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The use of Vetiver grass (Vetiveria zizanioides) in the phytoremediation of 

soils contaminated with heavy metals 

Yahua Chen1,2, Zhenguo Shen1,2 and Xiangdong Li2�

Recent research has shown that phytoextraction approaches often require soil amendments, 

such as the application of EDTA, to increase the bioavailability of heavy metals in soils. 

However, EDTA and EDTA-heavy metal complexes can be toxic to plants and soil 

microorganisms and may leach into groundwater, causing further environmental pollution. In 

the present study, vetiver grass (Vetiveria zizanioides) was studied for its potential use in the 

phytoremediation of soils contaminated with heavy metals. In the pot experiment, the uptake 

and transport of Pb by vetiver from Pb-contaminated soils under EDTA application were 

investigated. The results showed that vetiver had the capacity to tolerate high Pb 

concentrations in soils. With the application of EDTA, the translocation ratio of Pb from 

vetiver roots to shoots was significantly increased. On the 14th day after 5.0 mmol EDTA kg-1 

of soil application, the shoot Pb concentration reached 42, 160, 243 mg kg-1 DW and the roots 

Pb concentrations were 266, 951, and 2280 mg kg-1 DW in the 500, 2500 and 5000 mg Pb kg-1 

soils, respectively. In the short soil leaching column (9.0-cm diameter, 20-cm height) 

experiment, about 3.7%, 15.6%, 14.3% and 22.2% of the soil Pb, Cu, Zn and Cd were leached 
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from the artificially contaminated soil profile after 5.0 mmol EDTA kg-1 of soil application and 

nearly 126 mm of rainfall irrigation. In the long soil leaching experiment, soil columns (9.0-cm 

diameter, 60-cm height) were packed with uncontaminated soils (mimicking the subsoil under 

contaminated upper layers) and planted with vetiver. Heavy metals leachate from the short 

column experiment was applied to the surface of the long soil column, the artificial rainwater 

was percolated, and the final leachate was collected at the bottom of the soil columns. The 

results showed that soil matrix with planted vetiver, could re-adsorb 98%, 54%, 41%, and 88% 

of the initially applied Pb, Cu, Zn, and Cd, which may reduce the risk of heavy metals flowing 

downwards and entering the groundwater.  

 

Key words: phytoremediation; heavy metals; lead; EDTA; Vetiver grass (Vetiveria 

zizanioides). 

 

1. Introduction 

 

Heavy metal contamination in soils is one of the world’s major environmental problems, 

posing significant risks to human health as well as to ecosystem. Recently, phytoremediation, 

using plants to remove metal pollutants from contaminated soils, is being developed as a new 

method for the remediation of contaminated land. This environmentally friendly, cost-effective 

and plant-based technology is expected to have significant economic, aesthetic, and technical 

advantages over traditional engineering techniques (Baker et al., 1994; Salt et al., 1998; 

Garbisu and Alkorta, 2001). 
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Because heavy metals in soils are generally bound to organic and inorganic soil 

constituents, or alternatively, present as insoluble precipitates, a large proportion of metal 

contaminants are unavailable for root uptake by field-grown plants (Raskin et al., 1994). 

Methods of increasing heavy metal contaminants bioavailability in soil and its transport to 

plant shoots are vital to the success of phytoremediation in the field (Ernst, 1996). For plant 

uptake, heavy metals must first be disassociated from soil compartments into a soil solution. 

The solubility process of soil-bound metals can be achieved by a number of approaches, 

including the application of soil acidifiers, commercial nutrients or some chelates such as 

EDTA, DTPA, CXDTA, EGTA, or citric acid (Ebbs et al., 1997; Chen and Cutright, 2001). 

Among these chelates, EDTA was shown to be the most efficient in mobilizing Pb from various 

soil compartments (Huang et al., 1997; Shen et al., 2002; Wenzel et al., 2002). 

EDTA is a low toxicity multidendate chelating agent, and is able to form stable complexes 

with a wide variety of metals (Khan et al., 2000). When present in water percolating through 

polluted soils, EDTA is capable of solubilizing heavy metals into a soil solution. However, the 

mobilization process can increase the migration of heavy metals downwards into groundwater, 

causing further environmental pollution in the surrounding areas (Kedziorek et al., 1998; 

Barona et al., 2001; Römkens et al., 2002). Methods to prevent the leaching of mobilized heavy 

metals down the soil profile should be considered in the phytoremediation design, including 

the optimum chelate concentration, time and locations of the chelate application to soils. Apart 

from the soil amendment approaches, the root systems of plants may also help to reduce metal 

leaching in soil profiles. 

 Recently, many high-biomass plants have been used in phytoremediation studies. Among 
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them the Brassicaceae (mustard) family, to which most metal-hyperaccumulator species 

belong, represents a potential and promising source of plants to be used in phytoremediation. 

Other high biomass plants, such as corn, peas, sunflowers, ragweeds, and goldenrods have also 

been successfully used in chelate-assisted phytoextraction studies (Blaylock et al., 1997; Chen 

and Cutright, 2001). However, the root systems of these plants are mainly located in the top 5 - 

20 cm layers of soil and very few root systems can penetrate to deeper soil layers. Therefore, 

the root systems of these plants are unable to absorb the heavy metals that may possibly have 

leached in soil profiles.  

Vetiver grass (Vetiveria zizanioides) is a tall (1 – 2 m), fast-growing, perennial tussock 

grass. It has a long (3 - 4 m), massive and complex root system, which can penetrate to the 

deeper layers of the soil (Dalton et al., 1996; Truong, 2000; Pichai et al., 2001). Vetiver grass is 

native to south and south-east Asia where it has been grown for centuries for roof thatching, 

fodder for livestock, and perfumery and cosmetic industries. Vetiver was first used for soil 

conservation and land stabilization purposes in Fiji in the early 1950s, and promoted by the 

World Bank for soil and water conservation in India in the 1980s (Dalton et al., 1996). Its root 

aromatic oil can be used as repellent for Formosan subterranean termite and represent a 

promising natural alternative for the control of this invasive pest (Zhu et al., 2001). It is likely 

that vetiver grass technology will become one of the leading biological systems of soil and 

water conservation, land rehabilitation, and embankment stabilization in the 21st century 

(Grimshaw, 1997; Truong, 2000). 

Owing to its unique morphological, physiological and ecological characteristics such as its 

massive and deep root system, and its tolerance to a wide range of adverse climatic and edaphic 
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conditions, including elevated levels of heavy metals，the interest in this grass is increasing in 

recent years (Pinthong et al., 1998; Truong, 2000; Chen et al., 2000). However, the use of 

vetiver grass in phytoremediation technology is not widely recognized owing to lacking of 

detailed investigation of its capacity in absorbing contaminants and practical field application.  

The objectives of the present study were (1) to investigate the metal uptake ability of the 

roots and shoots of vetiver in different Pb-contaminated soils to which EDTA has been applied; 

(2) to study the leaching behaviors of heavy metals in soil under EDTA application; (3) to 

assess the ability of vetiver to retain heavy metals in soil columns. 

 

2. Materials and Methods 

 

2.1. Experiment 1: EDTA effects on vetiver uptake of Pb 

 

Soil preparation 

Soil was collected from the 0 - 30 cm surface layer of a vegetable garden in a suburban 

area of Nanjing, China. The soil was air-dried, crushed to pass through a 4 mm diameter sieve, 

and mixed thoroughly. The chemical and physical properties of the soils are presented in Table 

1. The electrical conductivity (EC) of the soil was measured using a conductivity meter on the 

soil extract obtained by shaking soil with double distilled water at 1:2 (w/v) soil:water ratio. 

The soil’s pH was measured by 0.01 mol CaCl2 at 1:5 ratio (w/v) using a pH meter. The cation 

exchangeable capacity (CEC) of the soil was determined using the ammonium acetate 

saturation method. The soil texture, organic matter content, total N and field capacity were 
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measured by the procedures described by Avery and Bascomb (1982). The total metal 

concentrations were determined by ICP-AES (Perkin-Elmer Optima 3300 DV) after strong 

acid digestion (1:4 concentrated HNO3 and HClO4 (v/v)) (Li et al., 2001). 

  Lead was added at a rate of 0, 500, 2500, 5000 mg Pb kg-1 dry soil as an aqueous solution 

of Pb(NO3)2 for four different soil treatments (each treatment of soil was about 100 kg). Basal 

fertilizers applied to the soil were 80 mg P kg-1 dry soil, and 100 mg K kg-1 dry soil as KH2PO4 

(Shen et al., 2002).  Additional N was added to the amended 0, 500, 2500 mg kg-1 Pb of 

treatment soils, up to 676 mg kg-1 dry soil as NH4NO3, which was equal to the application of N 

to the 5000 mg kg-1 Pb of treatment soil due to the application of more Pb(NO3)2. Each 

treatment soil was air-dried for one week before use in the pot experiment. 

 

Planting vetiver grass 

The soil samples (5 kg) were placed in plastic pots (15 cm diameter x 25 cm height). The 

moisture level of the soil was maintained to near field water capacity (35.6%) and equilibrated 

for two weeks. The seedlings of vetiver grass (Vetiveria zizanioides) were selected and pruned 

(the shoots were originally 20 cm high and the roots 8 cm long), and then transplanted into the 

pots in August 2001. The pots were watered daily to 60% of the field water capacity. 

 

EDTA treatments 

Five weeks after the seedlings were transplanted in the pots, EDTA was applied to the 

surface of the soil in the pots at rates of 0, 0.5, 2.5, 5.0 mmol EDTA kg-1 of soil in one single 

dose as a 400 ml Na2-EDTA solution. Following the application of EDTA, the soil was irrigated 
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to 60% of field water capacity on a daily basis. All of the pot experiments were conducted in a 

greenhouse under natural light conditions. Air temperature ranged from 18 - 36ºC. Each soil 

and plant treatment was replicated four times, and the pots were in a completely random block 

design. 

 

Plant sampling and analysis 

On the fourteenth day after the application of EDTA, the vetiver shoots (above 20 cm from 

the node) were cut, washed with tap water and then with D.I.W. The vetiver seedlings were 

carefully moved from the pots, washed in tap water, and the root samples (below 8 cm from the 

node) were cut (owing to remain living seedlings for reproduction). The snipped roots were 

gently washed using brush pen for removing remained soil particles, then soaked in 0.01 mol/L 

CaCl2 for 30 min. and subsequently washed with D.I.W. for three times. The shoot and root 

samples were dried at 70ºC for 72 h, and then were milled in a coffee mill (Philips HR 2185). 

The plant materials were acid-digested with a mixture of HNO3/HClO4 (4:1 v/v) for elemental 

analysis with ICP-AES (Li and Thornton, 1993).  

A certified standard reference material (SRM 1515) of the National Institute of Standards 

and Technology, USA, was used in the analysis as part of the QA/QC protocol. Reagent blanks 

and analytical duplicates were also used where appropriate to ensure the accuracy and 

precision of the analysis. The recovery rate was 93±8% for Pb in the plant reference material. 

All results were expressed on a dry weight basis.  

 

2.2. Experiment 2: EDTA effects on the mobility of heavy metals in soils 
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The artificial rainwater preparation 

The artificial rainwater composition (mg/L) used in the leaching experiment was NO3
-: 

1.94; NH4
+: 0.49; Na+: 1.87; Mg2+: 0.25; Ca2+: 0.29; Cl-: 3.41; SO4

2-: 2.65; and pH: 4.40. 

(Hodson et al., 2001). 

 

Soil preparation 

Soil samples were collected from a disused agricultural field in the area of Yuen Long in 

Hong Kong. The samples were sieved to pass through a 2 mm sieve and air-dried for three days. 

The chemical and physical properties of the soil are given in Table 1. The soils were artificially 

contaminated with Pb (2500 mg kg-1 of soil) as Pb3(OH)2(CO3)2 (lead hydroxide carbonate) 

and PbS (lead sulfide - galena) at a Pb concentration ratio of 1:1; Cu (500 mg kg-1 of soil) as 

CuCO3 (copper carbonate); Zn (1000 mg kg-1 of soil) as ZnCO3 (zinc carbonate) and ZnS (zinc 

sulfide) at a Zn concentration ratio of 1:1; and Cd (15 mg kg-1 of soil) with Cd(NO3)2·4H2O 

(cadmium nitrate). After adding heavy metals, the soils were equilibrated for fifteen days, 

undergoing five cycles of saturation with de-ionized water and air-drying processes.  

 

The soil leaching column preparation 

The air-dried soil (1370g) was packed in four leaching columns (9.0-cm diameter and 

20-cm height), and the soil depth in each column was about 18 cm. Each of the four soil 

columns was planted with one single oil-sunflower (Helianthus annuus L.) seedling for fifty 

days under outdoor conditions with air temperatures ranging from 14 - 24ºC, and was protected 
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against natural precipitation by a roof. The soil columns were watered with de-ionized water if 

necessary.  

 

The heavy metal leaching process 

On the fiftieth day after the sunflowers were growing in the columns, 5.0 mmol EDTA kg-1 

of soil was applied to the soil surface. Three days after the application of EDTA, the four 

columns were transferred indoors and saturated with a small amount of artificial rainwater, 

then flushed using a large amount of rainwater. The leached solutions were collected at the 

bottom of each column for every 200 ml of the rain water application in four intervals. The first 

200 ml of leachate from the four columns were mixed together and the total volume was 800 ml 

(referred to as Solution 1). The second to fourth leaching solutions from the four columns, 

referred to as Solution 2 - 4, were mixed subsequently according to the order of leaching.  

 

2.3. Experiment 3: Vetiver grass on heavy metal retention in soil columns 

 

Soil column preparation 

Original soil samples from Experiment 2 were used in this experiment. Each of the five 

polyethylene leaching columns (9.0-cm inner diameter, 60-cm height) was packed in layers, as 

follows: (from bottom to top): a) 2-cm layer of acid-washed quartz sand (< 2 cm); b) a circle of 

fiberglass (2 mm), c) 4900 g of air-dried soil (8.7% water content) equivalent to a layer of 56 

cm in the column. Three seedlings of vetiver grass (the root length was about 20 cm) were 

transplanted into three of the soil columns (Column No. 1, No. 2 and No. 3). Another two 
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columns (Column No. 4 and No. 5) without vetiver grass were used as the control group. The 

soil columns were exposed to outdoor conditions with air temperatures ranging from 14 - 26ºC, 

and protected against natural precipitation using a roof. The soil columns with vetiver grass 

were watered with artificial rainwater if necessary. On the forty-fifth day after the vetiver grass 

was transplanted, the five columns were flushed with artificial rainwater.  

 

Rainfall leaching experiments 

On the sixtieth day after the vetiver grass was transplanted, the first 800 ml of heavy metal 

leachate solution (Solution 1 obtained from Experiment 2) were applied to the four soil 

columns (No. 1, No. 2, No. 4 and No. 5), which was equal to 31.4 mm of rainfall per column. 

Subsequently, other heavy metal leachate solutions (Solution 2 - 4 from Experiment 2) were 

added to these columns at two-day intervals. As for soil column No.3, artificial rainwater was 

added instead at the same volume. After two days, the artificial rainwater was applied to each 

column at 55 mm precipitation every day for eleven days (equal to 350 ml of rainwater applied 

to each column per day).  

The leachate solutions were collected at the bottom of the soil columns and measured for 

volume on a daily basis. A sub-sample of the leachate solutions was filtered through Whatman 

No. 42 filter paper, digested with concentrated HNO3, then diluted with 5% HNO3 and 

analysed for heavy metals by ICP-AES. During the leaching experiment, the vetiver grass 

shoots (in columns No. 1, 2 and 3) were sampled and analysed for element concentration by 

ICP-AES, and the vetiver roots were collected and analysed at a later stage, as previously 

described. Statistical analyses of the experimental data, such as correlation and significant 
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differences, were performed using SPSS® statistical software. 

 

3. Results 

 

3.1. Uptake of Pb by Vetiver in Pot Experiment 

 

In the pot experiment, the vetiver grass grew well, and there were no visual signs of 

phytotoxicity in any of the treatments during the first six weeks after transplanting. After the 

application of EDTA (0.5, 2.5 and 5.0 mmol kg-1 of soil), vetiver seedlings under all different 

treatments showed no adverse effects, such as wilting, changing colour and necrosis for 

fourteen days. The results showed that vetiver is able to grow in highly contaminated soil, even 

after EDTA application. 

Table 2 depicts the Pb uptake patterns of the vetiver grown in the 500, 2500 and 5000 mg 

kg-1 Pb amended soils under different EDTA application programmes. In the control group 

without EDTA treatment, the shoot and root Pb concentrations increased significantly with 

increasing Pb concentration in the soils, in the shoot from 0.82 to 43.0 mg kg-1 of dry weight, 

and in the root from 60 to 556 mg kg-1 DW in the soils. Pb in the roots accounted for the 

majority of the total Pb in the plant.  The translocation of Pb from roots to shoots was low (see 

Table 2).  

The application of EDTA to the soils resulted in a surge of Pb concentrations in the shoots 

and roots of vetiver (Table 2). For example, in the 5000 mg kg-1 Pb of treatment soil, the shoot 

Pb concentrations reached 69, 127, 243 mg kg-1 after 0.5, 2.5, 5.0 mmol kg-1 of EDTA was 
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applied, compared with 43 mg kg-1 Pb without the EDTA treatment. The root Pb concentrations 

were 871, 1440, 2280 mg kg-1 after the application of 0.5, 2.5, 5.0 mmol kg-1 of EDTA, 

compared with 556 mg kg-1 Pb without the EDTA application. The translocation ratio of Pb 

from roots to shoots grew as larger amounts of EDTA were applied (see Table 2). Similar 

patterns were obtained in other soil treatments (500 and 2500 mg kg-1). These results indicated 

that the application of EDTA increased the Pb accumulation of vetiver roots from the 

rhizosphere of the soil, and also facilitated Pb translocation from roots to shoots.  

 

3.2. The soil leaching column experiment 

 

In the soil leaching columns, the leaves of oil sunflowers showed slight etiolation before 

the EDTA application. Some visual necro-maculae were observed in the old leaves, accounting 

for nearly 5% of the whole leaves. Two days after a 5.0 mmol EDTA kg-1 soil application, there 

were distinct phytotoxicity symptoms in the sunflower seedlings. The amounts and area of 

necro-macula in leaves increased significantly. On the third day after the application of EDTA, 

the area of dead macula accounted for approximately 25% of the whole leaves, and some 

leaves were crinkled and withered at the tips. 

The concentrations of heavy metals in the leachate solutions from the soil columns are 

presented in Table 3. The largest amount of leaching of heavy metals from the soil columns 

occurred in the first 1600 ml of the leaching solution, which was equivalent to about 63 mm of 

rainfall. After this, the leached heavy metals decreased sharply, and nearly reached a plateau at 

the 94 mm rainfall level (see Table 3). 
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The total amounts of heavy metals leached from the soil columns are listed in Table 4. The 

results showed the effects of EDTA on the mobility of heavy metals after artificial rainwater 

irrigation (equivalent to 126 mm of precipitation). About 3.73%, 15.6%, 14.3% and 22.2% of 

Pb, Cu, Zn and Cd were leached from the soil columns (see Table 4). The most mobile metal 

was Cd, followed by Cu and Zn. Pb was the metal that was leached least from the soils.  

 

3.3. The retention of heavy metals by vetiver in soil columns 

 

In the soil columns, vetiver grass grew rapidly. Before the application of the heavy metals 

leachate solution (obtained from Experiment 2), the roots of vetiver grass had nearly penetrated 

to the bottom of the soil column (56 cm). Compared with the initial root length, the roots 

elongated about 36 cm in sixty days. 

After the initial application of 200 ml of the heavy metals leachate solution to the surface 

of the soil columns, leachates solutions could be collected at the bottom of Column No. 4 and 

No. 5, where vetiver had not been planted (see Table 5). A further 600 ml of heavy metal 

solutions were applied to the columns in the next six days. Approximately 500 ml of leachate 

samples were collected from Column No. 4 and 5, respectively. However, there was no 

leachate in Columns No.1 and 2, which had been planted with vetiver, even after the 

application of 800 ml of heavy metal solution. This showed that vetiver could effectively 

adsorb soil water (leachate solution) in the soil profile probably by its transpiration and root 

system. 

The different patterns of Pb, Cu, Zn and Cd leaching behaviors from the soil columns are 
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shown in Fig. 1 - 4. Heavy metals leached from the soil columns without plants were much 

higher than from those planted with vetiver. Most of the leached heavy metals reached a 

plateau when rain precipitation approached about 500 mm (see Fig. 1 - 4). In the no-plant soil 

columns, about 38%, 78%, 81% and 61% of the initial Pb, Cu, Zn and Cd were leached from 

the soil profile (see Table 6). In the planted vetiver soil columns, however, the leaching of 

heavy metals was much lower, only accounting for 2% of Pb, 46% of Cu, 59% of Zn and 12% 

of Cd, respectively. The results indicated that the vetiver was capable of trapping the leached 

heavy metals from upper soil layers, especially for Pb and Cd.  

The concentrations of Pb, Cu, Zn and Cd in the shoots of vetiver grass grown in the soil 

columns are shown in Table 7. The concentrations of heavy metals except Pb in vetiver shoots 

increased with the application of a heavy metals leachate solution (Columns 1 and 2). The 

results showed that the additional heavy metals (Cu, Zn and Cd) in the leachate solutions could 

be adsorbed by the roots of vetiver grass and be transported to the shoots. The shoot Cd 

concentration in the soil columns with leachate application was about four-fold of that of the 

control. There was no significant difference in Pb concentration in the shoots between the 

heavy metal leachate solution application and the control group (Table 7). This may be due to 

the low mobility and bioavailability of Pb in the soil columns.  

 

4. Discussion 

 

The shoot metal concentration of plants can partially reflect the efficiency of plants on the 

remediation of soil heavy metals. Thus, the ratio of shoot metal concentration to total soil metal 
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concentration can also partially reflect the ability of plants to absorb soil heavy metals and 

transport them to shoots. Such the ratio was proposed by Baker et al. (1994) and 

Dahmani-Muller et al. (2001). Baker et al. (1994) defined the accumulation factor by dividing 

shoot concentration to total soil metal concentration, and Dahmani-Muller et al. (2001) used 

the term of bioaccumulation factor (BF) defined metal concentration in shoots versus initial 

metal concentration in substrates. Without the application of EDTA, the ratio of shoot Pb to 

total soil Pb of vetiver grass ranged from 0.002~0.009 (see Table 8), which was smaller than 

that of Zea mays (0.016~0.09) (Huang and Cunningham, 1996), Brassica juncea (0.025~0.055) 

(Huang and Cunningham 1996; Blaylock et al., 1997), Pisum sativum (0.02) (Huang et al., 

1997) and Thlaspi caerulescens (0.003~0.023) (Baker et al. 1994, Huang and Cunningham 

1996) used in the phytoremediation of lead contaminated soils. The results showed that the 

uptake of Pb by vetiver shoots was low under normal soil conditions. 

According to the results of Kabata-Pendias and Pendias (1992), Pb concentrations in 

mature leaf tissue higher than 30 ppm (DW) are considered excessive or toxic to plants. 

However, in our study, the Pb concentrations in the shoots and roots of vetiver were up to 243 

and 2278 mg kg-1 DW, respectively. These values are the highest shoot and root Pb 

concentrations reported in the literature for vetiver. However, the vetiver grown in highly 

contaminated soils had no perceived phyto-toxicity symptoms, indicating that they could 

tolerate the high Pb in soils and in their tissues. Furthermore, vetiver is also able to tolerate a 

variety of pollutants in soil and water (Pinthong et al., 1998; Truong, 2000). The threshold of 

toxic metals in soils (mg/kg) to vetiver are As (100 - 250), Cd (20 - 60), Cr (200 - 600), Ni 

(347), Cu (50 - 100), Hg( > 0.12), Se ( > 74) and Zn ( > 750). The threshold of toxic metals in 
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vetiver shoot (mg/kg) are As (21 - 72), Cd (45 - 48), Cr (5 - 18), Ni ( > 100), Cu (13 - 15), Hg( > 

6), Se ( > 11) and Zn (880) (Truong, 2000). Therefore, this specific ecotype would be useful 

specially for remedying quite highly contaminated soils，such as mining, tailing as well as 

quarry where most other plants can not survival due to the hostile growing conditions, 

including toxic levels of heavy metals. In Australia, vetiver is highly successful in the 

rehabilitation of old quarries and mines and is able to stabilize the erodible surface first so other 

species can colonize the areas later (Truong, 2000).  

In the EDTA-assisted phytoextraction experiments, the total amount of heavy metals 

absorbed by shoots and roots only accounted for a very small proportion of the labile metal 

pool in soils (Chen et al., 2002; Wenzel et al., 2002). The wet weather conditions in some areas 

will facilitate possible seepage, and potential heavy metal migration along the soil profiles 

would be of concern. The leached heavy metals from the upper soil layers were partially 

presented in metal-EDTA complexes, which can be validated by geochemical speciation of the 

leachates using MINTEQA2 (Allison et al., 1991), and by the batch and column leaching test 

(Sun et al., 2001). Because EDTA is a nonselective complexing agent, the competition for 

EDTA by other elements, such as Fe, Mn, Ca, and Mg in the soils, might influence the Pb-, Cu-, 

Zn-, and Cd-EDTA complexes. The formation constant (log K) of EDTA for Fe(III), Cu, Pb, Zn, 

Cd, Mn, Ca  are 26.5, 19.7, 19.0, 17.5, 17.4, 14.8, and 11.6, respectively (Norvell, 1991). The 

Pb, Cu, Zn and Cd may be released from the complexes with EDTA, and subsequently 

re-adsorbed into the soil compartment. 

Soil matrix is an excellent adsorbent for both organic and inorganic chemical compounds. 

The physical and chemical properties of soils determine the extent to which the soil retards 
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downward migration of contaminants. The major adsorption surfaces for heavy metals in soils 

are clay particles and organic matter (Elzahabi and Yong, 2001). The retention of leached 

heavy metals in soils is often well correlated with how much organic matter is contained in the 

soil. The organic component of the soil constituents has a high affinity for heavy metals 

because of the presence of ligands or carboxyl, phenolic, alcoholic and carbonyl compounds 

which can form chelates with metals (Yong et al., 1992). Heavy metal retention has also been 

found to generally increase with increases in pH, CEC, clay content, and the metal oxide 

content of the soil (Cline and Reed, 1995). The soil’s redox potential and salinity, and the iron 

and manganese oxides contained in it should also be taken into consideration (Tam and Wong, 

1996). 

In our heavy metal retention study (Experiment 3), the total Pb, Cu, Zn and Cd retained by 

the soil columns (with planted vetiver) were 120, 72, 101 and 3.08 mg, respectively, according 

to the amounts of heavy metals added initially and the amount of metals in the leachate 

solutions (see Table 6). The quantities of Pb, Cu, Zn and Cd in the vetiver shoots were 

approximately 0.16, 0.53, 2.63 and 0.05 mg, respectively, calculated from the total shoot 

biomass of 45 g DW. The concentrations of Pb, Cu, Zn and Cd in vetiver roots were 5.28, 133, 

59.5, and 0.20 mg/kg, respectively. Based on the data, the possible quantities of heavy metals 

absorbed by vetiver roots were estimated to be 0.16 mg for Pb, 3.96 mg for Cu, 1.77 mg for Zn 

and 0.006 mg for Cd (according to a root/shoot biomass ratio of about 0.66 in the pot 

experiments). In comparison with the metals retained in the soil columns, the amounts of heavy 

metals adsorbed by the vetiver roots and shoots were relatively small. Therefore, a large 

amount of heavy metals (approximately 99.7% of Pb, 93.8% of Cu, 95.6% of Zn and 98.2% of 
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Cd) in the leachate solutions were absorbed by the soil matrixes under the influence of the 

vetiver growth in the soil columns.  

The decrease of the soil moisture content is also very important for the adsorption of heavy 

metals in soils because heavy metals are usually transported in solution. This was supported by 

the results from the soil leaching column experiment of the present study. The average 

evaporation of the soil columns with vetiver growth was about 100 ml per day compared with 

28 ml for the columns without vetiver, based on the estimation from the additional rainwater 

volume and the leachate solution collected (see Table 5). Vetiver could absorb heavy metals 

leached from the upper soil layers in its roots and shoots. More importantly, it was able to 

significantly decrease the water content of the soil by its high transpiration rate. This process 

may play an important role in immobilizing the heavy metals in soil matrixes in our soil 

column experiment. In the soil leaching columns planted with vetiver, the highest Pb 

concentrations in the leachate solution collected at the bottom (56 cm) was less than 3.0 mg L-1; 

this is below the TCLP regulatory limitation (5 mg Pb L-1) for stabilised hazardous waste. As 

for Cu, Zn and Cd, if the net vertical percolation of rainwater was lower than 300 mm (see Fig. 

1 - 4), then very little metals were leached out from the soil columns.  

Vetiver grass is a high-biomass plant with a high C4 photosynthetic efficiency (Mucciarelli 

et al., 1998), the average dry matter yield is 99 t/ha/year in southeast of China (Zhang, 1998). 

Owing to its’ high tolerance to heavy metals, there is a great potential to use this plant in 

phytoextraction strategy although vetiver is not a hyper-accumulator. Chen et al. (2000) found 

that the total above ground uptake of Cd by vetiver was even greater than that of the 

hyperaccumulator T. caerulescens owing to the former's high biomass. Moreover, vetiver 
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grows very fast with a fine, deep and penetrating root system, which is capable to reach down 

to 3 - 4 m in the first year (Truong, 2000), and the root yield is about from 1500 to 2400 kg/ha 

after 16 or 20 months transplant (Dethier et al., 1997). The cultivar of vetiver, widely utilized in 

bio-engineering purposes, is generally sterile (will not become a weed) and easily asexually 

reproduced using simple agricultural practices (by root subdivision, each slip normally consists 

of 2-3 tillers). If other agricultural practices can be adopted, such as intercropping with other 

high biomass plants (e.g., mustard, corn and sunflower) or genetic engineering approaches 

(transfering the genes of a hyperaccumulator to vetiver), the vetiver grass may become a very 

competitive plant in phytoremediation in the near future. 
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Table 1 
The physicochemical properties of the soils used in the study 
Physicochemical 
 Properties 

Soils used in the 
pot experiments 

Soils used in 
soil columns 

pH (CaCl2) 7.02 6.04 
Electrical conductivity at 25°C (µS cm-1)  292 282 
Sand (%) >0.05 mm 34.5 54.3 
Silt (%) 0.05-0.001 mm 45.1 31.1 
Clay (%) <0.001 mm 20.4 14.6 
NTOTAL (%) 0.11 0.10 
Organic matter (%) 2.68 1.67 
Cation Exchange Capacity (cmol kg-1) 9.26 3.29 
Field water capacity (%) 35.6 27.4 
Background total metal content (mg kg-1) 

Pb   86.7 44.2 
Cu  91.1 26.7 
Zn  185 131 
Cd  1.79 0.45 
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Table 2 
Lead concentrations in the shoots and roots of vetiver and the translocation ratios (TR*) of Pb 
from roots to shoots at the 14th day after EDTA application in the pot experiment. 
 Pb amendment 

soils (mg kg-1) 
The EDTA application concentration (mmol kg-1 soil) 
0 0.5 2.5 5.0 

shoot  0 0.81±0.06  ---- ---- 3.59±0.42  

 500 0.82±0.12 a A 6.06±0.37 b A 25.7±3.23 c B 42.2±4.09 d C 

 2500 6.52±0.17 a A 21.3±3.63 a A 86.3±13.5 b B 160±28.1 c C 

 5000 43.0±0.71 a A 68.6±4.76 b B 127±7.7 c C 243±13.5 d D 

Root 0 4.16±0.42  ---- ---- 15.6±4.13  

 500 60.3±5.08 a A 83.5±7.75 a A 200±22.5 b B 266±43.0 c B 

 2500 205.8±21.8 a A 242±29.6 a A 464±50.3 b B 951±126 c C 

 5000 556±28.4 a A 871±82.8 a AB 1440±303 b B 2280±462 c C 

TR* 0 19.7±3.0    ---- ---- 23.4±2.5  

 500 1.35±0.06 a A 7.37±1.30 ab AB 13.9±5.3  bc B 17.2±2.0 c B 

 2500 3.18±0.29 a A 8.76±0.91 b B 18.9±0.2  c C 18.0±1.0 c C 

 5000 7.73±0.37 a A 7.88±0.14 a A 9.48±2.98 a A 11.4±3.8 a A 

Note: Mean and standard deviation (n = 3~4); *TR: defined as the percent of shoot Pb concentration versus 
root Pb concentration; The different capital and small letters stand for significance at 0.01 and 0.05 levels, 
respectively,   
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Table 3 
Heavy metal concentrations in the leachate solutions from the soil columns 

Heavy metals solution   Heavy metals concentrations ( mg/L ) 
Code Volume (ml) Pb Cu Zn Cd 

Solution 1 800 (31.4)* 285 271 533 7.48 
Solution 2 800 (31.4) 262 294 518 7.62 
Solution 3 800 (31.4) 48.9 78.9 138 1.82 
Solution 4 800 (31.4) 15.9 25.0 45.8 0.61 

*: Figures in the brackets are the estimated amounts of rainwater precipitation (mm). The 
evaporation of soil columns was not considered because the leaching was carried out indoors for a short 
period of time (no more than two days). The leachate solution volume was nearly equal to the added 
rainwater volume. The precipitation (mm) was estimated according to the formula (V=πr2h).  
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Table 4  
EDTA effects on the leachability of heavy metals in the soil columns after the percolation of 

artificial rainwater 
Heavy 
metals 

Initial heavy metal content 
in the soil*(mg) 

Heavy metal content in the 
leachate (mg)# 

Percentage  
leaching (%) 

Pb 13100 490 3.73 
Cu 3440 535 15.6 
Zn 6900 988 14.3 
Cd 63.2 14.0 22.2 

*The total initial amount (mg) of heavy metal in the soils of the four soil columns before the 
application of EDTA.  
#The total amount (mg) of heavy metals leaching from the four soil columns after the 
application of EDTA and 800 ml of rainwater.  
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Table 5  
The leachate solution volume collected under the five soil columns (ml) 
Treatme
nt times 

Added solution 
volume (ml) 

Leachate Solution Volume (ml) 

No.1* No.2 No.3 No.4 No.5 

Day 1 200  (31.4)# 0 0 0 23 38 
Day 3 200  (31.4) 0 0 0 164 171 
Day 5 200  (31.4) 0 0 0 153 159 
Day 7 200  (31.4) 0 0 0 168 169 
Day 9 350 (55.0) 0 27 24 304 310 
Day 10 350 (55.0) 197 174 202 318 321 
Day 11 350 (55.0) 219 268 244 339 346 
Day 12 350 (55.0) 212 282 216 317 321 
Day 13 350 (55.0) 222 294 266 325 331 
Day 14 350 (55.0) 158 207 165 303 312 
Day 15 350 (55.0) 299 284 288 333 327 
Day 16 350 (55.0) 224 246 245 308 328 
Day 17 350 (55.0) 283 279 304 322 335 
Day 18 350 (55.0) 282 255 241 312 320 
Day 19 350 (55.0) 256 275 269 329 338 

Sum 4650 (731) 2350 2590 2470 4020 4130 

*.The different treatment of soil columns (No.1 and No.2: planted vetiver grass and applied a 
heavy metals leachate solution; No.3: planted vetiver grass without heavy metal leachate 
solution application; No.4 and No.5 without vetiver plant and with heavy metal leachate 
solution application).   
#. Figures in the brackets stand for the estimated rainwater precipitation (mm). 
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Table 6  
The retention of heavy metals in the five long soil columns 
Heavy 
metals 

The amount 
of metal (mg) 

The amount of leached metals (mg) 
No.1* No.2 No.3 No.4 No.5 

Pb 122 2.19 
(1.79%)# 

2.41 
(1.97%) 

0.01 44.8 
(36.6%) 

49.3  
(40.3%) 

Cu 134 59.8  
(44.6%) 

63.3  
(47.3%) 

0.05 99.4 
(74.3%) 

109  
(81.3%) 

Zn 247 138  
(55.7%) 

155  
(62.6%) 

0.11 191 
(77.2%) 

208  
(84.3%) 

Cd 3.51 0.35  
(9.9%) 

0.52  
(14.9%) 

0.01 2.15   
(61.3%) 

2.12  
(60.5%) 

*.The different treatment of soil columns (No.1 and No.2: planted vetiver grass and applied a 
heavy metals leachate solution; No.3: planted vetiver grass without heavy metal leachate 
solution application; No.4 and No.5 without vetiver plant and with heavy metal leachate 
solution application).   
#. Figures in the brackets stand for the estimated rainwater precipitation (mm). 
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Table 7 
Heavy metal concentrations in the vetiver shoots grown in the long soil columns (mg kg-1 DW) 
Heavy metals The day after 

leaching began 
Heavy metals concentrations  

No.1* No.2 No.3 
Pb 0 2.25 4.16 3.49 

9 3.76 2.95 3.01 
16 3.10 3.77 3.16 

Cu 0 5.91 5.86 6.94 
9 9.54 11.5 8.44 
16 12.7 10.7 7.35 

Zn 0 28.7 32.0 33.9 
9 48.5 57.8 43.7 
16 54.4 62.6 49.9 

Cd 0 0.31 0.34 0.43 
9 0.72 0.92 0.38 
16 1.11 1.16 0.33 

*.The different treatment of soil columns (No.1 and No.2: planted vetiver grass and applied a 
heavy metals leachate solution; No.3: planted vetiver grass without heavy metal leachate 
solution application).  
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Table 8  
The ratio of shoot Pb concentration to total soil Pb concentration in some plant species 
Plant species Pb-contaminated 

soils 
Total soil Pb 
concentration  
(mg /kg ) 

Shoot Pb 
concentration 
(mg/kg) 

The ratio of 
shoot Pb to  total 
soil Pb 

Time 
period of 
treatment 

Reference 

Thlaspi 
caerulescens 

Metalliferous sites 90300 662 0.007 Plant 
sample 
from field 

Baker et 
al., 1994 11860 203 0.017 

51600 166 0.003 
6920 57 0.008 
15500 222 0.014 

Zea mays L. cv. 
Fiesta 

Pb-contaminated 
soil from an 
industrial site  

2500 
 

225 0.09 28 days Huang 
and 
Cunning-
ham, 
1996 

Brassica juncea 
(211000)  

129 0.052  

Thlaspi 
rotundifolium 

79 0.032  

Triticum aestivum 
(cv. Scout 66) 

120 0.048  

Thlaspi 
caerulescens 

58 0.023  

Brassica juncea 
(L.) Czern. 

45 0.018  

Zea mays L. 40 0.016 7 days 
Brassica juncea Artificially 

contaminated 
PbCO3 

600 15 0.025 7 days Blaylock 
et al., 
1997 

900 38 0.042 
1200 45 0.037 
1800 100 0.055 

Pisum sativum L Pb-contaminated 
soil from an 
industrial site  

2500 50 0.02 7 days Huang et 
al., 1997 

Vetiver grass 
(Vetiveria 
zizanioides) 

Soil supplied with 
Pb(NO3)2 

86.7 0.81 0.009 14 days This 
 Study 439 0.82 0.002 

2030 6.52 0.003 
5090 42.3 0.008 
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Figure Captions 
 
Fig.  1. The leaching patterns of Pb from the soil columns. 

 

Fig.  2. The leaching patterns of Cu from the soil columns. 

 

Fig.  3. The leaching patterns of Zn from the soil columns. 

 

Fig.  4. The leaching patterns of Cd from the soil columns.  
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