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The dynamic Ginzburg–Landau theory is applied to establish the critical conditions that control the
transition between the paraelectric and ferroelectric states. Analytic expressions of the
para-ferroelectric transition temperatures in a thin film under various electromechanical surface
conditions are derived via a linear stability analysis of the evolutionary trajectory of the system for
both first- and second-order transitions. Explicit expressions are then derived for the critical
thickness, below which the thin film is paraelectric for all temperatures. For first-order transitions,
the difference between the superheating and supercooling transition temperatures is found to be
insensitive to the film thickness and surface boundary conditions. From these expressions, the
relative importance on ferroelectricity in thin films due to applied mechanical constraints on the
transformation strain and the depolarizing effect of surface charges is discussed and compared with
experimental data. ©2005 American Institute of Physics. fDOI: 10.1063/1.1861517g

I. INTRODUCTION

Ferroelectricity is a collective phenomenon, the charac-
teristics of which depend on the combined effects of many
factors, such as the ambient temperature, boundary condi-
tions, sample dimensions, misfit epitaxial stresses, etc. Stud-
ies of the effects of sample dimensions on the Curie tempera-
ture and the critical thickness of thin films have been
conducted for the last several decades.1–7 Recently, research
in this area has found renewed relevance due to the surge of
technological interest in ultraminiaturized electronics,
ultrahigh-density memory devices, and nanotechnologies in
general.

Characteristics governing the para-ferroelectric transi-
tions in a film have been investigated within the framework
of both thermodynamic theory and first-principles calcula-
tions. However, various discrepancies between experimental
measurements and theoretical calculations and among the
theoretical calculations themselves may be the result of in-
complete understanding. As an example, the critical thick-
ness of PbTiO3 thin films at room temperature has been es-
timated at,5.5 nm, within the phenomenological theory.7

However, recent experimental measurements show that
stable polarization orthogonal to the surface can exist down
to a 4-nm-thick lead zinconate titanatesPZTd film.3 First-
principles calculations2 even found that an orthogonally po-
larized ferroelectric state can be maintained under short-
circuit electric boundary conditions, even for a film as thin as
1.2 nmsthree unit cellsd. Despite extensive investigations1–8

that have been carried out on the size-dependent Curie tem-
perature and critical thickness, its nature and the physical
reason of its existence remain uncertain. For example, al-
though it is fairly plausible that the critical thickness origi-

nates from the depolarizing effect of the film surface, infor-
mation on the details of the competing mechanisms, their
relative importance, and their relations with various electro-
mechanical surface conditions are still needed. Except for the
simplest cases, numerical calculations using either
first-principles2 or thermodynamic approaches7,8 are the
main theoretical tools for explorations in this area. In the
latter case, characteristics of the para-ferroelectric transfor-
mation have often been obtained from the condition of phase
equilibrium at the transition point. This approach has been
proven effective for continuousssecond orderd phase transi-
tions, where the order parameter is continuous and well de-
fined at the point of transition. However, the case is more
complicated for discontinuoussfirst orderd transitions, where
the order parameter is discontinuous and not well defined at
the point of transition.

Alternatively, phase transition may also be described in
terms of the time evolution of the order parameter as an
irreversible dynamical process governed by the evolution
equation. The latter can be formulated using the Ginzburg–
Landau functional9 expressed in terms of a set of control
parametershlj, including the ambient temperature, boundary
conditions, surface characteristics, sample dimensions, misfit
epitaxial stresses, etc. Within the dynamical description,10

the evolution of the system can be pictured as the trajectory
of a moving “particle” in the order-parameter space, starting
from an initial pointsi.e., the order parameter att=0d repre-
senting the initial state and ending towards a point represent-
ing the final statesi.e., the order parameter att=`d. The
trajectory and the final state are functions ofhlj, obtained by
solving the evolution equation. This operation, however, is
generally rather difficult because of the nonlinear nature of
the problem.10 While the numerical approach has been fol-
lowed for focused problems involving a relatively small
number of control parameters, the comprehensive under-
standing of a multiparameter, multimechanism system is not
easily achievable outside an analytic approach.

It is clear that the final state is a stationary statesi.e.,

adOn leave from the State Key Laboratory of Optoelectronic Materials and
Technology, School of Physics and Engineering, Sun Yat-sen University,
Guangzhou, China; Electronic mail: stdwangb@zsu.edu.cn

bdAuthor to whom correspondence should be addressed; Electronic mail:
chung.woo@polyu.edu.hk

JOURNAL OF APPLIED PHYSICS97, 084109s2005d

0021-8979/2005/97~8!/084109/10/$22.50 © 2005 American Institute of Physics97, 084109-1

Downloaded 20 Mar 2011 to 158.132.161.9. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_and_permissions

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PolyU Institutional Repository

https://core.ac.uk/display/61016685?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1063/1.1861517
http://dx.doi.org/10.1063/1.1861517


with a fixed order parameterd that must be asymptotically
stable.10 In this regard, analytic techniques in nonlinear
mathematics exist, with which the stability of the stationary
states, i.e., stationary solutions of the Ginzburg–Landau
equationsGLEd, can be determined without the explicit so-
lution of the system of nonlinear differential equations.9–11

Without loss of generality, we focus on the paraelectric to
ferroelectric transformation for easy discussion. In this case,
the GLE has two stationary solutions, with order parameters
corresponding to the two states. Suppose we start with an
initial state that is paraelectric. If the corresponding station-
ary solution is asymptotically stable, the final state must re-
main paraelectric, and no transition to the ferroelectric state
will occur. This is the case even if both the paraelectric and
the ferroelectric states are asymptotically stable at the same
time. Thus, a necessary condition for the transition to occur
is that the stationary paraelectric solution is unstable. This
provides us with the means to determine the range ofhlj,
within which the paraelectric state is stable, and outside
which the paraelectric state may transform into the ferroelec-
tric state, i.e., the phase diagram. The foregoing approach
allows important characteristics of a ferroelectric thin film,
such as the transition temperatures, critical thicknesses, do-
main morphology, substrate nature, etc., to be related through
the instabilities of the initial state, the linear nature of which
opens the system to many established analytic techniques.

In the present paper, we follow the analytic approach
described in the foregoing to establish conditions of the sta-
bility of the paraelectric versus ferroelectric phases in a thin
film. The polarizing/depolarizing effects due to the presence
of the film surface, namely, the surface lattice relaxation, the
restraint of the transformation strain, the electromechanical
surface conditions involving the epitaxial stress, and the in-
duced surface charges, are taken into account. Expressions
for the para-ferroelectric transition temperatures as a func-
tion of film thickness and the corresponding critical thick-
ness are derived, and the complex relation of the critical
thickness with the various parameters discussed. Both first-
order and second-order transitions are considered.

II. THE EVOLUTION EQUATION AND STABILITY OF
THE STATIONARY STATES

We consider a thin film of ferroelectric material of di-
mensions of̀ 3`3h, h being the film thickness. The origin
of the coordinate system is at the center of the cell. We
assume thatP, the single polarization component normal to
the surface of the film, is the order parameter to describe the
phase transition. In general, the transition between the cubic
and tetragonal phases involves three polarization compo-
nents related through a system of three coupled nonlinear
differential equations, which have to be analyzed together.
Nevertheless, this is beyond the scope of the present paper.

Noting that a para-ferroelectric transformation is caused
by a transformation between a central symmetric and a non-
central symmetric lattice structure, the transition is always
accompanied by a transformation strain. When the ferroelec-
tric state under consideration has a tetragonal lattice struc-
ture, the transformation strain in the plane of the film can be
expressed in the form of«T=«xx

T =«yy
T =QP2, whereQ is the

electrostrictive coefficient. Accordingly, the free energy of a
ferroelectric thin film is made up of mechanical and electri-
cal components. The mechanical component contains the
elastic self energy due to the transformation strain and the
interaction energy between the applied stress and the trans-
formation strain. For rigid substrates, the transformation
strain is fully constrained, and the elastic self energy is given
by Fe=GQ2eeVeP4dV, whereG=sC11+C12−2C12

2 /C11d, C11

andC12 being components of the elastic modulus of the film
and V the volume of the film. We note that due to the free
upper surface of the films, the component«xx

T of the transfor-
mation strain does not contribute to the elastic energy. Fab-
rication processes often leave a residual stress distribution in
the film due to the lattice mismatch, the epitaxial stress. Its
interaction with the transformation strain is given by

Fi = −E E E
V

si j«i j
Tdv = −E E E

V

ssxx«xx
T + syy«yy

T ddv

= − 2E E E
V

sr«
Tdv,

wheresxx=syy=sr.
The electrical component of the free energy can be ex-

pressed in terms of the order parameterP and the tempera-
ture using the Ginzburg–Landau functional9 of the bulk ma-

terial. Including the effects of the depolarization fieldĒd

=s0,0,Edd and the surface effects, the Ginzburg–Landau free
energy in the neighborhood of the transition point can be
expressed as

Fl =E E E
V
FA

2
sT − Tc0dP2 +

B

4
P4 +

C

6
P6 +

D

2
S ]P

]z
D2

−
1

2
EdPGdv +E E

S

Dd−1

2
P2dxdy,

whereA, B, C, andD are the expansion coefficients of the
corresponding bulk material under the zero-stress state.Tc0 is
the cooling phase-transition temperature of the bulk crystal,
S represents the upper and lower surface planes that cover
the entire surface of the film, andd is the extrapolation
length that measures the effect of lattice relaxation on the
surface or the change of the polarization due to the surface
effect.4,12 The total Ginzburg–Landau free energy of the cell
can be written as a sum of the electrical and mechanical
components,7

F =E E E
V
FA

2
sT − Tc0dP2 +

B + 4GQ2

4
P4 +

C

6
P6

+
D

2
S ]P

]z
D2

−
1

2
EdP − 2sr«

TGdv

+E E
S

Dd−1

2
P2dxdy. s1d

Two separate cases may be considered: the more common
d.0 case, corresponding to a reduction of self-polarization
on the surface, and the rarerd,0 case, corresponding to an
enhancement. We note that in generald is not an absolute
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constant. Furthermore, effects of the epitaxial stress and the
surface lattice relaxation may contribute to or against the
transformation.

Another important surface effect is the depolarization
field that comes from the polarization-induced surface
charges, which is governed by the electric boundary condi-
tions. In this paper, we consider two cases:sad the ferroelec-
tric film is sandwiched between two metallic electrodes in
short-circuit conditions andsbd the ferroelectric film is sand-
wiched between two dielectric substrates.

Although perfect screening is not achieved even under
the short-circuit condition, partial compensation by the elec-
trodes still reduces the depolarization field, due to the varia-
tion of the spontaneous polarization in thez direction. In this
case, the relation between the depolarization fieldEd and the
spontaneous polarizationP is given by12

Ed = −
1

«
SP −

1

h
E

−h/2

h/2

PdzD , s2d

where« is the dielectric constant of the film, and the second
term on the right-hand side is due to the compensating
charges on the upper and lower metallic electrodes. For di-
electric substrates, there are no compensation charges, and
the corresponding relation is given byssee the Appendixd

Ed = −
P

«
. s3d

We may write down a general expression that encompasses
both contact conditions,

Ed = −
1

«
SP −

f

h
E

−h/2

h/2

PdzD , s4d

where f takes on the value of 0 or 1 depending on the
contact condition as discussed in the foregoing.

Using Eqs.s1d ands4d, the time evolution of the system
is governed by the time-dependent Ginzburg–Landau
equation:7,8

]P

]t
= − M

dF

dP
= MF− AsT − Tc0dP + 4QsrP −

P

«

− sB + 4GQ2dP3 − CP5 + D
]2P

]z2 +
f

«h
E

−h/2

h/2

PdzG , s5d

whereM is the kinetic coefficient related to the domain-wall
mobility. The surface term in Eq.s1d yields the boundary
conditions,

]P

]z
= 7

P

d
for z= ±

h

2
. s6d

Equations5d has a trivial stationary solution,P=0, rep-
resenting the paraelectric state. As discussed in the Introduc-
tion, to be able to transform from the initial paraelectric
sP=0d state to the ferroelectricsPÞ0d state, the paraelectric
stationary state must become unstable. The same also applies
to the reverse transformation.

The dynamic stability of the stationary states can be-
come probed by applying an infinitesimal perturbationD to

the corresponding stationary solution of Eq.s5d. The dynam-
ics of D follows from Eq. s5d by retaining only the terms
linear in D, which are given by

]D

]t
= MF− AsT − Tc0dD + 4QsrD −

D

«

− 3sB + 4GQ2dP2D − 5CP4D + D
]2D

]z2 +
f

«h
E

−h/2

h/2

DdzG .

s7d

The boundary condition is the same as Eq.s6d, only with P
replaced byD. For a symmetric configuration, the condition
dD /dz=0 at z=0 must also hold.

This equation governs the stability of the stationary so-
lution of Eq. s5d. It is a linear equation ofD. Its analysis in
the context of phase stabilities, without having to resort to a
solution of the nonlinear equationsfEq. s1d or s5dg, is our
main aim. It is obvious from Eq.s7d that the equation gov-
erning D in the paraelectric and ferroelectric states are dif-
ferent in general, from which it follows that the stability
conditions for the two branches are also different. However,
as we shall see, for second-order transitions,P is continuous
at the transition point. The ferroelectric and paraelectric
branches are both unstable when crossing this point from
opposite directions and transform into one another. The Cu-
rie temperature and the critical thickness are then indepen-
dent of the initial state and are thus well defined.

For first-order transitions, on the other hand,P is discon-
tinuous across the transition temperature. The paraelectric
sP=0d and the ferroelectricsPÞ0d branches obey different
stability conditions due to the difference in the governing
equations ofD in Eq. s7d. Suppose the paraelectric branch is
dynamically stable for temperatures down toTc and the
ferroelectric branchsPÞ0d is dynamically stable for tem-
peratures up toTch, then the two critical temperatures are
likely to be unequal. Indeed, depending on the direction of
the transformation between the two states,Tc is called the
supercooling transition temperature andTch the Curie tem-
peraturessuperheating transition temperatured.

III. STABILITY OF THE PARAELECTRIC STATE AND
CRITICAL CHARACTERISTICS

In view of its simplicity, the case in which the initial
state is paraelectric, i.e.,P=0, is considered first. Transition
from the ferroelectric statesPÞ0d will be considered in Sec.
IV, where it will be shown that the two transition tempera-
tures are related by a constant shift. We do not differentiate
between the first- and second-order transitions, to which this
analysis applies equally. In the following, the casesd.0 and
d,0 are separately considered.

A. Reduced surface polarization: The d>0 case

In most ferroelectric materials, lattice relaxation weak-
ens the polarization on the surface, andd.0. Using the
method of separation of variables and taking into account
dD /dz=0, at z=0, Eq. s7d can be separated into time-
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dependent and time-independent parts, connected by the ei-
genvalue. ForP=0, the solution can be written as

Dcsz,td = evctwvc
szd = D0e

vctfcosskzd + Rg, s8d

where vc is the eigenvalue andwvc
szd the corresponding

eigenfunction of Eq.s7d,

vc = Mf− AsT − Tc0d + 4Qsr − «−1 − Dk2g, s9d

andR a constant given by

R= −
2Mf

«hkhMf4Qsr − AsT − Tc0dg − vcj
sinSkh

2
D . s10d

The P=0 solution is unstable whenvc.0, because in this
case,D increases exponentially with time. It can be seen
from Eq.s9d that when the temperatureT is sufficiently high,
vc,0, and the paraelectric state is stable. WhenT is suffi-
ciently low, vc turns positive and the paraelectric state is no
longer stable, since any small perturbationD will grow ex-
ponentially beyond all bounds. The critical conditionvc=0,
yields, in this case, the supercooling transition temperature
Tc of the film,

Tc = Tc0 +
4Qsr

A
−

1

A«
−

D

A
kc

2, s11d

where the first term on the right-hand side is related to the
bulk ferroelectric property, the second term to the misfit of
the substrate, the third term to the induced surface charges,
and the fourth term to the lattice relaxation on the surface.
While the last two terms act against the transformation by
lowering the transition temperature, the second term can act
either way, depending on the direction of the misfit, i.e., the
sign of sr. Here kc depends on the film thicknessh, the
extrapolating lengthd, and the electric boundary condition
throughf, as the smallest nonzero root of the equation,

cotSkch

2
D = kcd +

2f

«kchf4Qsr − AsTc − Tc0dg
. s12d

The general relation betweenTc and the film thicknessh can
be obtained by solving Eqs.s11d and s12d simultaneously.
Equations12d is a transcendental equation that can easily be
solved numerically in general. Furthermore, as we shall
show in the following, simple analytic approximations can
also be derived in many important cases. The cooling critical
thicknesssCCTd of the film hcc, below which ferroelectric
transition by cooling is not possible, can be derived by put-
ting Tc=0 in Eq.s11d , yielding the following expression for
the correspondingkc

2, which we denote bykcc
2 in terms of the

material properties of the film:

kcc
2 =

1

D
SATc0 + 4Qsr −

1

«
D . s13d

hcc can then be obtained by solving forh as the smallest
positive root of Eq.s12d corresponding toTc=0, with kcc

given by Eq.s13d. Sincehcc varies inversely withkcc accord-
ing to Eq.s12d, Eq. s13d then requires that the CCT for these
materials increase with decreasing bulk transition tempera-
ture and substrate constraint, and with increasing depolariza-
tion field. We further note that, forkcc to be real,«sATc0

+4Qsrd.1 must be satisfied, putting a necessary condition
on the possibility of the cooling transition from the paraelec-
tric state.

1. Asymptotic solutions for thin films „i.e., h ™d…

Whenhkc!1, Eq.s12d can be solved via a series expan-
sion of the left-hand side, yielding

kc
2 <

2 − fGc

hsd + h/6d
, s14d

from which Tc is given by

Tc < Tc0 +
4Qsr

A
−

1

A«
−

Ds2 − fGcd
Ahsd + h/6d

, s15ad

whereGc is a function ofTc,

Gc ;
2

«f4Qsr − AsTc − Tc0dg
. s15bd

When h!d, the conditionkch!1 is satisfied from Eq.
s14d. Thus,Tc in Eq. s15ad can be solved explicitly to give

Tc < Tc0 +
4Qsr

A
−

1

A«
−

2D

Ahsd + h/6d
for f = 0, s16ad

and

Tc < Tc0 +
4Qsr

A
−

2D

Ahsd + h/6d
for f = 1. s16bd

Thus, independent of the contact condition, the critical
temperature decreases monotonically as the film thicknessh
decreases. The corresponding CCT can be obtained by put-
ting Tc=0 in Eqs.s16ad and s16bd, and solving forh,

hcc <
2D

dfs4Qsr + ATc0d − «−1g
for

f = 0 sdielectric contactsd, s17ad

hcc <
2D

ds4Qsr + ATc0d
for

f = 1 sshort-circuit electrodesd. s17bd

Equationss17ad ands17bd show that the CCT decreases
with decreasing surface relaxationsi.e., increasing extrapola-
tion lengthdd, for both contact conditions. In addition, the
short-circuit boundaries, with a smaller depolarization field,
gives a lower CCT than the dielectric boundaries. Further-
more,hcc may become negative ifsr is negative and large.
Both results can be predicted from physical considerations.

2. Asymptotic solutions for thick films „i.e., h šd…
with fGc™1

In the neighborhood ofkch<p, the left-hand side of Eq.
s12d can be approximated by cotsxd<sp /2d−x. This ap-
proximation yields
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kc <
p

h + 2d
−

2fGc

ph
. s18d

Since the conditionkch<p is satisfied whenh@d and
fGc!1, kc in Eq. s18d is a solution of Eq.s12d for thick
films with a small depolarization field. In this case, an ex-
plicit relation of Tc can be obtained from Eq.s11d, which,
taking into accountd!h andfGc!1, can be solved forTc

to give

Tc < Tc0 +
4Qsr

A
−

D

A
Sp

h
D2

. s19d

The behaviors ofTc in Eqs.s16ad, s16bd, ands19d are similar.
As the film thicknessh is reduced, its critical temperature
decreases monotonically.

The corresponding CCT is given by

hcc <Î p2D

s4Qsr + ATc0d
. s20d

It is interesting to note that, even for thick films, the con-
straint of the substrate and the surface relaxation cannot be
neglected as long as there is a surface in the sample. Further-
more,hcc may become imaginary ifsr is negative and suffi-
ciently large.

B. Enhanced surface polarization: The d<0 case

In rare cases, polarization may be enhanced, instead of
reduced, on the surface of some materials. In this case,d
,0, and, similar to thed.0 case, discussed in the forego-
ing, the solution of Eq.s7d can be written as

D = evctwvc
szd. s21d

The eigenvaluevc is given by

vc = MF− AsT − Tc0d + 4Qsr −
1

«
+ Dk2G . s22d

The eigenfunction is given bywvc
szd=D0fcoshskzd+Rg, with

R= –
2Mf

«hkhMf4Qsr − AsT − Tc0dg − vcj
sinhSkh

2
D . s23d

The cooling critical temperatureTc is obtained by putting
vc=0 in Eq. s22d,

Tc = Tc0 +
4Qsr

A
−

1

A«
+

D

A
kc

2, s24d

wherekc is related to the film thickness through the boundary
conditions in s6d, as the largest root, corresponding to the
highestTc, of the equation

kch cothSkch

2
D = kc

2hg +
2f

«f4Qsr − AsTc − Tc0dg
, s25d

where we have definedg;−d.0. Similar to thed.0 case,
h andkc can be shown to vary inversely with each other in
general. This behavior in Eq.s24d leads to a value ofTc that
decreases as the film thicknessh increases, i.e., opposite to
the d.0 case. Physically, the reason for this behavior is
clear, as caused by the enhanced polarization on the surface.

The major difference between thed.0 andd,0 cases
lies in the sign for the polarization gradient in the two cases.
In the d,0 case, the enhanced surface polarization, as rep-
resented by the positive gradient term, together with the mis-
fit interaction of the transformation strainsif sr .0d, favors
the ferroelectric state over the paraelectric state. From Eq.
s24d, it is clear that unless the depolarization field caused by
the surface-induced chargessthe «−1 termd is sufficiently
large,Tc cannot be zero as long as a solution ofkc in Eq. s25d
exists, independent of the film thickness.

The foregoing results show that, if the polarization is
enhanced on the surface, i.e.,d,0, a positive value of the
CCT in ferroelectric materials need not exist, and in such a
case, the transition to the ferroelectric state by cooling is
always possible. In this case, the existence of the CCT de-
pends on whether the depolarization field due to the surface-
induced charges is sufficiently large. For the more common
d.0 case, on the other hand, this condition does not have to
hold for the CCT to exist.

1. Asymptotic solutions for thin films, i.e., h ™g

Similar to the case ofd.0, analytic approximations of
the cooling transition temperature and the CCT can also be
derived.

When hkc!1, expanding the left-hand side of Eq.s25d
to second order inhkc, the solution can be written as

kc
2 <

2 − fGc

hsg − h/6d
, s26d

so that

Tc < Tc0 +
4Qsr

A
−

1

A«
+

Ds2 − fGcd
Ahsg − h/6d

. s27d

The validity of solutions26d is satisfied whenh!g. An ex-
plicit solution of Tc from Eq. s27d is given by

Tc < Tc0 +
4Qsr

A
−

1

A«
+

2D

Ahsg − h/6d
for f = 0, s28ad

and

Tc < Tc0 +
4Qsr

A
+

2D

Ahsg − h/6d
for f = 1. s28bd

These expressions show explicitly that, independent of the
contact condition, the critical temperature increases mono-
tonically as the film thicknessh decreases. This is opposite to
the d.0 case. At the same time,Tc for f=1 is positive
definite for any film thicknessh,g /6. In such a case, the
CCT does not exist.

From Eq. s28ad, when the depolarization field is suffi-
ciently large, i.e.,sATc0+4Qsrd,«−1, a solution ofhcc for
Tc=0 exists whenf=0. This is given by

hcc <
2D

gf«−1 − s4Qsr + ATc0dg
for

f = 0 sdielectric boundariesd, s29d

if g /hcc@1/6.

084109-5 B. Wang and C. H. Woo J. Appl. Phys. 97, 084109 ~2005!

Downloaded 20 Mar 2011 to 158.132.161.9. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_and_permissions



It can be seen from the foregoing that the behavior ofhcc

depends strongly on the boundary contact conditions in this
case ofd,0.

2. Asymptotic solutions for thick films „hšg…
with fGc™1

When the solution lies in the neighborhood ofkch.p,
the left-hand side of Eq.s25d can be approximated by
cothsxd<1. This approximation yields

kc
2 < S1

g
−

fGc

h
D2

, s30d

that satisfieskch.p when h@g and fGc!1. An explicit
expression ofTc can be derived by substituting into Eq.s24d,

Tc = Tc0 +
4Qsr

A
−

1

A«
+

D

Ag2, for f = 0 andf = 1.

s31d

In both cases,Tc is independent ofh, and the critical thick-
ness does not exist.

At this point, we note that the analytic results for
second-order transitions,8 obtained using the static
Ginzburg–Landau equation, are consistent with the present
results. Our results are also applicable to first-order transi-
tions from the paraelectric branch to the ferroelectric branch,
yielding, instead of the Curie temperature, the stability limit
of the paraelectric phase during cooling, i.e., the supercool-
ing transition temperature. To obtain the Curie temperature
and the critical thickness, in the following, we will analyze
the stability of the ferroelectric branch and investigate the
stability limit of the ferroelectric phase on heating, i.e., tran-
sitions from the ferroelectric branch to the paraelectric
branch.

IV. STABILITY OF THE FERROELECTRIC STATE
AND TRANSITION CHARACTERISTICS

In the ferroelectric state, the stationary polarization field
Pszd is nonzero, and the corresponding stability equation
fEq. s7dg is no longer the same as that in the paraelectric
state. Treating theP-dependent terms as a perturbation and
expanding in terms of the complete orthonormal set of eigen-
functions of the unperturbed equation, Eq.s7d can be solved
within the first-order perturbation approximation. The eigen-
valuevh in this case is given by

vh = AsT − Tcd + 3sB + 4GQ2dkP2l + 5CkP4l, s32d

where Tc is the supercooling temperature obtained in the
foregoing section, andkPnl is the expectation value ofPn

given by

kPnl =

E
−h/2

h/2

Pnszdwvc

2 szddz

E
−h/2

h/2

wvc

2 szddz

, s33d

where wvc
is the eigenfunction of the unperturbed state.

Since bothP andw peak atz=0, we may approximatekPnl

by P0
n=Pns0d. This approximation is also valid whenP is a

slowly varying function. Thus, we may write

vh = AsT − Tcd + 3sB + 4GQ2dP0
2 + 5CP0

4

= sP0
2 − p1

2dsP0
2 − p2

2d, s34d

wherep1
2 andp2

2 are the two roots of Eq.s34d for vh=0. We
note thatp1

2 and p2
2 can be both real or are complex conju-

gates. In the simplest case that they are real, the stability
condition of the ferroelectric state is satisfied ifP0

2 lies be-
tweenp1

2 and p2
2. In the following, we will consider several

specific cases.
Let us first consider the case in whichC.0. We can

write down the solutions as

p1
2 = –

3s4GQ2 + Bd + d

10C
, p2

2 = –
3s4GQ2 + Bd − d

10C
.

s35d

Hered2 is the discriminant of the quadratic in Eq.s34d, given
by

d2 = 9s4GQ2 + Bd2 − 20ACsT − Tcd. s36d

Note that the rootsp1 andp2 are both functions of tempera-
ture throughd. Let us define a temperatureTch by

Tch = Tc +
9s4GQ2 + Bd2

20AC
. s37d

For temperatures aboveTch, d2,0 andvh has the same sign
asAsT−Tcd, i.e., positive definite. Thus, the ferroelectric sys-
tem will be unstable at temperatures aboveTch.

In the temperature rangeTc,T,Tch, the productp1
2p2

2,
from Eq. s34d, is equal toAsT−Tcd /5C, which is positive
definitesC.0d. In this temperature regime, it can be shown
that d2.0, and the roots in Eq.s35d are real and have the
same sign. In addition, if 4GQ2+B,0, it can be seen from
Eq. s35d that both roots are positive. In this case, bothp1 and
p2 are real, and the ferroelectric state is stable whenP0 lies
betweenp1 and p2. We note that atT=Tch, d2=0 and p1

=p2 so that P0 is uniquely defined. AtT=Tc, the smaller
solution becomes zero. Within this temperature regime,
which is above the cooling para-ferroelectric transition tem-
peratureTc, the ferroelectric state is still stable, andTch can
be identified as the superheating transition temperature. This
difference between the heating-up and cooling-down behav-
iors is well known for first-order phase transformations near
the critical point, and is caused by the restraint on the real-
ization of the transformation strain, in the present case by the
rigidity of the substrate through the 4GQ2 term.

In the case when 4GQ2+B.0, bothp1
2 andp2

2 are nega-
tive, andP0 has no real solution in this temperature regime.
In this case, the ferroelectric state does not exist for tempera-
tures aboveTc, and the ferroelectric state cannot be super-
heated beyond the cooling transition temperatureTc. We note
that whenT=Tc, the largest solution is zero.

At temperatures belowTc, the product of the two roots is
negative, and thus only one of them, the largest one, can be
positive. For the ferroelectric state to be stable,P0 must be
smaller than the only real root. The system here then behaves
as a typical second-order system.

084109-6 B. Wang and C. H. Woo J. Appl. Phys. 97, 084109 ~2005!

Downloaded 20 Mar 2011 to 158.132.161.9. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_and_permissions



Thus, in the caseC.0, the order of para-ferroelectric
transition in a thin film depends not on the sign ofB but on
the sign ofB+4GQ2. Since 4GQ2 is positive, a film made of
a first-order bulk material may exhibit a second-order transi-
tion behavior if the constraint due to the substrate is suffi-
ciently large.

Plotted in Figs. 1sad and 1sbd as a function of tempera-
ture for various film thicknesses are the regions of stability
of P0 for PbTiO3 according to the conditionp2, P0,p1

from Eqs. s35d and s36d. Figure 1sad shows the case of a
freestanding film, whereas Fig. 1sbd shows the film on a
SrTiO3 substrate. It is obvious that the constraint of the sub-
strate weakens the polarization of the ferroelectric state, re-
duces the Curie temperature, and changes the first-order tran-
sition of the ferroelectric material into a second-order one.

It is interesting that the difference between the super-
heating and supercooling transition temperatures is insensi-
tive to the film thicknessh. This behavior is also seen in the
numerical solution of the static Ginzburg–Landau equation
for the first-order phase transition of a freestanding ferroelec-
tric film.13 These results show that the two temperatures,
plotted as a function of film thickness, are practically paral-
lel.

The case of materials withC=0 can also be easily ana-
lyzed using Eq.s34d, which becomes

vh = AsT − Tcd + 3sB + 4GQ2dP0
2. s38d

If B+4GQ2.0, vh is positive definite forT.Tc, and the
system is unstable. ForT,Tc, the system is stable as long as
P0

2,AsTc−Td /3s4GQ2+Bd. This system behaves like a
second-order system. For the rare case in whichB+4GQ2

,0, the ferroelectric state is stable in the temperature range
T,Tc−3sB+4GQ2d /A, which is above the supercooling
transition temperatureTc. This system thus behaves like a
first-order system, with a superheating temperatureTch=Tc

−3sB+4GQ2d /A. The caseC,0 rarely happens and will not
be considered. At any rate, the foregoing analysis can be
repeated easily for this case also.

Analytic expressions of the Curie temperature and the
corresponding critical thickness for first-order transitions can
thus be obtained by replacingTc0 with Tc0+9sB
+4GQ2d2/20AC in the respective equations in Sec. III.

V. DISCUSSIONS

The following discussions refer to the specific examples
of PbTiO3 and BaTiO3. Straightly speaking, the foregoing
results only apply to uniaxial ferroelectrics and not so much
to cubic perovskites such as PbTiO3 and BaTiO3. However,
even for these perovskite ferroelectric thin films, the polar-
ization field is often found to be perpendicular to the surface
due to the mechanical constraint of the substrate.14

The material parameters for the free energy expressions
of PbTiO3 and BaTiO3 film are listed in Table I. The critical
thickness of the thin film atTc=0 can be calculated using
Eqs. s11d and s12d, following the usual assumption of a re-
duced polarization field on the surface, i.e.,d.0.

We consider a BaTiO3 film, epitaxially grown on a thick
SrRuO3/SrTiO3 substrate. In SI units, the elastic compliance
components of a BaTiO3 film are16 s11=s22=s33=8.3
310−12, s12=s13=s23=−2.7310−12, andQ=−0.043. If stress
relaxation during fabrication is neglected, the misfit strain
can reach 2%, corresponding to a misfit compressive stress
of 3.57 GPa. From the second term of Eq.s11d, this large
compressive misfit stress may raise the Curie temperature by
an unrealistic value of 900°. Experimentally, Yanaseet al.17

measured a Curie temperature of 350 °C. Compared with an
inherent Curie temperature of BaTiO3 of 130 °C, one may
estimate that the Curie temperature is raised only by 220 °C,
corresponding to a misfit stress and strain to be 852 MPa and
0.00477, respectively. In the first-principles calculation of
Junquera and Ghosez,1 the critical thickness of BaTiO3 under

FIG. 1. sad The stable area of the ferroelectric to paraelectric transition of a
freestanding PbTiO3 film. sbd The stable area of the ferroelectric to paraelec-
tric transition of a PbTiO3 film on a SrTiO3 substrate.

TABLE I. Phenomenological parameters of PbTiO3 and BaTiO3 sin c g s
unitd.

Material Tc0 sKd A 10−5 D 10−15 d snmd «

PbTiO3 763a 8.37b 3b 5b 210c

BaTiO3 397a 7.4b 0.5b 0.5 200d

aReference 6.
bReference 7.
cReference 15.
dReference 16.
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short-circuit boundary conditions was found to have a value
of about 2.4 nm. The corresponding extrapolating length can
be estimated by numerically solving Eqs.s11d and s12d si-
multaneously, giving a value ofd<0.5 nm, which satisfies
d!h. We note that the small extrapolating length physically
means that the tetragonal phase on the surface becomes al-
most central symmetric due to lattice relaxation, resulting in
a large reduction in the polarization on the surface. The de-
polarizing effect so arises does not come from the usual de-
polarization field due to induced electric charges on the sur-
face. Indeed, Eq.s20d shows explicitly that this is the case.
Thus, even with zero depolarizing charges, i.e., both the third
term on the right-hand side of Eq.s11d and the last term in
Eq. s12d vanish, a solution ofhc for these equations may still
exist, as can be seen explicitly in Eqs.s17ad ands17bd, which
is independent of the depolarization field. This conclusion is
independent of the contact conditions.

From the numerical solution of Eq.s13d, the relation
between the critical thickness and the extrapolation length of
BaTiO3/SrRuO3/SrTiO3 is shown in Fig. 2. The decrease of
the extrapolation lengthd decreases the surface polarization
and causes the critical thickness to increase. The correspond-
ing analytic approximations for the cases ofd.0, andhc

!d or hc@d are derived in Eqs.s17d ands21d, respectively.
Using values from Table I, these equations givehcsnmd
=3.5–2d and hcsnmd=2.2/d, respectively. Despite their
simple forms, these expressions give a very good description
of the system, as shown by comparing with the numerical
solution in Fig. 2.

In the first-principles calculations of Ghosez and Rabe2

for s001d PbTiO3films, a stable nonferroelectric ground state
cannot be observed for films with thicknesses down to
<1.2 nmsthree unit cellsd, suggesting the possibility that the
critical thickness may not exist in this case. Ghosez and
Rabe’s work2 also showed that the calculated polarization
was enhanced on the surface, implying a value ofd,0. Our
analysis in Sec. III B shows that in such cases, a critical
thickness indeed may not exist for the short-circuit boundary
conditions. Furthermore, in such a case, the Curie tempera-
ture should increase with decreasing thickness. Since surface
stress relaxation in this calculation has not been taken into

account, it is not unreasonable to speculate that the surface
polarization calculated in Ref. 2, may be overestimated. A
proper treatment of the relaxation may produce a positive
value ofd. Indeed, Streifferet al.,14 who measured the Curie
temperatures as a function of film thickness up to 50 nm of
epitaxial films of PbTiO3, grown on a SrTiO3 s001d substrate
si.e., f=0d, found that the Curie temperature decreased with
decreasing film thickness, indicating a reduced polarization
on the surface corresponding to a positive value ofd.

Assuming the film is fully strained epitaxially, with a
compressive epitaxial strain of«xx=«yy=1.2%,14 and elastic
compliance components ofs11=8.3310−12 N/m2 and s12

=−2.5310−12 N/m2,18 the epitaxial stresses can be calcu-
lated to besr =sxx=syy=−2.42933109 N/m2. Substituting
the epitaxial stresses into Eq.s11d with the parameters in
Table I and using the electrostrictive coefficientQ=−0.026
sin SI unitd,18 the Curie temperature is found to increase by
about 335 K. The transition temperature is a function of film
thicknesssin nanometersd, as given by Eqs.s11d ands12d sfor
f=0d. The results are shown in Fig. 3, together with the
experimental points of Streifferet al.14 The transition tem-
perature can be calculated analytically using Eqs.s16bd and
s20d for large and small values ofh, respectively. For PbTiO3
these equations can be put into the simple formsTc

=1041–36000/h2 for h.20 nm, andTc=1041–1440/h for
h,20 nm,h being in units of nanometer, using the param-
eters in Table I. It can be seen that this simple relationship
describes the experimental data very well. Plotted together in
the dotted line is the theoretical prediction used for compari-
son by Streifferet al.14 The difference between the two the-
oretical results in the small film thickness regime is obvious.
We note that in the foregoing analysis the elastic strain en-
ergy, being proportional to«0

2, P4, is assumed negligible in
comparison with the interaction energy between the epitaxial
stress and the transformation strain. The calculated Curie
temperature versus thickness for PbTiO3 thin films under the
two contact conditions is shown in Fig. 4. For films with the
same thickness, those on the dielectric substrates have Curie
temperatures slightly lower than on short-circuit electrodes
due to the screened depolarization effect in the latter case.

VI. SUMMARY AND CONCLUSIONS

A thermodynamic model has been developed to describe
the critical parameters in the ferroelectric transformation in

FIG. 2. The critical thickness vs the extrapolation length for BaTiO3, where
‘+’ describes the approximationhcsnmd=2.2/d.

FIG. 3. The Curie temperature vs thicknessh.
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thin films, such as the Curie temperature and critical thick-
ness. By analyzing the conditions of dynamic instability of
the time-dependent Ginzburg–Landau equation, we obtain
analytic expressions for both first-order and second-order
transitions for the relationship among the epitaxial stresses,
the surface-charge-induced depolarization, the electrome-
chanical contact conditions, the film thickness, and the Curie
temperature. From this relation, analytic expressions for the
critical thickness are also derived. Despite the simple form of
these expressions, they give very good description of the
system, as shown by comparing with the numerical solu-
tions.

Our analysis yields the following conclusions:

s1d Four factors influence the dependence of the para-
ferroelectric transition on film thickness in thin films:sad
surface lattice relaxation,sbd induced surface charge,scd
interaction of epitaxial stress with transformation strain,
and sdd restraint of the transformation strain.

s2d The restraint of the transformation strain due to the ri-
gidity of the substrate weakens the polarization of the
ferroelectric state, reduces the Curie temperature, and
may even cause a thin film made of first-order ferroelec-
tric material to undergo a second-order transition.

s3d Enhanced or reduced polarization on the surface due to
the effects of the lattice relaxation and the epitaxial
stress plays an important role in determining the Curie
temperature and the critical thickness. In the case where
surface polarization is enhanced, the Curie temperature
is increased and the critical thickness reduced, as the
film thickness decreases. It opposes the effect of the de-
polarization field due to the induced surface charges, the
sole presence of which is not sufficient to guarantee the
existence of a positive value of the critical thickness. In
the reduced case, the opposite is true.

s4d For first-order transitions, the difference between the su-
perheating and supercooling transition temperatures is
found to be insensitive to the film thickness and surface
boundary conditions.
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APPENDIX: DEPOLARIZATION FIELD
IN THE FERROELECTRIC THIN FILM
BETWEEN TWO DIELECTRIC SUBSTRATES

The thin film is assumed to be infinite along thex andy
directions with a thicknessh. Consider a unit positive charge
acting at sz8 ,r8 ,u8d in the film, the electric potential at
sZ,R,ud in the film has been derived by Wang and Woo as
follows:19

GsxW,xW8d =
1

4pa

1

fsZ − z8d2 + r2g1/2

+
1

4pa0
o
n=0

` H c1

fsz1 + 2nhd2 + r2g1/2

+
c2

fsz2 + 2nhd2 + r2g1/2 +
c3

fsz3 + 2nhd2 + r2g1/2

+
c4

fsz4 + 2nhd2 + r2g1/2Jbn, sA1d

where,a0, a2, anda are the dielectric constant of the upper
and lower substrates and of the film, respectively,

c1 =
s1 − a/a0dsa0/a − a0/a2d

s1 + a/a0ds1 + a/a2d
,

c2 =
s1 − a0/ad
s1 + a/a0d

,

c3 = −
s1 − a0/ads1 − a/a2d
s1 + a/a0ds1 + a/a2d

c4 =
sa0/a2 − a0/ad

s1 + a/a2d
,

b =
s1 − a/a0ds1 − a/a2d
s1 + a/a0ds1 + a/a2d

, sA2d

and

z1 = 2h + Z − z8,

z2 = Z + z8,

z3 = 2h − Z + z8,

z4 = 2h − sZ + z8d. sA3d

r = fR2 + sr8d2 − 2Rr8 cossu − u8dg1/2. sA4d

From Eq.sA1d, one can derive the electric potential at
sZ,R,ud in the film if a unit dipole along thez axis acts at
sz8 ,r8 ,u8d in the film as

FIG. 4. The Curie temperature vs thickness under different boundary
conditions.
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GpsxW,xW8d =
]GsxW,xW8d

]z8
. sA5d

This result for a single dipole can be readily generalized to a
distribution of polarizationPsz8d as follows:

Fd =E E
V
E GpsxW,xW8dPsxW8ddxW8

=E E
V
E ]G

]z8
Psz8ddxW8

=E E
V
E H ]

]z8F ]G

]z8
E

0

z8
PsxddxG

−
]2G

]sz8d2E
0

z8
PsxddxJdxW8 = E0 +

1

a
E

0

z

Psxddx, sA6d

andE0 is a constant. In fact, the first integral in Eq.sA6d can
be reduced to a surface integral on the upper and lower sur-
faces of the film. By integratingr from zero to infinity, it
becomes a constant. As for the second integral in Eq.sA6d,
since]2G/]sz8d2=dsxW −xW8d / s4pad, one can derive the result
easily. The depolarization field can be derived as follows:

Ed = −
]Fd

]z
= −

P

a
. sA7d

One should bear in mind that the expansionsA1d is not suit-
able for the case with upper and lower electrodes for which
a0, a2→` andb=1.
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