�r
− f6Gn = 0,

− f7�n + f3r
��n

�r
+ r2�2�n

�r2 = 0,

− f8Gn + f3r
�Gn

�r
+ r2�2Gn

�r2 − f9r
�Wn

�r
− f10Wn − f11r

�
n

�r

− f12
n = 0,

f13r
�
n

�r
+ f14r

2�2
n

�r2 − f15
n + f16Wn + f3r
�Wn

�r

+ r2�2Wn

�r2 + f17Gn + f18r
�Gn

�r
= 0, �8�

where

f1 = �2�k + 1�e31
0 − n�n + 1�e15

0 �/e33
0 ,

f2 = �k + 2� + 2e31
0 /e33

0 ,

f3 = �k + 2�, f4 = n�n + 1�
�11

0

�33
0 ,

f5 = n�n + 1��e31
0 + e15

0 �/e33
0 ,

f6 = n�n + 1���k + 1�e31
0 − e15

0 �/e33
0 ,

f7 = �k + 2 +
1

2
�c11

0 /c44
0 − c12

0 /c44
0 ��n2 + n − 2�� ,

f8 = �n�n + 1�c11
0 /c44

0 + k + 2 − c11
0 /c44

0 + c12
0 /c44

0 � ,

f9 = �c13
0 /c44

0 + 1� ,

f10 = �k + 2 + c12
0 /c44

0 + c11
0 /c44

0 � ,

f11 = �1 + e31
0 /e15

0 �
e33

0 e15
0

�33
0 c44

0 , f12 = �k + 2�
e33

0 e15
0

�33
0 c44

0 ,

f13 = �2 + k − 2e31
0 /e33

0 �
e33

0 e33
0

�33
0 c33

0 ,

f14 =
e33

0 e33
0

�33
0 c33

0 , f15 = n�n + 1�
e33

0 e15
0

�33
0 c33

0 ,

f16 = �2�c13
0 + kc13

0 − c11
0 − c12

0 � − n�n + 1�c44
0 �/c33

0 ,

f17 = n�n + 1��kc13
0 + c13

0 − c11
0 − c12

0 − c44
0 �/c33

0 ,

f18 = n�n + 1��c44
0 + c13

0 �/c33
0 .

Now, we assume that the unknown functions �n�r�,
Gn�r�, Wn�r�, and 
n�r� can be expressed in the following
forms:

Gn�r� = Anrn�k�, Wn�r� = Bnrn�k�,


n�r� = Cnrn�k�, �n�r� = Dnr�n�k�, �9�

where An, Bn, Cn, Dn, and n�k� are undetermined constants.
Substituting Eq. �9� into Eq. �8�, we obtained a set of linear
equations,

FijXj = 0 �10�

where Xj = �An ,Bn ,Cn�T, F11=−f5n− f6, F12=−f2n− f1

−vn�n−1�, F13= f3n− f4+n�n−1�, F21= f3n− f8+n�n

−1�, F22=−f9n− f10, F23=−f11n− f12, F31= f18n+ f17, F32

= f3n+ f16+n�n−1�, and F33= f13n− f15+ f14n�n−1�.
For Eq. �10� to have nonzero solutions, the eigenvalues

n�k� should be determined from the eigenequation �Fij�=0.
Also, for a stable graded material, the eigenvalues n�k�
should have non-negative real part solutions. This means that
valid solutions of n�k� inside the spherical inclusion, de-
noted as ni�k�, must have Re�ni��0 �i=1,2 ,3�. The fol-
lowing relations between An, Bn, and Cn are obtained from
Eq. �10�:

Bni = Kni
1 Ani, Cni = Kni

2 Ani �i = 1,2,3� , �11�

where the matrices Kni
1 and Kni

2 are obtained from Eq. �10�. It
is noted that eigenvalue �n can be determined from the equa-
tion �−f7+ f3�n+�n��n−1��Dn=0 for nonzero Dn. However,
with the boundary conditions, we can demonstrate that the
eigenvalue �n and the coefficient Dn should have no effects
on the stress and the electric fields in the composite under an
external field, i.e., the coefficients Dn should be zero. Thus,
the unknown functions Gn�r�, Wn�r�, and 
n�r� can be re-
written in the following forms with the unknown coefficients
Ani �i=1,2 ,3�:

Gn�r� = �
i=1

3

Anir
ni�k�, Wn�r� = �

i=1

3

Kni
1 Anir

ni�k�,


n�r� = �
i=1

3

Kni
2 Anir

ni�k�, �n�r� = Dnr�n1�k�.
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If an external electric field E0 is applied along the ẑ
direction, the solution should be independent of the variable
� because of the axial symmetry of the spherical inclusion.
In the inclusion region, the displacement and the electric
potentials can be expressed in terms of the Legendre poly-
nomials Pn�cos �� as follows:


 =
e33

0

�33
0 �

n=1

�

�
i=1

3

Kni
2 Anir

ni�k�Pn�cos �� ,

u� = − �
n=1

�

�
i=1

3

Anir
ni�k� �

��
Pn�cos �� ,

u� = �
n=1

�

Dnr�n1�k� �

��
Pn�cos �� ,

ur = �
n=1

�

�
i=1

3

Kni
1 Anir

ni�k�Pn�cos �� . �12�

In the host region, because the matrix is a pure elastic and
dielectric isotropic material, the nonzero elastic displacement
uh and the electric potential 
h under an external electric
field along ẑ direction can be found by using Goodier’s
results,26

ur
h = �− 2H1/r3 + ��−1 − 2�H2/r�cos � ,

u�
h = − �H1/r3 + H2/r�sin � ,


h = �− E0r + H3/r2�cos � , �13�

where �−1= �10−12�� / �3−4��, �=�h /2�	h+�h�. �h and 	h

are Lame constants of the host material. The unknown coef-
ficients Hi �i=1,2 ,3� can be determined by the boundary
conditions. Now, we apply the boundary conditions at the
two-phase interface to solve for the unknown coefficients Ani

and Hi �i=1,2 ,3�. The continuity boundary conditions for a
spherical inclusion with radius a are as follows:

�ur
i�r� = ur

h�r��r=a, �u�
i �r� = u�

h�r��r=a,

�u�
i �r� = u�

h�r��r=a, ��rr
i �r� = �rr

h �r��r=a,

��r�
i �r� = �r�

h �r��r=a, ��r�
i �r� = �r�

h �r��r=a,

�
i�r� = 
h�r��r=a, �Dr
i�r� = Dr

h�r��r=a.

Here, note that the two boundary conditions about the �
direction u�

i �r�= �u�
h�r��r=a and �r�

i �r�= ��r�
h �r��r=a are satisfied

automatically. A set of closed-form equations for the deter-
mination of the six unknown coefficients Ani and Hi �i
=1,2 ,3� can be found,

�
i=1

3

K1i
1 a1i�k�A1i + 2a−3H1 + �2 − �−1�H2/a = 0,

�
i=1

3

a1i�k�A1i + a−3H1 + a−1H2 = 0,

�
i=1

3
e33

0

�33
0 K1i

2 a1i�k�A1i − a−2H3 = − E0a ,

�
i=1

3

m1ia
1i�k�A1i − h0a−k−1H2 − 12	ha−k−3H1 = 0,

�
i=1

3

m2ia
1i�k�A1i + 6	ha−k−3H1 + h1a−k−1H2 = 0,

�
i=1

3

m3ia
1i�k�A1i − 2�ha−k−2H3 = a�hE0, �14�

where

m1i = �	c33
0 K1i

1 + e33
0 e33

0

�33
0 K1i

2 
1i + 2c13
0 �1 + K1i

1 �� ,

m2i = 	c44
0 K1i

1 + c44
0 + e15

0 e33
0

�33
0 K1i

2 − c44
0 1i
 ,

m3i = �2e31
0 �1 + K1i

1 � + e33
0 �K1i

1 − K1i
2 �1i� ,

h0 = 2	h	2 − 8h

1 − 2h +
− 1 + 3h

1 − 2h �−1
 ,

h1 = 	h�4 − �−1� .

Once the unknown coefficients A1i and Hi are obtained
from Eq. �14�, the elastic displacement and the electric po-
tentials in the spherical inclusion region and the host region
can be determined electric field. For example, in the inclu-
sion region, we have


 =
e33

0

�33
0 �

i=1

3

K1i
2 A1ir

1i�k� cos �, u� = �
i=1

3

A1ir
1i�k� sin � ,

u� = 0, ur = �
i=1

3

K1i
1 A1ir

1i�k� cos � . �15�

III. EFFECTIVE RESPONSE

The strain tensor field and the electric field in the inclu-
sion region can be derived by means of the solutions of the
elastic displacement and the electric potentials obtained in
Sec. II, for an external electric field along the ẑ direction.
The effective dielectric and piezoelectric responses �e and ee

can be estimated by using the effective constitutive relations,

defined by �̄ij =cijkl
e �̄kl−ekij

e Ēk and D̄i=eikl
e �̄kl+�ik

e Ēk, where

Ā= �1/V���i+�h
AdV and V is the total volume occupied by

the inclusion �i and the host �h regions,

1

V
�

�i

��cijkl
i − cijkl

h ��kl − �ekij
i − ekij

h �Ek�dV

= �̄ij − cijkl
h �̄kl + ekij

h Ēk, �16�
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1

V
�

�i

��eikl
i − eikl

h ��kl + ��ik
i − �ik

h �Ek�dV

= D̄i − eikl
h �̄kl − �ik

h Ēk. �17�

Furthermore, we have obtained the following formulas by
substituting the effective constitutive relations into Eqs. �16�
and �17�:

eikl
e �̄kl + �ik

e Ēk = �ik
h Ēk +

1

V
�

�i

�eikl
i �kl + ��ik

i − �ik
h �Ek�dV , �18�

cijkl
e �̄kl − ekij

e Ēk = cijkl
h �̄kl +

1

V
�

�i

��cijkl
i − cijkl

h ��kl − ekij
i Ek�dV .

�19�

Because the external electric field E0 is applied to the
graded piezoelectric composite along z direction and the ap-
plied external strain tensor �kl

0 is zero, the effective dielectric
response �zz

e and piezoelectric responses ezij
e can be estimated

in the dilute limit as follows:

�zz
e = �zz

h +
1

VE0
�

�i

�ezkl
i �kl + ��zk

i − �zk
h �Ek�dV , �20�

ezij
e = −

1

VE0
�

�i

��cijkl
i − cijkl

h ��kl − ekij
i Ek�dV �i, j = x,y,z� ,

�21�

Here, note that the quantities in Eqs. �20� and �21� are rep-
resented in Cartesian coordinates. Using transformations
from spherical coordinates �u� ,u� ,ur� to Cartesian coordi-
nates �ux ,uy ,uz� �for example, the z-component transforma-
tion formula is uz=ur cos �−u� sin ��, in the inclusion re-
gion, we have

ezkl�kl + �zkEk = Dz = Dr cos � − D� sin �

= cos2 ��
i=1

3

�e33
0 �K1i

1 − K1i
2 �1i

+ 2e31
0 �K1i

1 + 1��A1ir
1i�k�−1+k

− sin2 ��
i=1

3 ��11
0 e33

0

�33
0 K1i

2 + e15
0 �1i − 1 − K1i

1 ��
�A1ir

1i�k�−1+k, �22�

�zk
h Ek = Dr

hi cos � − D�
hi sin �

= − �h e33
0

�33
0 �

i=1

3

K1i
2 1iA1ir

1i�k�−1 cos2 �

− �h e33
0

�33
0 �

i=1

3

K1i
2 A1ir

1i�k�−1 sin2 � , �23�

where the superscript hi denotes that the physical properties
are those of the host region, while the electric field and the
strain tensor field are those of the inclusion region. Substi-
tuting Eqs. �22� and �23� into Eq. �20�, we obtained the ef-

fective dielectric response of graded piezoelectric composites
in the dilute limit,

�zz
e = �zz

h +
1

VE0
�

�i

��ezkl�kl + �zkEk� − �zk
h Ek�dV

= �h + pE0
−1�

i=1

3

�e33
0 �K1i

1 − K1i
2 �1i + 2e31

0 �K1i
1 + 1��A1i

�
a1i+k−1

1i + k + 2
− 2pE0

−1�
i=1

3 ��11
0 e33

0

�33
0 K1i

2

+ e15
0 �1i − 1 − K1i

1 ��A1i
a1i+k−1

1i + k + 2
+ pE0

−1�h e33
0

�33
0

��
i=1

3

K1i
2 A1ia

1i�k�−1, �24�

where p is the volume fraction of the graded spherical inclu-
sions.

Furthermore, we can estimate the effective piezoelectric
response ezij

e �i , j=x ,y ,z� by means of Eq. �21�. For example,
ezzz

e in the dilute limit is given by

ezzz
e = −

1

VE0
�

�i

��czzkl
i − czzkl

h ��kl − ekzz
i Ek�dV . �25�

Using tensor transformations between the spherical coordi-
nates and the Cartesian coordinates �zz=�rr cos2 �
−2�r� cos � sin �+��� sin2 � in the inclusion region, we get

czzkl�kl − ekzzEk = �zz = �rr cos2 � − 2�r� cos � sin �

+ ��� sin2 � ,

Czzkl
h �kl = �zz

hi = �rr
hi cos2 � − 2�r�

hi cos � sin � + ���
hi sin2 � .

Clearly, the stress in the inclusion region has the following
relations with respect to the variable �: �rr�cos �, �r�

�sin �, and ����cos �. Using the orthogonality of the trigo-
nometric functions, we get

ezzz
e = 0. �26�

Similarly, we have also obtained the effective piezoelectric
responses ezij

e =0 �i , j=x ,y ,z�. Note that, for an external elec-
tric field acting along the x̂ direction or ŷ direction, the ef-
fective piezoelectric constants exij

e and eyij
e �i , j=x ,y ,z� are

zero. Here, we have omitted the derivation process since it is
similar to the case of an external field acting along the ẑ
direction. The results indicate that the effective piezoelectric
response vanishes due to the symmetry of this kind of spheri-
cally anisotropic piezoelectric composite system even in
graded piezoelectric composites in this study. This kind of
effective piezoelectric response mechanism will have impor-
tant applications in designing functionally graded composite
materials. Note that if the symmetry of the spherically aniso-
tropic system is destroyed, then bulk effective piezoelectric
properties will appear. For example, if a transversely isotro-
pic piezoelectric spherical inclusion is immersed in a nonpi-
ezoelectric matrix, the composite will have nonzero effective
piezoelectric responses.27
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In order to discuss the coupling effects of the elastic,
dielectric, and piezoelectric properties of the inclusion on the
effective dielectric constant, we consider again the spheri-
cally anisotropic graded piezoelectric composite. We have
calculated the effective dielectric response �zz

e �Eq. �24�� at a
small volume fraction, say, p=0.1, and taking the radius a
=1, the elastic parameters and dielectric constant of the host
region =0.25, 	=32 Gpa, and �h=6�10−10 C2 N−1 m−2.
Also, the elastic, piezoelectric, and dielectric constants of the
graded spherical inclusion in spherical coordinates are taken
to be �ij�r�=�ij

0 rk, eij�r�=eij
0 rk, and cij�r�=cij

0 rk, here C11
0

=16.6n GPa, C33
0 =16.2n GPa, C12

0 =7.7n GPa, C44
0

=4.3n GPa, C13
0 =7.8n GPa, e31

0 =−0.44n C m−2, e33
0

=1.86n C m−2, e15
0 =1.16n C m−2, �11

0 =�22
0 =�33

0 =1.12n
�10−9 C2 N−1 m−2, where n is a dimensionless factor. In
Figs. 1–3, we let the dielectric, piezoelectric, and elastic fac-
tors n to vary from 1 to 20, while other factors n are fixed at
10. In Fig. 4, the factors n of the dielectric, piezoelectric, and
elastic constants are fixed at 10.

In order to test our formulas, in the dilute limit p=0.1,
we considered a pure isotropic dielectric spherical composite

without gradient profiles, i.e., k=0 and eij
0 =0, and compared

our results with Bruggemann formula28 in Fig. 1. Clearly, our
results are in good agreement with Bruggemann’s. Further-
more, we find that the effective dielectric constant increases
with the dielectric and piezoelectric constants of the inclu-
sion for a given value of the power-law parameter k �Figs. 1
and 2�. On the contrary, the effective dielectric response de-
creases as the elastic constant increases �Fig. 3�. However, it
can be seen that, for a given set of parameters, the effective
dielectric constant for smaller k is larger than those of larger
k �Figs. 1–3�. This implies that the power-law parameter k
can play an important role in controlling the effective dielec-
tric response of this kind of graded piezoelectric composite.
To discuss the effects of the volume fraction and the power-
law parameter k on the effective dielectric response, Fig. 4
shows that the effective dielectric response decreases when k
increases. It also shows that for larger dielectric constant of
the host material, when the value of k is larger �or smaller�
than a critical value �in our case this value is about 3�, the
effective dielectric constant decreases �or increases� when

FIG. 1. Effective dielectric constant �zz
e /�h vs the dielectric constant factor n

of the graded inclusions for different values of the power-law parameter k.
The elastic and piezoelectric factors n of the graded inclusions are fixed at
10.

FIG. 2. Effective dielectric constant �zz
e /�h vs the piezoelectric constant

factor n of the graded inclusions for different values of the power-law pa-
rameter k, with the elastic and dielectric factors n of graded inclusions fixed
at 10.

FIG. 3. Effective dielectric constant �zz
e /�h vs the elastic constant factor n of

the graded inclusions for different values of the power-law parameter k, with
the dielectric and piezoelectric constant factors n of the graded inclusion
fixed at 10.

FIG. 4. Effective dielectric constant �zz
e /�h vs the power-law parameter k of

the graded inclusions for volume fractions p=0.1,0.08,0.05 and the host
relative dielectric constants �h=67.8 and 678. The factors n for the dielec-
tric, piezoelectric, and elastic constants of the graded inclusions are set to
10.
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the volume fraction p increases. This result further shows
that the power-law parameter k can enhance or reduce the
effective dielectric response of this kind of graded piezoelec-
tric composites.

IV. CONCLUSIONS

Spherically anisotropic graded piezoelectric composites
having power-law graded spherical inclusions in a nonpiezo-
electric matrix are investigated, and analytical solutions of
the elastic displacement field and electric potential under an
external electric field are derived. In the dilute limit, formu-
las of the effective dielectric and piezoelectric responses are
given. Our results show that spherically anisotropic graded
piezoelectric composite does not have bulk piezoelectric be-
havior due to the symmetry of the composite system and the
radial polarization of the spherical inclusions. Of course, for
nonsymmetric composites, either due to the physical proper-
ties or the structure, effective piezoelectric response will ap-
pear, such as in transversely isotropic piezoelectric spherical
or ellipsoidal inclusions in a nonpiezoelectric matrix.27 Our
results also indicate that the dielectric response of the com-
posite can be controlled by the particle piezoelectric, dielec-
tric, elastic constants, and the power-law parameter k of the
inclusion grading profile. Furthermore, we find that the pi-
ezoelectric and dielectric constants �or elastic constant� can
enhance �or reduce� the effective dielectric constant. Also,
the effective dielectric constant decreases �or increases�
when the volume fraction p increases if the power-law pa-
rameter k is larger �or smaller� than a critical value. These
properties demonstrate that there are coupling effects on the
effective dielectric response due to the graded physical prop-
erties of the inclusions. As an example, we have shown that
the power-law parameter of the grading profile can be used
to change the effective dielectric response.

Based on our analytical solutions, the effective response
at higher concentration of the inclusions can be estimated by
means of effective medium approximation and other piezo-
electric composites having other grading profiles, such as
exponential profile, can be investigated and compared. It is
also possible to develop a method for studying the effective

nonlinear dielectric response of graded piezoelectric compos-
ites by further development on some existing methods for
solving nonlinear composites problems.29–32
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