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1. Introduction 1 

In the past decades, 3D ultrasound (US) imaging has been recognized as a 2 

promising tool for a wide range of clinical applications. In comparison with conventional 3 

2D US, 3D US offers a whole volume data of tissues and organs for visualization and 4 

analysis. The 3D representation of anatomy greatly facilitates the diagnosis by offering a 5 

variety of useful display methods and more accurate quantitative measurements in 6 

comparison with 2D US. In recent years, many types of systems capable of obtaining 3D 7 

US imaging have been developed [1, 2, 3]. One of often-used types is freehand imaging 8 

with spatial tracking devices. During the scanning, the US probe is moved by the hand in 9 

an arbitrary manner. The irregularly located B-scans are collected and then used to 10 

reconstruct 3D data set. The positional information recorded from the tracking device for 11 

each B-scan is used to register the image plane to the regularly arranged voxel grids. 12 

Because of its advantages of being inexpensive and flexible in scanning, tracked freehand 13 

technique holds great promise in many research and clinical areas [4]. 14 

One of the key procedures in the freehand 3D US is volume reconstruction. As 15 

the collected B-scan images are arbitrarily located in space, there must be solutions for 16 

assigning pixel intensities from the original B-scans to the voxel grids. The algorithms 17 

used for volume reconstruction are important because the diagnostic information should 18 

be well preserved and the introduction of noises and artefacts should be avoided as much 19 

as possible. Many previous researchers [1, 5-8] have made contributions to this problem. 20 

According to a survey of the well-known reconstruction methods [6], voxel nearest-21 

neighbour (VNN) interpolation, pixel nearest-neighbour (PNN) interpolation, and 22 

distance weighted (DW) interpolation are three main categories of reconstruction 23 
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technique in freehand 3D US systems. Particularly, DW interpolation performs well in 1 

speckle and shadowing reduction in many practices. It computes each voxel value by 2 

assigning the weighted average of a set of pixels falling into a predefined 3-D region 3 

centred about each voxel. The pixel intensities in the region are weighed by the inverse 4 

distances between the pixels and the voxel centre [5, 6]. However, averaging operation 5 

can greatly blur image details, especially the boundaries of small tissues.  6 

To reduce the blurring in conventional DW interpolation, Huang et al. [1] 7 

proposed an improved method named as squared distance weighted (SDW) interpolation, 8 

which used the square of inverse distance as the weight for each pixel. Fig. 1 depicts a 2D 9 

representation of voxel calculation using SDW. The corresponding formula was 10 

expressed as: 11 
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where ( )CVI
r

 is the intensity of the voxel at the volume coordinate CV
r

, n the number of 13 

pixels falling within the predefined spherical region centred about voxel CV
r

, ( )k
PVI
r

 the 14 

intensity of the pixel at the kth image coordinate k
PV
r

 , kW  the weight for the kth pixel, 15 

kd  the distance from the kth pixel ( k
PV
r

) to the centre of the voxel ( CV
r

), and α a positive 16 

constant for adjusting the effect of the interpolation. As SDW offers a non-linear 17 

assignment for the weights, the reconstructed voxel array is less blurred in comparison 18 

with conventional DW method. 19 

With respect to Eq. (1), different values of α result in different reconstruction 20 

results. We tested the reconstruction results on an US resolution phantom (Model 44, 21 



 3

CIRS Inc, USA) using different values of α. As illustrated in Fig. 2, SDW preserved more 1 

texture patterns in US images with a smaller α (α=0.1), while smoothed the image content 2 

much more with a larger α (α = 10.0). It is apparent that the larger α is good for speckle 3 

suppression and the smaller α works well for the preservation of details. However, there 4 

is a trade-off between noise reduction and detail preservation in the SDW method.  5 

To provide a 3D US image with relatively good edge preservation as well as 6 

speckle reduction, we proposed an adaptive strategy to adjust α in SDW in this paper. 7 

This new method made use of the local statistics of pixels in the spherical region to 8 

adaptively control the value of α. The methods were described in the following section. 9 

The simulation results were presented in section 3 to evaluate the usefulness of the 10 

proposed algorithm. Discussions and conclusions were finally given in section 4. 11 

 12 

2. Methods 13 

2.1 Adaptive algorithm for SDW 14 

There are three objectives, including speckle reduction, tissue boundary 15 

enhancement, and shadowing reduction, in the volume reconstruction of 3D US [9]. As 16 

illustrated in Fig. 2, the smaller α in SDW could lead to well preserved edges, but many 17 

speckle noises were retained. Meanwhile, the larger α blurred the edges and details 18 

though the speckle noises were much reduced. Therefore, we aimed to design an 19 

improved reconstruction method that was capable of both preserving tissue edges and 20 

reducing speckles in this study. 21 

  Loupas et al. [10] proposed the following signal-dependent noise model for 22 

speckle specifications in US images: 23 
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snsy += ,        (2) 1 

where, y, s, and n represent the observed US signal, noise-free signal, and noise, 2 

respectively. In a homogeneous region, it can be assumed that s is a constant. Therefore, 3 

the variance (σ2) of the region has the following linear relationship to that of noise ( 2
nσ ): 4 

22
nsσσ = .        (3) 5 

Assume arithmetic mean μ of the region is the expectation of s, Eq. (3) can be rewritten 6 

as 22
nμσσ = . If there are only speckle noises in a homogeneous region, Eq. (3) implies the 7 

variance is proportional to the mean.  8 

 According to this model, it is obvious that a region containing tissue edges has 9 

relatively larger radio of σ2/μ. In order to preserve the edges, the parameter α in SDW 10 

should be as small as possible. Otherwise, the parameter α should be as large as possible 11 

if the spherical region is homogeneous. Thus, we designed an adaptive method to control 12 

the value of α in Eq. (1). This new adaptive squared distance weighted (ASDW) 13 

interpolation was described as:  14 
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where, σ2 and μ are the variance and mean of the pixels in a spherical region centred 16 

about each voxel, a and b are two positive parameters empirically determined by the 17 

operator. 18 

 19 

2.2 Simulation and comparison methods 20 
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An amputee subject’s forearm was scanned using a freehand 3D US system [1]. 1 

The voxel array was defined as a 3D data set with a dimension of 150×151×115 voxels 2 

and a resolution of 0.22×0.22×0.22 mm3. The SDW with α=0.1 and 2.0, respectively, and 3 

the proposed ASDW with a=1000.0 and b=2.0 were employed for volume reconstruction, 4 

respectively. The spherical region for SDW and ASDW was defined as an ellipsoid with 5 

a radius of 0.54 mm. After the volume data was ready, three slices at the same location of 6 

the volumes were qualitatively compared. The intensities along column 124 in the three 7 

slices were presented to evaluate the performance of ASDW in boundary enhancement 8 

and speckle reduction. In addition, the averaged local contrast measure [11], where the 9 

measure for each voxel was carried out in a 3×3×3 neighbourhood, was applied to 10 

quantitatively assess the total contrast in the reconstructed 3D images using SDW and 11 

ASDW, respectively. 12 

    13 

3. Results 14 

Fig. 3 shows the three reconstructed slices of the amputee subject. It can be 15 

observed that SDW with α=0.1 generated the most texture patterns (Fig. 3(a)) in 16 

comparison with the other two methods. However, the speckles were also retained. The 17 

slice reconstructed using SDW with α=2.0 looks the most smoothed (Fig. 3(b)). Though 18 

the speckles were effectively suppressed, the tissues boundaries were also blurred. In 19 

comparison, the slice reconstructed using ASDW well presented both enhanced tissue 20 

boundaries and suppressed speckles.  21 

Fig. 4 illustrates quantitative comparisons of the voxel intensities along column 22 

124 on the three slices. In Fig. 4(a), reconstructions were performed using ASDW as well 23 



 6

as SDW with α=0.1 to preserve the sharp edges. For regions without sharp edges as 1 

indicated by the circle, ASDW performed better in speckle suppression. In Fig. 4(b), 2 

ASDW worked as well as SDW with α=2.0 in speckle reduction, as indicated by the 3 

circle. Moreover, ASDW was more capable of enhancing boundaries. It was 4 

demonstrated that ASDW was good at both edge preservation and speckle suppression.        5 

 For results of the averaged local contrast measure, averaged local contrast of the 6 

volume reconstructed using SDW with α=0.1 was 0.1947, that using SDW with α=2.0 7 

0.1734, and that using ASDW 0.1899. This implied that ASDW produced more 8 

homogeneous regions than SDW with α=0.1, and preserved more significant edges than 9 

SDW with α=2.0. It was also demonstrated that ASDW offered a good trade-off between 10 

edge preservation and speckle suppression.    11 

 12 

4. Discussion and conclusion 13 

In this paper, we introduced an adaptive SDW interpolation method for the 14 

volume reconstruction in freehand 3D US. The proposed method could adaptively adjust 15 

the parameter α in SDW, which controls the weight distribution, according to the ratio of 16 

local variance and mean in the spherical neighbourhood of each voxel. For the voxels 17 

with higher contrast in their neighbourhoods, the parameter α was assigned smaller 18 

values to enhance the edges. For those voxels with lower contrast in their neighbourhoods, 19 

the parameter α was assigned relatively larger values to reduce speckles in homogeneous 20 

regions. An exponential function was used to automatically determine the parameter α 21 

according to the statistics of a voxel’s neighbourhood. The simulation results successfully 22 

demonstrated the performance of the new method. In comparison with SDW method, this 23 
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new adaptive technique could offer a good trade-off between the edge preservation and 1 

speckle suppression. This feature is important, especially for segmentation of tissues in 2 

3D US data, as the enhanced edges and suppressed speckles and other artefacts can lead 3 

to an accurate trace of tissue boundaries, which are essential to volume estimation [4] and 4 

multi-volume combination [12].   5 

In ASDW method, there were two positive parameters (a and b) that needed to be 6 

set by the operator. According to Eq. (4), the parameter a determines the interpolation 7 

effect on a completely homogeneous region. If a voxel is located in such a region, the 8 

ratio of local variance and mean (σ2/μ) in its neighbourhood is 0, and ASDW becomes a 9 

SDW with α=a. The parameter b determines the effect of σ2/μ. A larger parameter b 10 

results in a faster change of the exponential component ( μσ 2bae− ) in ASDW. In this study, 11 

the two parameters were empirically determined. Nevertheless, the properties of the two 12 

parameters are important for operators, and they will be systemically studied in our future 13 

study.  14 

In conclusion, we have introduced an adaptive interpolation method based on 15 

SDW in this paper. According to the simulation results, this new method demontrated a 16 

good performance in both edge preservation and speckle suppression. Future study on 17 

this new method will be conducted to further improve the quality of volume 18 

reconstruction in freehand 3D US systems. 19 

 20 
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Figure captions 1 

Fig. 1. A 2D representation of the volume reconstruction using SDW interpolation. For 2 

each voxel in the volume, a sphere region centred about it is defined. The squared 3 

inverse distance of each pixel falling into the region to the centre of the voxel is 4 

used to determine the weighted contribution of the pixel to the voxel.  5 

Fig. 2. Two slices of 3D reconstruction using SDW with different values of α: (a) α=0.1, 6 

and (b) α=10.0. 7 

Fig. 3. The reconstructed slices using SDW and ASDW. (a) SDW (α=0.1), (b) SDW 8 

(α=2.0), and (c) ASDW (a = 1000.0, b=2.0). 9 

Fig. 4. The comparison of intensities along column 124 as indicated by the lines in Fig. 3. 10 

(a) The comparison between SDW (α=0.1) and ASDW (a = 1000.0, b=2.0), and 11 

(b) the comparison between SDW (α=2.0) and ASDW (a = 1000.0, b=2.0).  12 
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