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ABSTRACT 9 

Accurately modelling rainfall-runoff (R-R) transform remains a challenging task despite 10 

that a wide range of modeling techniques, either knowledge-driven or data-driven, have 11 

been developed in the past several decades. Amongst data-driven models, artificial neural 12 

network (ANN)-based R-R models have received great attentions in hydrology 13 

community owing to their capability to reproduce the highly nonlinear nature of the 14 

relationship between hydrological variables. However, a lagged prediction effect often 15 

appears in the ANN modeling process. This paper attempts to eliminate the lag effect 16 

from two aspects: modular artificial neural network (MANN) and data preprocessing by 17 

singular spectrum analysis (SSA). Two watersheds from China are explored with daily 18 

collected data. Results show that MANN does not exhibit significant advantages over 19 

ANN. However, it is demonstrated that SSA can considerably improve the performance 20 

of prediction model and eliminate the lag effect. Moreover, ANN or MANN with 21 

antecedent runoff only as model input is also developed and compared with the ANN (or 22 

MANN) R-R model. At all three prediction horizons, the latter outperforms the former 23 

regardless of being coupled with/without SSA. It is recommended from the present study 24 

that the ANN R-R model coupled with SSA is more promising.   25 
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1. Introduction 30 

The rainfall-runoff relationship is one of the most complex hydrological 31 

phenomena to comprehend, owing to the tremendous spatial and temporal variability of 32 

watershed characteristics and precipitation patterns, and to the number of variables 33 

involved in the modeling of the physical process (Kumar et al., 2005). Since the rational 34 

method for peak of discharge was developed by Mulvany (1850), numerous hydrologic 35 

models have been proposed. Based on the description of the governing processes, these 36 

models can be classified as either physically-based (knowledge-driven) or system 37 

theoretic (data-driven). Physically-based models involve a detailed interaction of various 38 

physical processes controlling the hydrologic behavior of a system. However, system 39 

theoretic models are instead based primarily on observations (measured data) and seek to 40 

characterize the system response from those data using transfer functions. As an example 41 

of system theoretic models, ANN-based R-R models have received great attentions in the 42 

last two decades due to their capability to reproduce the highly nonlinear nature of the 43 

relationship between hydrological variables. 44 

The potential of ANN in hydrological modeling was reviewed, for example, by the 45 

ASCE Task Committee on Application of the ANNs in hydrology (ASCE, 2000), Maier 46 

and Dandy (2000), and Dawson and Wilby (2001). Most applications for river flow 47 

prediction consist in modeling the R-R transformation, providing input of past flows and 48 

precipitation observations. They have proved that ANNs are able to outperform traditional 49 

statistical R-R modeling (Hsu et al, 1995; Shamseldin, 1997; Sajikumar and 50 
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Thandaveswara, 1999; Tokar and Johnson, 1999; Coulibaly et al., 2000; Sudheer et al., 51 

2002) and to offer promising alternatives for conceptual R-R models (Hsu et al, 52 

1995; Tokar and Johnson, 1999; Coulibaly et al., 2000; Dibike and Solomatine, 53 

2001; Birikundavyi et al., 2002; de Vos and Rientjes, 2005; Toth and Brath, 2007). Hsu et 54 

al. (1995) showed that the ANN model provided a better representation of the rainfall-55 

runoff relationships than the ARMAX time series model or the conceptual SAC-SMA 56 

(Sacramento soil moisture accounting) models. Coulibaly et al. (2000) used the early 57 

stopping method, to train multi-layer perceptrons (MLP) for real-time reservoir inflow 58 

prediction. Results show that MLP can provide better model performance compared to 59 

benchmarks from the classic autoregressive model coupled with a Kalman filter 60 

(ARMAX-KF) and a conceptual model (PREVIS). Birikundavyi et al. (2002) investigated 61 

the ANN models for daily streamflow prediction and also showed that ANNs 62 

outperformed PREVIS and ARMAX-KF. Toth and Brath (2007) investigated the impact 63 

of the amount of the training data on model performance using ANN and a conceptual 64 

model (ADM). ANN was proved to be an excellent tool for the R-R simulation of 65 

continuous periods, provided that an extensive set of hydro-meteorological data was 66 

available for calibration purposes. However, compared with ANN, ADM may allow a 67 

significant prediction improvement when focusing on the prediction of flood events and 68 

especially in case of a limited availability of the training data. 69 

Improvement of model performance is a long-term topic of interest by researchers 70 

when ANN is used to simulate the R-R relationship. It is recognized that the ANN model 71 

is data dependent and has a flexible structure, which leaves huge room for the 72 

improvement of ANN in the context of R-R prediction. The ANN model is highly 73 

sensitive to the studied data, which means that the structure of ANN is totally different 74 

with the change of the training data. Besides, the training algorithms, model configuration, 75 
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and data preprocessing techniques also impose wide influences on the model performance. 76 

Hsu et al. (1995) found that the ANN models underestimated low flows and 77 

overestimated medium flows when they were used to simulate the R-R relationship. They 78 

further mentioned that this might have been due to the models not being able to capture 79 

the nonlinearity in the rainfall-runoff process and suggested that there is still room for 80 

improvement in applying different algorithms, such as stochastic global optimization and 81 

genetic algorithms, to reach near global solutions, and achieve better model performances. 82 

Hence, a more effective and efficient ANN R-R model was developed by Jain and 83 

Srinivasulu (2004) where ANN was trained by using real-coded GAs. Results showed that 84 

the proposed approach could significantly improve the estimation accuracy of the low-85 

magnitude flows. 86 

On the other hand, Zhang and Govindaraju (2000) recently pointed out that the 87 

rainfall-runoff mapping in a watershed can be fragmented or discontinuous with 88 

significant variations over the input space because of the functional relationships between 89 

rainfall and runoff being quite different for low, medium, and high magnitudes of 90 

streamflow. They found a single ANN to be rigid in nature and not suitable in capturing a 91 

fragmented input-output mapping. In order to overcome this problem they designed a 92 

modular neural network (MANN) consisting of three different ANN models for low-, 93 

medium-, and high-magnitude flows. Inspired by this study, many modular (or hybrid) 94 

models have been developed for R-R simulation. Solomatine and Xue (2004) applied an 95 

approach where separate ANN and M5 model-tree basin models were built for various 96 

hydrological regimes (identified on the basis of hydrological domain knowledge). Jain 97 

and Srinivasulu (2006) also applied decomposition of the flow hydrograph by a certain 98 

threshold value and then built separate ANNs for low and high flow regimes. Corzo and 99 

Solomatine (2007) investigated three modular ANNs for simulating two decomposed flow 100 



Journal of Hydrology, Vol. 399, No. 3-4, 2011, pp. 394–409. 

5 

regimes, base flow and exceeding flow, depending on three different partitioning schemes: 101 

automatic classification based on clustering, temporal segmentation of the hydrograph 102 

based on an adapted baseflow separation technique, and an optimized baseflow separation 103 

filter. The modular models were shown to be more accurate than the global ANN model. 104 

The best modular model was the one using the optimized baseflow filtering equation. 105 

Evidently, all studies demonstrated that modular models generally made higher accuracy 106 

of prediction than global models built to represent all possible regimes of the modeled 107 

system. Hence, MANN continues to be examined in the present study. 108 

When a rainfall or runoff (streamflow or discharge) time series is viewed as a 109 

combination of quasi-periodic signals contaminated by noises to some extent, a cleaner 110 

time series can be filtered by appropriate data preprocessing techniques such as singular 111 

spectrum analysis (SSA). Obviously, the predictability of a system can be improved by 112 

predicting the important oscillations (periodic components) taken from the system. For 113 

the purpose of cleaning rainfall or runoff series, many data preprocessing techniques, 114 

including Moving average (MA), Principal component analysis (PCA), wavelet analysis 115 

(WA), and singular spectrum analysis (SSA), have been employed in hydrology field by 116 

researchers (Sivapragasam et al., 2001; Marques et al., 2006; Hu et al., 2007; Partal and 117 

Kişi, 2007; Sivapragasam et al., 2007; Wu et al., 2010). Hu et al. (2007) employed PCA 118 

as an input data preprocessing tool to improve the prediction accuracy of the rainfall-119 

runoff neural network models. The use of WA to improve rainfall forecasting was 120 

conducted by Partal and Kişi (2007). Their results indicated that WA was promising. Wu 121 

et al. (2010) compared MA, PCA and SSA as data preprocessing methods using ANN for 122 

rainfall predictions and found that SSA is preferred. SSA has also been recognized as an 123 

efficient preprocessing algorithm to avoid the effect of discontinuous or intermittent 124 

signals, coupled with neural networks (or similar approaches) for time series forecasting 125 
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(Lisi et al., 1995; Sivapragasam et al., 2001; Baratta et al., 2003). For example, Lisi et al. 126 

(1995) applied SSA to extract the significant components in their study on southern 127 

oscillation index time series and used ANN for prediction. They reconstructed the original 128 

series by summing up the first ‘‘p” significant components. Sivapragasam et al. (2001) 129 

proposed a hybrid model of support vector machine (SVM) and SSA for rainfall and 130 

runoff predictions. The hybrid model resulted in a considerable improvement in the model 131 

performance in comparison with the original SVM model. However, few studies employ 132 

SSA to filter rainfall and streamflow so as to generate cleaner inputs for an R-R model. 133 

Therefore, one of main purposes in this study is to develop an ANN (or MANN) R-R 134 

model coupled with SSA. To evaluate its performance, a linear regression (LR) R-R 135 

model and an ANN-based time series model (using antecedent runoff as only input 136 

variables) are developed as benchmarks. To ensure wider applications of conclusions, two 137 

river basins from China, Wuxi and Luishui, are explored. 138 

This paper is structured in the following manner. Followed by Introduction, the 139 

study areas are described and modeling methods are presented. Section 3 presents their 140 

applications to two watersheds. The optimal model is identified and the implementation 141 

of SSA is described. In Section 4, main results are shown along with necessary 142 

discussions. Section 5 summarizes main conclusions in this study.  143 

2. Methodology 144 

2.1 Study Area and Data 145 

Two river basins from China, Daning and Lushui, are considered as case studies.  146 

The Daning River, a first-order tributary of the Yangtze River, is located in the 147 

northeast of Chongqing city. The collected daily data includes rainfall, runoff (or 148 

streamflow), and evaporation. The data period spans 20 years from January 1, 1988 to 149 

December 31, 2007. The daily rainfall data are measured at six rain gauges located at the 150 
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upstream of the basin. The upstream part is controlled by “Wuxi” hydrology station, with 151 

a drainage area of around 2 000 km2

Each prediction model is a lumped type, namely, the watershed is considered as a 163 

whole, the input rainfall being the mean areal precipitation over the watershed by 164 

Thiessen polygon method and the output being the runoff measured at the control 165 

hydrology station. The entire input-output dataset in each watershed is partitioned into 166 

three data subsets as training set, cross-validation set and testing set: the first half of the 167 

entire data as training set and the first half of the remaining data as cross-validation set 168 

and the other half as testing set. The training set serves the model training and the testing 169 

set is used to evaluate the performances of models. The cross-validation set has dual 170 

functions: one is to implement an early stopping approach so as to avoid overfitting of the 171 

training data, and another is to select some best predictions from a large number of 172 

ANN’s runs. Ten best predictions are selected from twenty ANN’s runs in the present 173 

study. Moreover, ANN employs the hyperbolic tangent function as transfer functions in 174 

both hidden and output layers. 

. The data of runoff and evaporation are gathered at 152 

“Wuxi” station (hereafter the studied area is denoted by “Wuxi”). The Lushui River, 153 

located in the southeast of Hubei province, is also a first-order tributary of the Yangtze 154 

River. The collected daily data includes runoff and rainfall. The data period covers a 4-155 

year long duration (January 1, 2004 - December 31, 2007). The runoff data from Lushui 156 

River are collected at “Chongyang” hydrology station. The daily rainfall data are 157 

measured at eight rain gauges located at the drainage area controlled by Chongyang 158 

hydrology station. The drainage area controlled by the station is around 1 700 km2 159 

(hereafter the studied area is referred to as “Chongyang”). Figure 1 demonstrates rainfall 160 

and runoff (or streamflow) time series in two basins. The data represents various types of 161 

hydrological conditions, and flow range from low to very high.  162 

Table 1 presents statistical information on rainfall and 175 
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streamflow data, including mean (µ ), standard deviation ( xS ), coefficient of variation 176 

( vC ), skewness coefficient ( sC ), minimum ( minX ), and maximum ( maxX ). Obviously, 177 

the training data cannot fully include the cross-validation and testing data in terms of 178 

Wuxi. It’s recommended that all data be scaled to the interval [-0.9, 0.9] instead of [-1, 1] 179 

which is the range of the hyperbolic tangent function. The advantage of using [-0.9, 0.9] 180 

is that some extreme data occurring outside the range of the training data may be 181 

accommodated in the mapping of ANN.  182 

2.2 Singular spectrum analysis 183 

According to Golyandina et al. (2001), the basic SSA consists of two stages: 184 

decomposition and reconstruction. The decomposition stage involves two steps: 185 

embedding and singular values decomposition (SVD); the reconstruction stage also 186 

comprises two steps: grouping and diagonal averaging. Consider a real-valued time series 187 

{ }1 2, , , NF x x x=   of length ( 2)N > . Assume that the series is a nonzero series, viz. there 188 

exists at least one i  such that 0ix ≠ . Four steps are briefly presented as follows.  189 

1st step: embedding 190 

The embedding procedure maps the original time series to a sequence of multi-191 

dimensional lagged vectors. Let L  be an integer (window length), 1 L N< < , and τ  be 192 

the delayed time as the multiple of the sampling period. The embedding procedure forms 193 

( 1)n N L τ= − −  lagged vectors { }2 ( 1), , , ,
T

i i i i i Lx x x xτ τ τ+ + + −=X  , where R L
i ∈X , and 194 

1,2, ,i n=  . The ‘trajectory matrix’ of the time series is denoted by 195 

[ ]1 i n= X X XX    having lagged vectors as its columns. In other words, the 196 

trajectory matrix is 197 
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  (1) 198 

If 1τ = , the matrix X  is called Hankel matrix since it has equal elements on the 199 

‘diagonals’ where the sum of subscripts of row and column is equal to a constant. If 1τ > , 200 

the equal elements in X  are not definitely in the ‘diagonals’.  201 

2nd step: SVD 202 

Let T=S XX . Denoted by 1λ,λ, ,λ L  the eigenvalues of S  taken in the 203 

decreasing order of magnitude ( 1 3λλλλ0 L≥ ≥ ≥ ≥ ≥ ) and by 1 2, , , LU U U  the 204 

orthonormal system of the eigenvectors of the matrix S  corresponding to these 205 

eigenvalues. If we denote λT
i i i i=V UX ( 1, ,i L=  ) (equivalent to the thi eigenvector of 206 

TX X ), then the SVD of the trajectory matrix X can be written as  207 

    1 L= + +X X X      (2) 208 

where λ T
i i i i= U VX . The matrices iX  have rank 1; therefore they are elementary matrices. 209 

The collection ( λ, ,i i iU V ) will be called thi eigentriple of the SVD. Note that iU  and iV  210 

are also thi  left and right singular vectors of X , respectively. 211 

3rd step: grouping 212 

The purpose of this step is to appropriately identify the trend component, 213 

oscillatory components with different periods, and structureless noises by grouping 214 

components. This step can be also skipped if one does not want to precisely extract 215 

hidden information by regrouping and filter of components. 216 

The grouping procedure partitions the set of indices {1, , }L  into m  disjoint 217 

subsets 1, , mI I , so the elementary matrix in Eq. (2) is regrouped into m  groups. Let 218 
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1{ , , }pI i i=  . Then the resultant matrix IX  corresponding to the group I is defined as 219 

1 pI i i= + +X X X . These matrices are computed for 1, , mI I  and substituting into Eq. (2) 220 

one obtains the new expansion 221 

    
1 mII= + +X X X      (3) 222 

The procedure of choosing the sets 1, , mI I  is called the eigentriple grouping.  223 

4th step: Diagonal averaging 224 

The last step in the Basis SSA transforms each resultant matrix of the grouped 225 

decomposition (3) into a new series of length N . The diagonal averaging is to find equal 226 

elements in the resultant matrix and then to generate a new element by averaging over 227 

them. The new element has the same position (or index) as that of these equal elements in 228 

the original series. As mentioned in the step 1, the concept of ‘diagonal’ is not true for 229 

1τ > . Regardless of the value of τ  larger than or equal 1, the principle of reconstruction 230 

is the same. For 1τ = , the diagonal averaging can be carried out by formula 231 

recommended by Golyandina et al. (2001). Let Y  be a ( L n× ) matrix with elements ijy , 232 

1 i L≤ ≤ , 1 j n≤ ≤ . Make * min( , )L L n= , * max( , )n L n= and ( 1)N n L τ= + − . Let 233 

*
ij ijy y=  if L n<  and *

ij jiy y=  otherwise. Diagonal averaging transfers matrix Y  to a 234 

series 1 2{ , , , }Ny y y  by the following equation: 235 

  
*

*

*

* *
, - 1

1

* * *
, - 1*

1

- 1
* *

, - 1
- 1

1 1

1

1
- 1

k

m k m
m

L

k m k m
m

N K

m k m
m k K

y for k L
k
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L
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N k

+
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+
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  (4) 236 
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Eq. (4) corresponds to averaging of the matrix elements over the ‘diagonals’ 1i j k+ = + . 237 

The diagonal averaging, applied to a resultant matrix Ik
X , produces a N − length series kF , 238 

and thus the original series F  is decomposed into the sum of m series: 239 

     1 mF F F= + +     (5) 240 

As mentioned above, these reconstructed components (RCs) can be associated with the 241 

trend, oscillations or noise of the original time series with proper choices of L and the sets 242 

of 1, , mI I . Certainly, if the third step (namely, grouping) is skipped, F can be 243 

decomposed into L RCs.  244 

2.3 Model development 245 

A representative data-driven R-R model can be defined as 246 

    
1 2 31 1 1

ˆ ( ) ( , , )t T t t l t l t lQ f f Q R S+ + − + − + −= =X   (6) 247 

where ˆ
t TQ +  stands for the predicted flow at time instance t T+ ; T (with 1,2,3T =  for the 248 

present study) refers to how far into the future the runoff prediction is desired; 
11t lQ + −  is 249 

the antecedent flow (up to 11t l+ −  time steps), 
21t lR + −  is the antecedent rainfall (up to 250 

21t l+ −  time steps) and 
31t lS + −  ( up to 31t l+ − time steps) represents any other factors 251 

contributing to the true flow t TQ + , such as evaporation or temperature; 1l  , 2l  , 3l and  252 

respectively stand for the number of previous flow, rainfall and other factors. The 253 

predictability of future behavior is a consequence of the correct identification of the 254 

system transfer function of ( )f • . Herein, linear regression and nonlinear regression (e.g. 255 

ANN) techniques are respectively used to approximate the ( )f • . 256 

(1) LR 257 

 The LR model herein is actually called stepwise linear regression (SLR) model 258 

because the forward stepwise regression is used to determine optimal input variables. The 259 
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basic idea of SLR is to start with a function that contains the single best input variable and 260 

to subsequently add potential input variables to the function one at a time in an attempt to 261 

improve model performance. The order of addition is determined by using the partial 262 

-F test values to select which variable should enter next. The high partial -F value is 263 

compared to a (select or default) -F to-enter value. After a variable has been added, the 264 

function is examined to see if any variable should be deleted. More details can be found 265 

in Draper and Smith (1998) and McCuen (2005). 266 

(2) ANN 267 

The multilayer perceptron network is by far, among ANN paradigms, the most 268 

popular, which usually uses the technique of error back propagation to train the network 269 

configuration. The architecture of the ANN consists of a number of hidden layers and a 270 

number of neurons in the input layer, hidden layers and output layer. ANNs with one 271 

hidden layer are commonly used in hydrologic modeling (Dawson and Wilby, 2001; de 272 

Vos and Rientjes, 2005

1m h× ×

) since these networks are considered to provide enough 273 

complexity to accurately simulate the nonlinear-properties of the hydrologic process. The 274 

three-layer ANN can be denoted by where m stands for number of neuron in the 275 

input layer and h  is the number of neuron in the hidden layer. According to Eq. (6), 276 

1 2 3m l l l= + + . The ANN prediction model is formulated as 277 

 0
1 1

ˆ ( , , , , ) ( )
j

h m
out

t T t j i t j
j i

Q f w m h w wθ θ ϕ θ+
= =

= = + +∑ ∑X X   (7) 278 

where ϕ  denotes transfer functions; jiw  are the weights defining the link between the ith  279 

node of the input layer and the jth  of the hidden layer; jθ  are biases associated to the 280 

jth  node of the hidden layer; 
j

outw
 
are the weights associated to the connection between 281 

the jth  node of the hidden layer and the node of the output layer; and 0θ  is the bias at the 282 
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output node. To apply Eq. (7) to runoff predictions, appropriate training algorithm is 283 

required to optimize w  and θ . 284 

(3) MANN 285 

To construct MANN, the training data have to be divided into several clusters 286 

according to cluster analysis techniques, and then each single model is applied to each 287 

cluster. The fuzzy c-means (FCM) clustering technique is adopted in the present study 288 

(e.g., Bezdek, 1981, Wang et al., 2006). It is able to generate either soft or crisp clusters. 289 

Predictions from a modular model can be conducted in two ways: soft and hard. Soft 290 

prediction means that the testing data can belong to each cluster with different weights. 291 

As a consequence, the modular model output would be a weighted average of the outputs 292 

of several single models fitted for each cluster of training data. Hard prediction is that the 293 

modular model output is directly from the output of only triggered local model. ANN (or 294 

similar techniques) is unable to extrapolate beyond the range of the data used for training. 295 

Otherwise, poor predictions or predictions can be expected when a new input data is 296 

outside the range of those used for training. Hard prediction method is, therefore, adopted 297 

in this study.  298 

Figure 2 displays the schematic diagram of MANN where the training data is 299 

partitioned into three clusters. Once input-output pairs are obtained, they are first split 300 

into three subsets by the FCM technique, and then each subset is approximated by a single 301 

ANN. The final output of the modular model results directly from the output of one of 302 

three local models. 303 

2.4 Implementation framework of R-R prediction  304 

Figure 3 illustrates the implementation framework of rainfall-runoff prediction 305 

where four prediction models can be conducted in two modes: without/with three data 306 

preprocessing methods (dashed box). These acronyms in the column of “methods for 307 
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model inputs” represent five methods to determine model inputs: LCA (linear correlation 308 

analysis, Sudheer et al., 2002), AMI (average mutual information, Fraser and Swinney, 309 

1986), PMI (partial mutual information, May et al., 2008), SLR (stepwise linear 310 

regression), and MOGA (ANN based on multi-objective genetic algorithm, Giustolisi and 311 

Simeone, 2006

2.5 Evaluation of model performances 313 

).  312 

The Pearson’s correlation coefficient (r) or the coefficient of determination (R2 = 314 

r2), have been identified as inappropriate measures in hydrologic model evaluation by 315 

Legates and McCabe (1999). The coefficient of efficiency (CE) (Nash and Sutcliffe, 1970) 316 

is a good alternative to r or R2 as a “goodness-of-fit” or relative error measure in that it is 317 

sensitive to differences in the observed and predicted means and variances. Legates and 318 

McCabe (1999) also suggested that a complete assessment of model performance should 319 

include at least one absolute error measure (e.g., RMSE) as necessary supplement to a 320 

relative error measure. Besides, the Persistence Index (PI) (Kitanidis And Bras, 1980) was 321 

adopted here for the purpose of checking the prediction lag effect. Three measures are 322 

therefore used in this study. They are listed below. 323 

2 2

1 1

ˆCE 1- ( - ) / ( - )
n n

i i i
i i

Q Q Q Q
= =

= ∑ ∑     (8) 324 

2
1

1 ˆRMSE ( - )n
i ii

Q Q
n =

= ∑      (9) 325 

2 2
-

1 1

ˆPI 1- ( - ) / ( - )
n n

i i i i l
i i

Q Q Q Q
= =

= ∑ ∑     (10) 326 

In these equations, n  is the number of observations, ˆ
iQ  stands for predicted flow, iQ  327 

represents observed flow, Q  denotes average observed flow, and -i lQ  is the flow estimate 328 

from a persistence model (or termed naïve model) that basically takes the last flow 329 
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observation (at time i  minus the lead time l ) as the prediction. CE  and PI  values of 1 330 

stands for perfect fits. A small value of PI may imply the occurrence of the lag prediction. 331 

3. Applications of Models 332 

3.1 Potential input variables  333 

In the process of determining model inputs, the first step is to find out appropriate 334 

input variables (causal variables) for Eq. (6). In general, causal variables in the R-R 335 

relationship can be rainfall (precipitation), previous flows, evaporation, temperature etc. 336 

Depending on the availability of data, the input variables tend to be varied in previous 337 

studies. Most studies employed rainfall and previous flow (or water level) as inputs 338 

(Campolo et al., 1999; Liong et al., 2002; Xu and Li, 2002; Sivapragasam et al., 2007) 339 

whereas input variables in some studies also included additional factors such as 340 

temperature or evaporation (Abrahart et al., 1999; Tokar and Johnson, 1999; Zealand et al, 341 

1999; Zhang and Govindaraju, 2000; Coulibaly et al., 2001; Abebe and Price, 342 

2003; Solomatine and Dulal, 2003;Wilby et al., 2003; Hu et al., 2007; Toth and Brath, 343 

2007; Solomatine and Shrestha, 2009).  344 

The necessity of previous flows in model inputs was widely recognized by 345 

researchers (Campolo et al., 1999; de Vos and Rientjes, 2005). Campolo et al. (1999) 346 

made use of distributed rainfall data observed at different raingauge stations for the 347 

prediction of water levels at the catchment outlet. Poor predicted results were achieved 348 

when only water levels were used as input. However, the accuracies of predictions were 349 

improved when rainfall and previous water levels were included in inputs. de Vos and 350 

Rientjes (2005) employed different model inputs as hydrological state representation of 351 

ANN. Results also showed that the ANN model with rainfall input variable only had the 352 

worst performance compared to those whose input variables consisting of rainfall, flow 353 

and/or other states.    354 
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However, some studies pointed out that evaporation (or temperature) as input 355 

variable seemed to be unnecessary (Abrahart et al., 2001; Anctil et al., 2004; Toth and 356 

Brath, 2007). Anctil et al. (2004) found that potential evapotranspiration failed to improve 357 

the MLP performance when it was introduced into the initial model inputs consisting of 358 

rainfall and streamflow for R-R modeling. Results from Toth and Brath (2007) also 359 

indicated that the inclusion of potential evapotranspiration values in inputs did not 360 

improve the prediction results, but gave rise to a slight deterioration in comparison with 361 

the use of precipitation data alone. That result may be explained by the fact that the 362 

addition of evapotranspiration (or temperature measures) input nodes increases the 363 

network complexity, and therefore the risk of overfitting. In the present experiments, 364 

analyses of LCA, AMI, and PMI between evaporation and streamflow indicate that 365 

evaporation can be excluded since the dependence relation is not significant. Therefore, 366 

rainfall and streamflow are identified as final input variables.  367 

3.2 Selection of model inputs  368 

Having chosen appropriate input variables, the next step is the determination of 369 

appropriate lags for each variable to form model inputs. ANN, equipped with Levernberg-370 

Marquardt training algorithm and hyperbolic tangent transfer functions, is used as the 371 

benchmark model to examine five input methods.  372 

Figure 4 demonstrates the results of LCA of the runoff series for Wuxi and 373 

Chongyang. The partial auto-correlation function (PACF) value decayed within the 374 

confidence band around at lag 5 for Wuxi and lag 4 for Chongyang. Therefore, the 375 

number 1l  of lags of flow was initially set at the value of 5 for Wuxin and 4 for 376 

Chongyang. The number 2l  of lags of rainfall is generally determined according to time 377 

of concentration of the watershed. The time of concentration used herein is estimated 378 

between the center of hyetograph and the peak flow. The average time of concentration is 379 
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approximately 1 day for Wuxi and Chongyang. To take account of delay between rainfall 380 

and runoff, the value of 2l  is originally set to 5 for both Wuxi and Chongyang. Table 2 381 

presents the results of ANN with different model inputs determined by LCA, AMI, PMI, 382 

SLR and MOGA. These results are based on one-step-ahead flow prediction (i.e. t+1Q̂  383 

where t  represents the present time instance). In terms of RMSE, there is no salient 384 

difference among all five methods. However, our experiments reveal that the ANN with 385 

inputs from LCA outperforms the others in the SSA scenario. Moreover, LCA can 386 

significantly reduce the effort and computational time requirement in developing an ANN 387 

model. The LCA method is therefore adopted for the later analysis. Figure 5 illustrates 388 

cross correlation functions (CCFs) between rainfall and streamflow for Wuxi and 389 

Chongyang. The past five rainfall observations have significant relations (correlation 390 

coefficient > 0.2) with the present streamflow. The most significant correlation occurs at 391 

the first lag which indicates the time of response of watershed being about 1 day.  392 

 393 

3.3 Identification of models 394 

The model identification of a prediction model is to determine the structure by 395 

using training data to optimize relevant model parameters once model inputs are already 396 

obtained. 397 

(1) LR  398 

LR can be viewed as a model-driven model which has known model structure. 399 

Model identification only consists in optimizing the coefficient of each input. The 400 

stepwise linear regression (SLR) technique was used to concurrently determine the model 401 

inputs and the corresponding coefficients. With model inputs already obtained by SLR in 402 

Table 2, the LR model at one-step lead for Wuxi and Chongyang can expressed 403 

respectively as Eq. (11),  404 
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− − −

= − + + + +
+ +
+

+
   (11) 405 

and Eq. (12), 406 

 1 3 3 2 10.032 0.526 0.099ˆ 0.053 0.037 0.454t t t t t t tQ Q Q R R R R+ − − − −= + + + + +     (12) 407 

(2) ANN and MANN 408 

As a three-layer MLP was adopted, the identification of ANN’s structure is to 409 

optimize the number of hidden nodes h  in the hidden layer when the model inputs have 410 

been determined by LCA and there is a unique model output. The optimal size h  of the 411 

hidden layer is found by systematically increasing the number of hidden neurons from 1 412 

to 10 until the network performance on the cross-validation set no longer improves 413 

significantly. The identified configurations of ANN were 10-8-1 for Wuxi and 9-9-1 for 414 

Chongyang, respectively (presented in Table 2). The same method is used to identify 415 

three local ANNs in MANN. As a consequence, the structures of MANN are 10-4/4/2-1 416 

for Wuxi and 9-3/3/1-1 for Chongyang, respectively.  417 

In order to perform multi-step-ahead predictions, two methods are available: (1) 418 

re-using a one-step-ahead prediction as input into the network, after which it predicts the 419 

two-step-ahead prediction, and so forth, and (2) by directly having the multi-step-ahead 420 

prediction as output. The former and the latter are respectively termed the dynamic model 421 

and static model. For simplification, the static model is adopted herein. 422 

3.4 Decomposition of rainfall and runoff series by SSA 423 

To filter raw rainfall and runoff series, each series needs to be decomposed into 424 

components with the aid of SSA. The decomposition by SSA requires identifying the 425 

parameter pair ( , Lτ ). The choice of L  represents a compromise between information 426 

content and statistical confidence (Elsner and Tsonis, 1996). The value of an appropriate 427 

L  should be able to clearly resolve different oscillations hidden in the original signal. 428 
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However, the present study does not require accurately resolving the raw rainfall signal 429 

into trends, oscillations, and noises. A rough resolution can be adequate for the separation 430 

of signals and noises where some leading eigenvalues should be identified. To select L , a 431 

small interval of [3, 10] was examined in the present study.  432 

A target L  can be empirically determined in accordance with a specified criterion: 433 

the singular spectrum under the target L  can be distinguished markedly, i.e. singular 434 

values forming the singular spectrum are quite different from each other. Figure 6 435 

illustrates the sensitivity analysis of the singular spectrum on L  for rainfall and 436 

streamflow series from two basins of Wuxi and Chongyang. Singular values of both 437 

rainfall and flow series in the Wuxi watershed are clearly separated. Clearly, in terms of 438 

the criterion, L  can be arbitrarily chosen from 3 to 10. To obtain a more robust ANN 439 

model, it is recommended that a larger L  be taken which results in more combinations of 440 

RCs in the process of seeking the optimal model inputs. Thus, the final L  is set at the 441 

value of 9 for the Wuxi rainfall, 7 for the Wuxi flow, 7 for both Chongyang rainfall and 442 

flow. Figure 6 highlights the singular spectrum curve associated with the selected L  in 443 

the dotted line.  444 

Figure 7 shows the results of sensitivity analysis of the singular spectrum on the 445 

lag time τ  using SSA with the chosen L . The singular spectrum can be clearly 446 

distinguished at 1τ = . Therefore, the final parameter pair (τ , L ) in SSA was set as (1, 9) 447 

for the Wuxi rainfall, and (1, 7) for the other three series. Thus, each rainfall or flow 448 

series can be decomposed into RCs with these identified parameter pair.  449 

3.5 Combination of models with SSA  450 

Once an input (rainfall or runoff) time series is decomposed into RCs, the 451 

subsequent task is to filter RCs by finding contributing RCs from all existing RCs to 452 

model output, and then reconstruct a new input series by summing these contributing RCs. 453 



Journal of Hydrology, Vol. 399, No. 3-4, 2011, pp. 394–409. 

20 

There is no practical guide on how to identify a contributing or noncontributing 454 

component to the improvement of accuracy of prediction. Apparently, a single higher-455 

frequency component may be noncontributing. However, the situation may become 456 

complicated with the combination of components and change of the prediction horizon. 457 

For example, one component viewed as contribution to one-step-ahead prediction may 458 

have a negative impact on two-step-lead prediction. Nevertheless, the combined signal of 459 

several high-frequency RCs may yield a better input/output mapping than a low-460 

frequency RC. Therefore, an enumeration method is recommended where all input 461 

combinations from rainfall (or runoff) are examined. If the number of RCs is L , there are 462 

2L combinations. For instance, there are 92 combinations for the Wuxi rainfall series in 463 

view of 9L = . It should also be noticed that the enumeration method may be 464 

computationally intensive if L is a large number, say 20 or 30.  465 

Since input variables consist of rainfall and flow, the filtering procedure has to be 466 

conducted separately for each variable. Taking ANN with SSA (hereafter referred to as 467 

ANN-SSA) as an example, two new ANN models need to be established for the purpose 468 

of RCs’ filtering, one for rainfall input and the other for runoff input. For the convenience 469 

of identification, the ANN model for rainfall input filtering is denoted by ANN-RF, and 470 

the ANN model for runoff input filtering is referred to as ANN-QF. ANN-RF has the 471 

same model output as that of the original ANN model and its model input is the same as 472 

the rainfall part of the original ANN model inputs. Likewise, the ANN-QF model input is 473 

from the runoff part of the original ANN model inputs, and both of them have the same 474 

model output variable. Depending on trial and error, ANN-RF and ANN-QF can be 475 

identified. For example, ANN-RF was 5-3-1 for Wuxi and 5-4-1 for Chongyang, 476 

respectively, and ANN-QF was 5-4-1 for Wuxi and 4-1-1 for Chongyang, respectively. 477 

Similarly, LR-RF and LR-QF were also developed for the RCs filtering of both rainfall 478 
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and runoff series in the context of LR. Table 3 presents the RCs filtering results of input 479 

variables of rainfall and runoff for both LR-SSA and ANN-SSA (or MANN-SSA). Two 480 

basic conclusions can be drawn from Table 3 in the context of SSA: one is that ANN-SSA 481 

outperforms LR-SSA with the same model inputs; the model with only runoff input, 482 

either LR-SSA or ANN-SSA, performs better than that with only rainfall input. Therefore, 483 

inclusion of flow in model inputs proves to be imperative in R-R prediction. 484 

4. Results and Discussions 485 

 Results of R-R prediction are respectively presented according to the normal mode 486 

and SSA mode. In each mode, three models of LR, ANN, and MANN are compared by 487 

three model performance indices. In the SSA mode, three models are referred to as LR-488 

SSA, ANN-SSA, and MANN-SSA.  489 

4.1 Predictions in normal mode 490 

As observed from Table 4, all models except for LR for Chongyang have made 491 

one-step-ahead predictions with a high CE over 0.7. This indicates that causal variables of 492 

model output have been accurately selected for this prediction horizon. The performance 493 

of each model deteriorates abruptly with the increase of prediction horizons, which may 494 

indicate the adoption of inappropriate model inputs. Basically, it is intuitive that a poor 495 

prediction on the testing set may result from the lack of similar patterns between the 496 

training set and testing set. Conversely, an excellent prediction probably means that there 497 

are a large number of similar patterns between them. For example, all models perform 498 

better using the Wuxi data than using the Chongyang data since the former has a large 499 

size training data (ten years) which allows models to be appropriately trained. A 500 

conclusion can also be drawn that ANN (or MANN) tends to be superior to LR if the 501 

mapping relation is identified appropriately. The superiority of MANN over ANN seems 502 

to be dependent on the studied data.       503 
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Figure 8 illustrate representative details of hydrographs and whole scatter plots of 504 

one-step-ahead prediction using three prediction models for Wuxi and Chongyang, 505 

respectively. The scatter plot from the LR model with high spread at low magnitude flows 506 

indicates poor predictions of low flows compared with scatter plots from both ANN and 507 

MANN. ANN and MANN fairly underestimate or overestimate peak flows, but reproduce 508 

low flows appropriately because low flows are more frequent in the data set than large 509 

flows.  510 

In order to set up a relative optimal model for runoff prediction, some researchers 511 

carried out runoff predictions depending on ANN (or similar techniques) with two 512 

different inputs: inputs with antecedent runoffs only; and inputs with both antecedent 513 

rainfalls and runoffs. For example, Minns (1998) observed a phase shift error in 514 

prediction outputs when antecedent discharge values were the only inputs used to predict 515 

present discharge. However, models developed using discharge and rainfall inputs were 516 

not observed to exhibit phase shift errors. Sivapragasam et al. (2007) respectively used 517 

GP (genetic programming) and ANN to predict river flows from one- up to four-step 518 

leads with the two types of inputs. Results indicated that the model with rainfall and flow 519 

as inputs, regardless of GP or ANN, made more accurate prediction than that with only 520 

flow input. In this study, we will extend this comparison from the normal mode to the 521 

SSA mode.   522 

According to the same method to construct ANN or MANN in the context of 523 

rainfall-runoff transformation as mentioned procedures in Section 3, identified ANNs 524 

with only runoff inputs are 5-3-1 for Wuxi, and 4-8-1 for Chongyang, and identified 525 

MANNs with only runoff inputs are 5-10/10/4-1 for Wuxi, and 4-8/8/5-1 for Chongyang. 526 

In the SSA mode, parameter pair (τ , L ) is also (1, 7) for each of them.  527 
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Table 5 presents comparison of runoff predictions using ANN and MANN with 528 

two types of inputs: past flow as the only input variable, and previous rainfall and flow as 529 

input variables. It can be observed that, for the study case of Wuxi, the inclusion of 530 

rainfall in input results in the improvement of model performance irrespective of ANN 531 

and MANN. However, the degree of the improvement mitigates with the increase of 532 

prediction leads. This may indicate that the influence of rainfall on runoff gradually 533 

weakens with the increase of prediction horizons. An opposite result was found by 534 

Sivapragasan et al. (2007) in which the influence of rainfall on runoff (the time resolution 535 

of the data is fortnightly) gradually increased with increasing prediction lead. Employing 536 

the data with an hourly time resolution, Toth and Brath (2007) investigated the 537 

performance of ANN in two types of inputs. They found that ANN with the inclusion of 538 

rainfall in input outperformed ANN with only flow as input at all prediction leads from 1 539 

hour up to 12 hours. Actually, whether or not rainfall is introduced to input heavily relies 540 

on the characteristic of the studied watershed. In general, inclusion of rainfall in input 541 

could be helpful in improving accuracy of predictions if the prediction lead is less than 542 

the average time of concentration. The time of concentration can be roughly identified by 543 

the AMI (or CCF) analysis between available rainfall and flow data, and it approximately 544 

equals the maximum AMI (or CCF). As shown in Figure 5, the time of concentration in 545 

each basin is around one day. If the time resolution of data is hourly-based, the time of 546 

concentration can be approximated to hours but days. Therefore, the inclusion of rainfall 547 

in input has led to a noticeable improvement of accuracy of one-day-ahead prediction. In 548 

this regard, a more detailed analysis will be addressed in the section of discussions.       549 

The hydrograph of one-step-ahead prediction is presented in Figure 9. The ANN 550 

model with only flow input makes the lagged predictions whereas the ANN model with 551 

rainfall and flow as inputs eliminates the lag effect. However, with the increase of 552 
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prediction leads, each of two types of ANN yields a prediction lag effect as shown in 553 

Figure 10, which indicates the effect of rainfall on model output being markedly mitigated.   554 

4.2 Predictions in SSA mode 555 

Table 6 presents the results of R-R predictions for Wuxi and Chongyang using 556 

three prediction models coupled with SSA. Compared with the results of Table 4, the SSA 557 

technique brings about a significant improvement of model performance at all three 558 

prediction horizons. Models of ANN and MANN outperform the LR model, but the 559 

MANN model exhibits no superiority over the ANN model. 560 

The representative details of hydrograph and whole scatter plots of one-step-ahead 561 

prediction for Wuxi and Chongyang are shown in Figure 11. These results show that three 562 

models with SSA are able to make good predictions because the predicted hydrograph 563 

perfectly reproduces the actual hydrograph and the scatter plots are close to the exact line 564 

with rather a low spread. It can be observed from the hydrograph that the LR-SSA model 565 

produces some negative predictions for the low flows and ANN-SSA and MANN-SSA 566 

occasionally make negative predictions at the low-flow points. The peak values are still 567 

overestimated or underestimated although each model with SSA exhibits excellent overall 568 

performances. 569 

Table 7 presents comparison of two types of model inputs feeding ANN-SSA and 570 

MANN-SSA. ANN-SSA (or MANN-SSA) fed by rainfall and flow performs better than 571 

the corresponding model fed by only flow at all prediction leads. It is observed that the 572 

advantage of models with rainfall and flow inputs over those with flow input only 573 

becomes more obvious with increasing prediction leads, which indicates that SSA 574 

improves the dependence relation more significantly between rainfall and flow than that 575 

between flows itself. The model output may therefore depend more on rainfall inputs 576 

instead of flow itself when the prediction lead is larger than one day.    577 
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Figure 12 illustrates one-step-ahead prediction hydrographs for Wuxi and 578 

Chongyang using ANN-SSA in two types of inputs. ANN-SSA with rainfall and flow 579 

inputs better captures the peak flows, and reproduces the actual hydrograph more 580 

smoothly whereas the hydrograph from ANN-SSA with flow input only is serrated at 581 

some locations. It is found that there is no time shift between the predicted hydrograph 582 

and the actual one. Figure 13 demonstrates the results of lag effect analysis at all three 583 

prediction horizons by depicting CCF between observation and prediction. SSA 584 

eradicates the prediction lag effect in the ANN model regardless of model input types. 585 

Moreover, it can be observed that the CCF curve in ANN-SSA with rainfall and flow 586 

inputs is more symmetrical than that in ANN-SSA with only flow input, which reveals 587 

that predictions in the former is in better agreement with the observations in time.  588 

4.3 Discussions 589 

The following discussions focus on two aspects: investigating the difference 590 

between two types of model inputs for runoff prediction, and investigating the effect of 591 

SSA on the R-R ANN model inputs.  592 

a) Analysis of model inputs 593 

As shown in Table 5, ANN with rainfall and flow inputs performs better than that 594 

with flow input only at all prediction leads, but the improvement of model performance 595 

decreases abruptly at a two-step lead. A direct explanation for that phenomenon is that the 596 

impact of rainfall on runoff weakens suddenly at two-step-ahead prediction, which can be 597 

examined by AMI and CCF between model inputs and output.  598 

Figure 14(a) presents AMI between each input and output of ANN in two model 599 

input scenarios for the Wuxi study case. The number of model inputs in the abscissa axis 600 

consists of 5 previous flow data and 4 previous rainfall data. The former 5 inputs stand for 601 

5 past flows and the latter 5 inputs denote 5 past rainfall observations. In contrast, all 10 602 
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model inputs (actually 5) in the flow input scenario are the past 10 flow observations. 603 

First of all, it is clearly shown from all three sub-plots that AMI associated with each 604 

model input decreases significantly with an increase in the prediction lead, which may 605 

indicate decrease of the overall dependence relation between model inputs and output. 606 

Therefore, it provides a potential explanation for the trend in Table 6 that the accuracy of 607 

the prediction decreases with the increase of prediction horizons. Secondly, the nearest 608 

rainfall observation (the sixth model input in each plot) to the prediction horizon has the 609 

maximum AMI, so inclusion of such input improves the prediction. Some of the other 610 

rainfall inputs also have reasonably larger AMI compared to that of flow inputs, and they 611 

also contribute to the improvement of model performance. 612 

Figure 14(b) shows AMI of each input and output of ANN with two types of 613 

inputs for the Chongyang study case. Regarding ANN in rainfall and flow inputs, the first 614 

4 model inputs in the abscissa axis are from the past flows and the latter 5 inputs represent 615 

the 5 last rainfall observations. As far as ANN with flow input only is concerned, the first 616 

4 model inputs in the abscissa axis are the actual inputs. It can be observed that, AMI of 617 

each model input and output between two-step-ahead and three-step-ahead predictions is 618 

similar and very small regardless of the input scenario. Moreover, the holistic AMI from 619 

rainfall inputs does not dominate over the overall AMI from flow inputs. Therefore, 620 

inclusion of such rainfall inputs may only make the training process computation 621 

intensive without any tangible improvement in prediction accuracy. As a consequence, 622 

the model performance of ANN with two types of inputs is similarly poor for both two- 623 

and three-step-ahead predictions (depicted as Table 5). On the contrary, for one-step-624 

ahead prediction, the nearest two rainfall inputs have large AMIs which are only smaller 625 

than the AMI of the immediate past flow input. As expected, their inclusion in model 626 
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inputs improves the overall mapping between inputs and output of ANN, making one-627 

step-ahead prediction with good accuracy.   628 

The static multi-step prediction method is adopted in this study. The poor 629 

prediction at two- or three-step-ahead horizon using ANN with rainfall and flow as inputs 630 

may be improved by adopting a dynamic ANN model instead of the current static ANN 631 

model. In the dynamic ANN model, the predicted flow and rainfall in the last step are 632 

used as the nearest flow and rainfall inputs in the present prediction step, and then a 633 

multi-step prediction becomes a repeated one-step prediction. However, de Vos and 634 

Rientjes (2005) mentioned that for both the daily and hourly data the two multi-step 635 

prediction methods performed nearly similar up to a lead time of respectively 4 days and 636 

12 hours. Similarly, the results from Yu et al. (2006) for hourly data also showed that two 637 

methods could yield similar predictions.       638 

b) Investigation of the SSA effect on model inputs  639 

 Herein, the effect of SSA on inputs of an ANN R-R model is investigated by AMI 640 

between each input and output of model. Results of prediction from the ANN R-R model 641 

with the normal mode (shown in Tables 4 or 5) show that the flows at one-step lead are 642 

predicted appropriately whereas poor predictions are obtained at two- or three-step lead. 643 

Correspondingly, it can be observed from Figure 15(a) that AMI associated with each 644 

model input for one-step prediction is far larger than the counterparts for two- or three-645 

step predictions. Figure 15(b) shows that SSA improved AMI of each input at all three 646 

prediction horizons. The AMI curve of filtered inputs between one- and two-step 647 

predictions is very similar, which may indicate similar model performance (shown in 648 

Tables 6 or 7 where the model performance at the two prediction leads is also quite 649 

similar). Therefore, the AMI analysis proves to be able to reveal the suitability of a 650 

prediction model to some extent. Figure 15(b) also reveals that AMI at one-step 651 
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prediction is far larger than that at two- and three-step leads. So the prediction accuracy at 652 

the former is markedly superior to that in the latter (shown in Tables 4 or 5). In the SSA 653 

mode, AMI of each input is considerably improved at all prediction horizons, which 654 

renders the ANN-SSA R-R model good predictions (shown in Tables 6 or 7) in 655 

comparison to that in the normal mode. 656 

5. Conclusions  657 

This study has predicted daily rainfall-runoff transformation from two different 658 

watersheds, namely Wuxi and Chongyang, through three models (viz. LR, ANN and 659 

MANN) in conjunction with SSA. Rainfall and runoff are firstly identified as appropriate 660 

input variables, and then model inputs are selected by LCA after comparison with the 661 

other four methods of determining model inputs. The model performance seems to be 662 

sensitive to the studied case in the normal mode. For Wuxi, the MANN R-R model 663 

(namely, rainfall and runoff as inputs) outperforms the ANN R-R model and the ANN R-664 

R model performs better than the LR R-R model at all three prediction horizons. For 665 

Chongyang, the ANN R-R model performs the best among three models at one-step lead. 666 

However, they are similar at the other two prediction horizons. In the SSA mode, the 667 

performance of each model is significantly improved. Both ANN-SSA and MANN-SSA 668 

have similar performance and achieve better results than LR-SSA. 669 

The ANN R-R model is also compared with the ANN model with only runoff 670 

input. The ANN R-R model outperforms the ANN model with only flow input in both the 671 

normal mode and SSA mode. The degree of superiority tends to mitigate with the increase 672 

of prediction leads in the normal mode. However, situation becomes reverse in the SSA 673 

mode where the advantage of the ANN R-R model seems to be more remarkable with the 674 

increase of prediction leads. It is recommended from the present study that the ANN R-R 675 

model coupled with SSA is more promising. 676 



Journal of Hydrology, Vol. 399, No. 3-4, 2011, pp. 394–409. 

29 

 677 

References: 678 

Abebe, A.J., and Price, R.K. (2003), Managing uncertainty in hydrological models using 679 

complementary models. Hydrological Sciences Journal-Journal des Sciences 680 

Hydrologiques, 48 (5), 679-692. 681 

Abrahart, R.J., See, L.M., and Kneale, P.E. (1999), Using pruning algorithms and genetic 682 

algorithms to optimise network architectures and forecasting inputs in a neural network 683 

rainfall-runoff model. Journal of Hydroinformatics, 1, 103-114. 684 

Abrahart, R.J., See, L.M., and Kneale, P.E. (2001), Applying saliency analysis to neural 685 

network rainfall-runoff modelling. Computers and Geosciences, 27, 921-928. 686 

Anctil, F., Perrin, C., and Andréassian, V. (2004), Impact of the length of observed 687 

records on the performance of ANN and of conceptual parsimonious rainfall-runoff 688 

forecasting models. Environmental Modeling and Software, 19, 357-368. 689 

ASCE. (2000), Artificial neural networks in hydrology 2: Hydrology applications. Journal 690 

of Hydrologic Engineering, 5(2), 124-137.  691 

Baratta et al., Baratta, D., Cicioni, G., Masulli, F. and Studer, L. (2003), Application of an 692 

ensemble technique based on singular spectrum analysis to daily rainfall forecasting. 693 

Neural Networks, 16, 375-387. 694 

Bezdek, J.C. (1981), Pattern Recognition with Fuzzy Objective Function Algorithms. 695 

Plenum Press, New York. 696 

Birikundavyi, S., Labib, R., Trung, H.T., and Rousselle, J. (2002), Performance of neural 697 

networks in daily streamflow forecasting. Journal of Hydrologic Engineering, 7(5), 392-698 

398. 699 

Campolo, M., Andreussi, P., and Soldati, A. (1999), River flood forecasting with a neural 700 

network model, Water Resources Research, 35 (4), 1191-1197. 701 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6X1W-4M645B2-3&_user=107833&_rdoc=1&_fmt=&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1007967797&_rerunOrigin=google&_acct=C000008378&_version=1&_urlVersion=0&_userid=107833&md5=f3950de84795434b79860a3b48dfb133#bbib1�


Journal of Hydrology, Vol. 399, No. 3-4, 2011, pp. 394–409. 

30 

Corzo, G., and Solomatine, D. (2007), Baseflow separation techniques for modular 702 

artificial neural network modelling in flow forecasting. Hydrological Sciences–Journal–703 

des Sciences Hydrologiques, 52(3), 491-507. 704 

Coulibaly, P., Anctil, F., and Bobée, B. (2000), Daily reservoir inflow forecasting using 705 

artificial neural networks with stopped training approach Journal of Hydrology, 230, 244-706 

257. 707 

Coulibaly, P., Anctil, F., and Bobée, B. (2001), Multivariate reservoir inflow forecasting 708 

using temporal neural networks. Journal of Hydrologic Engineering, 6 (5), 367-376. 709 

Dawson, C.W., and Wilby, R.L. (2001), Hydrological Modeling Using Artificial Neural 710 

Networks. Progress in Physical Geography, 25(1), 80-108. 711 

de Vos, N.J. and Rientjes, T.H.M. (2005), Constraints of artificial neural networks for 712 

rainfall -runoff modeling: trade-offs in hydrological state representation and model 713 

evaluation. Hydrology and Earth System Sciences, 9, 111-126. 714 

Dibike, Y. B. and Solomatine, D. P. (2001), River flow forecasting using artificial neural 715 

networks, Physics and Chemistry of the Earth (B), 26 (1), 1-7, 2001.  716 

Draper, N. R. and Smith, H. (1998), Applied regression analysis, 3rd ed. New York: 717 

Wiley. 718 

Elsner, J., and Tsonis, A. (1996), Singular Spectrum Analysis. A New Tool in Time 719 

Series Analysis. New York: Plenum Press. 720 

Fraser, A.M. and Swinney, H.L. (1986), Independent coordinates for strange attractors 721 

from mutual information, Physical Review A, 33(2), 1134-1140.  722 

Giustolisi, O., and Savic, D. A. (2006), A symbolic data-driven technique based on 723 

evolutionary polynomial regression, Journal of Hydroinformatics, 8(3), 207-222. 724 

Golyandina, N. Nekrutkin,V., and Zhigljavsky, A. (2001), Analysis of Time Series 725 

Structure: SSA and Related Techniques, Chapman & Hall/CRC. 726 



Journal of Hydrology, Vol. 399, No. 3-4, 2011, pp. 394–409. 

31 

Hsu, K.L., Gupta, H.V., and Sorooshian, S. (1995), Artificial neural network modeling of 727 

the rainfall–runoff process. Water Resources Research, 31(10), 2517-2530.  728 

Hu, T.S.,Wu, F.Y., and Zhang, X. (2007), Rainfall-runoff modeling using principal 729 

component analysis and neural network. Nordic Hydrology, 38(3), 235-248.   730 

Jain, A., and Srinivasulu, S. (2004), Development of effective and efficient rainfall-runoff 731 

models using integration of deterministic, real-coded genetic algorithms and artificial 732 

neural network techniques, Water Resource Research, 40, W04302. 733 

Jain, A., and Srinivasulu, S. (2006), Integrated approach to model decomposed flow 734 

hydrograph using artificial neural network and conceptual techniques. Journal of 735 

Hydrology, 317, 291-306. 736 

Kitanidis, P. K. and Bras, R. L. (1980), Real-time forecasting with a conceptual 737 

hydrologic model, 2, applications and results, Water Resources Research, 16 (6), 1034–738 

1044. 739 

Kumar, A.R.S., Sudheer, K.P., Jain, S.K., and Agarwal, P.K. (2005), Rainfall-runoff 740 

modelling using artificial neural networks: comparison of network types. Hydrological 741 

Processes, 19 (6), 1277-1291.  742 

Legates, D. R., and McCabe, Jr, G. J. (1999), Evaluating the use of goodness-of-fit 743 

measures in hydrologic and hydroclimatic model validation, Water Resources. Research, 744 

35(1), 233- 241. 745 

Liong, S. Y., Gautam, T. R., Khu, S. T., Babovic, V., and Muttil, N. (2002), Genetic 746 

programming: A new paradigm in rainfall-runoff modeling. Journal of American Water 747 

Resources Association, 38(3), 705-718. 748 

Lisi, F., Nicolis, and Sandri, M. (1995), Combining singular-spectrum analysis and neural 749 

networks for time series forecasting. Neural Processing Letters, 2(4), 6-10. 750 

Maier H.R., and Dandy G.C. (2000), Neural networks for the prediction and forecasting 751 



Journal of Hydrology, Vol. 399, No. 3-4, 2011, pp. 394–409. 

32 

of water resources variables: a review of modeling issues and applications. Environmental 752 

Modeling and Software, 15, 101-23. 753 

Marques, C.A.F., Ferreira, J., Rocha, A., Castanheira, J., Gonçalves, P., Vaz. N., and Dias, 754 

J.M. (2006), Singular spectral analysis and forecasting of hydrological time series. 755 

Physics and Chemistry of the Earth, 31, 1172-1179. 756 

May, R.J., Maier, H.R., Dandy, G.C., and Fernando, T.M.K. (2008), Non-linear variable 757 

selection for artificial neural networks using partial mutual information. Environmental 758 

Modeling & Software, 23, 1312-1328. 759 

McCuen, R. H. (2005), Hydrologic analysis and design (3rd ed.), Upper Saddle River, NJ: 760 

Pearson/Prentice Hall. 761 

Minns, A. W. (1998), Artificial Neural Networks as Subsymbolic Process Descriptors. 762 

Balkema, Rotterdam, The Netherlands.  763 

Mulvany, T. J. (1850), On the use of self-registering rain and flood gauges. Proc. Inst. Civ. 764 

Eng., 4(2), 1–8. 765 

Nash, J. E. and Sutcliffe, J. V. (1970), River flow forecasting through conceptual models 766 

part I — A discussion of principles. Journal of Hydrology, 10 (3), 282-290. 767 

Sajikumar, N., and Thandaveswara, B.S. (1999), A non-linear rainfall-runoff model using 768 

artificial neural networks. Journal of Hydrology, 216, 32-55. 769 

Shamseldin, A.Y. (1997), Application of a neural network technique to rainfall–runoff 770 

modelling. Journal of Hydrology 199, 272-294. 771 

Sivapragasam, C., Liong, S.Y. and Pasha, M.F.K. (2001), Rainfall and runoff forecasting 772 

with SSA-SVM approach. Journal of Hydroinformatics, 3(7), 141-152. 773 

Sivapragasam, C., Vincent and, P., and Vasudevan, G. (2007), Genetic programming 774 

model for forecast of short and noisy Data. Hydrological Processes, 21, 266-272. 775 

Solomatine, D., and Dulal, K. (2003), Model trees as an alternative to neural networks in 776 

http://dx.doi.org/10.1016/0022-1694(70)90255-6�
http://dx.doi.org/10.1016/0022-1694(70)90255-6�
http://dx.doi.org/10.1016/0022-1694(70)90255-6�


Journal of Hydrology, Vol. 399, No. 3-4, 2011, pp. 394–409. 

33 

rainfall–runoff modelling. Hydrological Sciences Journal, 48(3), 399-411.  777 

Solomatine, D.P., and Shrestha, D.L. (2009), A novel method to estimate model 778 

uncertainty using machine learning techniques. Water Resources Research, 45, W00B11, 779 

doi:10.1029/2008WR006839. 780 

Solomatine, D. P. and Xue, Y. I. (2004), M5 model trees and neural networks: application 781 

to flood forecasting in the upper reach of the Huai River in China. Journal of 782 

Hydrological Engineering, 9(6), 491-501. 783 

Sudheer, K. P., Gosain, A. K., and Ramasastri, K. S. (2002), A data-driven algorithm for 784 

constructing artificial neural network rainfall-runoff models. Hydrological Processes, 16, 785 

1325-1330. 786 

Tokar, A.S., and Johnson, P.A. (1999), Rainfall–runoff modeling using artificial neural 787 

networks. Journal of Hydrologic Engineering, 4(3), 232-239. 788 

Toth, E., and Brath, A. (2007), Multistep ahead streamflow forecasting: Role of 789 

calibration data in conceptual and neural network modeling. Water Resources Research, 790 

43(11), art. no. W11405. 791 

Wang,W., Van Gelder, P.H.A.J.M., Vrijling, J.K. and Ma, J. (2006), Forecasting Daily 792 

Streamflow Using Hybrid ANN Models. Journal of Hydrology, 324, 383-399.   793 

Wilby, R.L., Abrahart, R.J., and Dawson, C. W. (2003), Detection of conceptual model 794 

rainfall-runoff processes inside an artificial neural network. Hydrological Sciences 795 

Journal, 48(2), 163-181. 796 

Wu, C.L., Chau, K.W., Fan, C. (2010), Prediction of rainfall time series using modular 797 

artificial neural networks coupled with data-preprocessing techniques. Journal of 798 

Hydrology, 389 (1-2), 146-167. 799 

Xu, Z.X., and Li, J.Y. (2002), Short-term inflow forecasting using an artificial neural 800 

network model. Hydrological Processes, 16(12), 2423-2439. 801 



Journal of Hydrology, Vol. 399, No. 3-4, 2011, pp. 394–409. 

34 

Yu, P.S., Chen, S.T., and Chang I.F. (2006), Support vector regression for real-time flood 802 

stage forecasting. Journal of hydrology, 328,704-716. 803 

Zealand, C. M., Burn, D. H., and Simonovic, S. P. (1999), Short term stream flow 804 

forecasting using artificial neural networks. Journal of Hydrology, 214, 32-48. 805 

Zhang, B., and Govindaraju, R. S. (2000), Prediction of watershed runoff using Bayesian 806 

concepts and modular neural networks. Water Resources Research, 36(3), 753-762. 807 

808 



Journal of Hydrology, Vol. 399, No. 3-4, 2011, pp. 394–409. 

35 

Figure Captions 809 

 810 

Figure 1 Daily rainfall-runoff time series: (a) Wuxi and (b) Chongyang 811 

Figure 2. Flow chart of MANN  812 

Figure 3. Implementation framework of forecasting models  813 

Figure 4. Plots of ACF and PACF of the runoff series with the 95% confidence bounds 814 

(the dashed lines), (a) and (c) for Wuxi, and (b) and (d) for Chongyang 815 

Figure 5. CCFs between rainfall and flow series with the 95% confidence bounds (the 816 

dashed lines): (a) for Wuxi, and (b) for Chongyang. 817 

Figure 6. Singular Spectrum as a function of lag using varied window lengths L from 3 to 818 

10: (a) and (c) for Wuxi, and (b) and (d) for Chongyang.  819 

Figure 7. Sensitivity analysis of singular Spectrum on varied τ : (a) and (c) for Wuxi and 820 

(b) and (d) for Chongyang. 821 

Figure 8. Hydrographs (representative details) and scatter plots of one-step-ahead 822 

prediction for (a) Wuxi and (b) Chongyang. 823 

Figure 9. Hydrographs for one-step-ahead prediction using ANN with two types of inputs: 824 

(a) Wuxi, and (b) Chongyang. 825 

Figure 10. Lag analysis of observation and forecasts of ANN with two types of inputs: (a) 826 

and (c) for Wuxi, and (b) and (d) for Chongyang.  827 

Figure 11. Hydrographs (representative details) and scatter plots of one-step-ahead 828 

prediction in SSA mode for (a) Wuxi and (b) Chongyang.  829 

Figure 12. Hydrographs for one-step-ahead prediction using ANN-SSA with two types of 830 

inputs: (a) Wuxi, and (b) Chongyang. 831 

Figure 13.  Lag analysis of observation and forecasts of ANN-SSA with two types of 832 

inputs: (a) and (c) for Wuxi, and (b) and (d) for Chongyang.  833 
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Figure 14. AMIs between model inputs and output for ANN with two types of inputs 834 

using the data of (a) Wuxi and (b) Chongyang.  835 

Figure 15.  AMIs between model inputs and output for ANN and ANN-SSA in the context 836 

of R-R forecasting using the data of (a) Wuxi and (b) Chongyang.  837 

838 
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Table Captions 839 

Table 1. Statistical information on rainfall and streamflow data  840 

Table 2. Comparison of methods to determine mode inputs using ANN 841 

Table 3. Optimal p RCs of rainfall and runoff input variables at various forecast horizons  842 

Table 4. R-R Model performances at three forecasting horizons in the normal mode  843 

Table 5. Performances of ANN and MANN in two types of input variables 844 

Table 6. Performances of R-R models in the SSA mode 845 

Table 7. Performances of ANN-SSA and MANN-SSA using two types of input variables 846 
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Table 1. Statistical information on rainfall and streamflow data  1 

Watershed and datasets 
Statistical parameters Watershed area and  

data period µ Sx Cv Cs Xmin Xmax

Wuxi        
Rainfall(mm)        

Original data 3.7 10.1 0.36 5.68 0 154 Area:  
Training  3.4 8.9 0.39 4.96 0 102 2 000 km2 

Cross-validation  3.8 10.9 0.35 6.27 0 147 Data period: 
Testing  4.0 11.6 0.35 5.46 0 154 Jan., 1988- Dec., 2007 

runoff(m3/s)        
Original data 61.9 112.6 0.55 7.20 6 2230  

Training  60.6 95.6 0.63 5.90 8 1530  
Cross-validation  60.7 132.2 0.46 8.35 6 2230  

Testing  66.0 122.1 0.54 6.30 10 1730  
Chongyang        
Rainfall(mm)        

Original data 3.1 8.5 0.4 5.7 0.0 122 Area:  

Training  3.5 9.8 0.4 5.7 0.0 122 1 700 km2 

Cross-validation  2.9 7.0 0.4 3.9 0.0 48 Data period: 
Testing  2.6 7.0 0.4 5.6 0.0 78 Jan., 2004- Dec., 2007 

runoff(m3/s)        
Original data 39.1 54.8 0.7 6.4 2.1 881  

Training  48.1 70.1 0.7 5.5 6.9 881  
Cross-validation  35.6 33.7 1.1 2.3 4.4 226  

Testing  24.5 25.7 1.0 5.1 2.1 310   

 2 

3 
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Table 2. Comparison of methods to determine mode inputs using ANN 5 

Watershed Methods   1l  2l  m  Effective  inputs 
Identified 

ANN 
RMSE 

Wuxi                 

 LCA 1 5 5 10 all (10-8-1) 41.98 

 AMI 1 5 5 10 all (10-8-1) 41.98 

 PMI 1 5 5 10 all (10-8-1) 41.98 

 SLR 1 5 5 10 except for Rt-3 (9-5-1) 40.54 

 MOGA 1 5 5 10 
Rt, Rt-1, Rt-2, Rt-3, 
Rt-4, Qt, Qt-1, Qt-4 (8-6-1) 43.23 

Chongyang         
 LCA 1 5 4 9 all (9-9-1) 14.43 

 AMI 1 5 4 9 except for Rt (8-7-1) 14.18 

 PMI 1 5 4 9 except for Rt (8-7-1) 14.18 

 SLR 1 5 4 9 except for Rt-1,t-2,t-4 (6-9-1) 13.54 

  MOGA 1 5 4 9 
Rt, Rt-1, Rt-2, Rt-4,  
Qt, Qt-2, Qt-3 (7-5-1) 13.57 

 6 
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Table 3. Optimal p RCs of rainfall and runoff input variables at various forecast 8 

horizons  9 

Filter  
model 

Prediction 
horizons 

  Wuxi  Chongyang 

 Optimal p RCs RMSE Optimal p RCs RMSE 

LR-RF       

 1  all  RCs 57.13  1  3 25.88  

 2  1  2  3  5a 58.37  1  2  6 25.81  

 3  1  2  3 74.24  1  2  7 25.49  

LR-QF       

 1  1  2  3 35.83  1  2  3 8.92  

 2  1  2 55.94  1  2 13.41  

 3  1  67.60 1  16.60  

ANN-RF       

 1  1  3  4  6  7 49.72  1  3  5  7 18.45  

 2  1  2  3  4  5 52.38  1  3 19.11  

 3  1  2  3  4 60.01  1  2 21.72  

ANN-QF       

 1  1  2  3  4 31.49   1  2  3 11.67  

 2  1  2  7 45.39  1  2 14.97  

  3   3  7 53.55   1   17.26  
Note: a the numbers of “1, 2, 3, 5” stand for RC, RC2, RC4, and RC5, and RC1 is associated with the 10 
maximum eigenvalue, RC2 corresponds to the second largest eigenvalue, etc. 11 

12 



4 

Table 4. R-R Model performances at three prediction horizons in the normal mode  13 

Watershed Model 
  RMSE  CE  PI 
  1*  2*  3*   1  2  3   1  2  3  

Wuxi            
 LR  49.40  89.40 108.90  0.84 0.46 0.21  0.70  0.51  0.39 
 ANN  43.97  87.32 104.94  0.87 0.49 0.26  0.76  0.54  0.43 
 MANN  40.44  71.87 86.54   0.89 0.66 0.50  0.80  0.69  0.61 

Chongyang              
 LR  19.18  22.74 25.53   0.44 0.22 0.01  0.17  0.29  0.24 
 ANN  12.90  25.80 27.81   0.75 0.10 -0.15  0.63  0.10  0.13 
 MANN  13.27  26.86 23.96   0.74 -0.07 0.14  0.61  0.03  0.35 

* The number of “1, 2, and 3” denote one-, two-, and three-step-ahead forecasts  14 
15 
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Table 5. Performances of ANN and MANN in two types of input variables 17 

Watershed 
Input 

variables 
Model 

 RMSE  CE   PI 
 1  2  3   1  2  3    1  2  3  

Wuxi                           
 Rainfall+Flow              

  ANN  43.97 87.32 104.94  0.87 0.49 0.26   0.76  0.54  0.43 

  MANN  40.44 71.87 86.54   0.89 0.66 0.50   0.80  0.69  0.61 

 Flow               

  ANN  81.3 104.6 111.5   0.56 0.27 0.17   0.19  0.33  0.36 

  MANN  75.7 93.7 97.1   0.62 0.41 0.37   0.30  0.46  0.51 

Chongyang               

 Rainfall+Flow              

  ANN  12.90 25.80 27.81   0.75 0.10 -0.15   0.63  0.10  0.13 

  MANN  13.27 26.86 23.96   0.74 -0.07 0.14   0.61  0.03  0.35 

 Flow               

  ANN  20.3 26.1 27.8   0.38 -0.04 -0.18   0.08  0.06  0.10 

    MANN   17.8 22.3 23.4    0.52 0.24 0.17    0.29  0.31  0.36 

 18 
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Table 6. Performances of R-R models in the SSA mode 20 

Watershed Model 
  RMSE  CE  PI 
  1  2  3   1  2  3   1  2  3  

Wuxi                           
 LR-SSA  29.02 44.42 58.34  0.94 0.87 0.77  0.90  0.88  0.82 
 ANN-SSA  25.40 27.10 33.96  0.96 0.95 0.92  0.92  0.96  0.94 
 MANN-SSA  25.08 26.87 34.05  0.96 0.95 0.92  0.92  0.96  0.94 

Chongyang              
 LR-SSA  9.19  13.53 14.61  0.87 0.72 0.68  0.81  0.75  0.75 
 ANN-SSA  6.22  7.08  11.12  0.94 0.93 0.82  0.91  0.93  0.86 
  MANN-SSA   6.42 8.13 13.14  0.94 0.90 0.74  0.91 0.91 0.80 

 21 
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Table 7. Performances of ANN-SSA and MANN-SSA using two types of input variables 23 

Watershed 
 Input 

variables 
Model 

 RMSE  CE   PI 
 1  2  3   1  2  3    1  2  3  

Wuxi                             

 Rainfall+runoff              

  ANN-SSA  25.40 27.10 33.96  0.96 0.95 0.92   0.92  0.96 0.94 

  MANN-SSA 25.08 26.87 34.05  0.96 0.95 0.92  0.92 0.96 0.94 

 runoff               

  ANN-SSA  31.02 50.64 61.80  0.94 0.83 0.74   0.88  0.84 0.80 

  MANN-SSA 26.20 41.02 48.69  0.95 0.89 0.84   0.92  0.90 0.88 

Chongyang              

 Rainfall+runoff              

  ANN-SSA  6.22 7.08 11.12  0.94 0.93 0.82  0.91 0.93 0.86 

  MANN-SSA 6.42 8.13 13.14  0.94 0.90 0.74  0.91 0.91 0.80 

 runoff              

  ANN-SSA  7.93 11.15 15.72  0.91 0.81 0.63   0.86  0.83 0.72 

    MANN-SSA 7.32 10.19 15.71  0.92 0.84 0.63    0.88  0.86 0.72 

 24 
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