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ABSTRACT 
The conventional search algorithms for block matching motion 
estimation reduce the set of possible displacements for locating 
the motion vector. Nearly all of these algorithms rely on the 
assumption: the distortion function increases monotonically as 
the search location moves away from the global minimum. 
Obviously, this assumption essentially requires that the error 
surface be unimodal over the search window. Unfortunately, 
this is usually not true in real-world video signals. In this paper, 
we formulate a criterion to check the confidence of unimodal 
error surface over the search window. The proposed Confidence 
Measure of Error Surface, CMES, would be a good measure for 
identifying whether the searching should continue or not. It is 
found that this proposed measure is able to strengthen the 
conventional fast search algorithms for block matching motion 
estimation. Experimental results show that, as compared to the 
conventional approach, the new algorithm through the CMES is 
more robust, produces smaller motion compensation errors, and 
requires simple computational complexity. 

1. INTRODUCTION 
Motion estimation is an essential component of all modem video 
coding standards [l-21. It is included in these standards to 
reduce the redundancy between successive frames of a video 
sequence. The method adopted to estimate the motion between 
frames is the block matching algorithm (BMA) [3-lo]. For the 
full search algorithm (FSA) of BMA, a matching criterion 
between every block in a search window from the previous frame 
and the current block is calculated. The most commonly used 
matching criterion is the mean absolute difference (MAD) [7]. 
The FSA evaluates the MAD at all possible locations of the 
search window to find the optimal motion vector. Hence it is 
able to find the best-matched block which guarantees to give the 
minimal MAD. On the other hand, it also demands an enormous 
amount of computation. Thus a number of fast search algorithms 
[4-101 have been proposed, which seek to reduce the 
computation time by searching only a subset of the eligible 
candidate blocks. These fast block motion estimation algorithms 
include the n-Step Hierarchical Search algorithm (n-SHS) [7], 
the conjugate directional search algorithm [8], the new three-step 
search algorithm [9], the block-based gradient descent search 
algorithm (BBGDS) [IO] and many variations. These algorithms 
reduce the number of computations required by calculating the 
MAD matching criterion at positions coarsely spread over the 
search window according to some pattem and then repeating the 
procedure with finer resolution around the position with the 
minimum MAD found from the preceding step. Nearly all of 
these algorithms rely on the assumption: the MAD distortion 

function increases monotonically as the search location moves 
away from the global minimum [4]. Obviously, this assumption 
essentially requires that the MAD error surface be unimodal over 
the search window. Unfortunately, this is usually not true in 
real-world video signals. As a consequence, the minimum MAD 
found by these methods is frequently higher than that is produced 
by the FSA. To prevent this, a simple but perhaps the most 
reliable strategy is to measure the confidence of unimodal error 
surface over the search window. In this paper, the new 
Confidence Measure of Error Surface, CMES, is proposed and it 
becomes a good criterion for determining the continuity for the 
searching in the block matching motion estimation algorithm. 
The new algorithm developed in this paper is based on the 
verification of this newly defined confidence measure, that is 
used to identify whether the searching would continue or not. 

The rest of this paper is organized as follows. In Section 2, we 
present an in-depth study on the MAD error surface. Based on 
the studies in Section 2, we formulate the proposed confidence 
measure into the search window and propose a fast search 
algorithm through the confidence measure for block matching 
motion estimation in Section 3. In Section 4, some analysis on 
the algorithm's complexity and performance will be presented. 
Finally, conclusions are drawn in Section 5.  

2. THE MAD ERROR SURFACE 
Suppose that the maximum motion in the vertical and horizontal 
directions is +W, there are thus (2W+1)* candidates in total to be 
checked if the full search method is used, each corresponding to 
a checking point in the search window. The MAD values 
resulted from these checking points form an error surface 

MAD(u,v) = xxll,(i, j )  -S,- ,( i  +U, j +  v)l 

where the block size is taken as N XN, (u,v) denotes the position 
of the candidate motion vector, and I,(.;) and S,.,(.,.) refer to the 
blocks in the current frame(rIh frame and in the reference frame 
((?-Z)'h frame) that are to be compared. 

The statistical behaviour of the MAD error surface has a 
significant impact on the performance of the fast search 
algorithm for block matching motion estimation. For the surface 
as shown in Fig. l(a), the MAD error decreases monotonically as 
the search location moves toward the global minimum value. It 
implies that a simple fast search algorithms such as the n-SHS 
[9] and the BBGDS [lo] would require a small number of 
searches to determine the global optimum position for this block. 
For the surface as shown in Fig. I(b), it contains a large number 
of local minima. Almost all conventional fast algorithms have 

N - I N - I  

(1) 
is j=O 
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explicitly or implicitly assumed [4] that the error surface is 
unimodal over Ihe search window. As a consequence, it is 
unlikely that the previously described fast search algorithm 
would converge to the global minimum. In other words, the 
search would ezsily be trapped at a local minimum. For the 
surface in Fig. I(c). there is no need to find the global minimum 
position since any of the local minimum positions will 
correspond to 3. satisfactory prediction block as E(u,v) is 
uniformly small. The new algorithm presented in this paper 
explores the property of this important behaviour in order to 
optimize the performance of the motion estimation. 

(C) 

Figure 1. MAD Error Surface for three different blocks. 

3. RELIABLE SEARCH ALGORITHM 
THROUGH THE CMES 

The search algorithm presented in this paper can best be 
described as an extension of the Block-Based Gradient Descent 
Search (BBGDS) algorithm [IO]. Let us recall that in the first 
step of the BBGDS algorithm, search is done only around the 
center checking point. If the optimum is found at the center, the 
procedure stops. Otherwise, further search is done around the 
point where the minimum has just been found. The procedure 
continues until the winning point is a center point of the 
checking block (3x3 checking points) or the checking block hits 
the boundary of the predefined search range [IO]. The procedure 
is illustrated in Fig. 2, where the motion vector (3,-4) is found. 
Of course, the BBGDS algorithm relies on the assumption that 
the MAD measure decreases monotonically as the search position 
moves closer to the optimum position. It can easily be trapped 
into the local minimum if the error surface is similar to Fig. I(b). 

Let us use Fig. 3 to give a clearer account for this phenomenon. 
In Fig. 3, it shows a nonunimodal surface due to many reasons 
such as the aperture problem, the textured (periodical) local 
image content, the inconsistent block segmentation of moving 
object and background, the luminance change between frames, 
etc. In the first step of the BBGDS algorithm, the center point in 
the checking block wins. It will stop the searching process and a 
local minimum will be found. However, it is seen that the global 
minimum is located at the far side of the winning point and the 
MAD value of the winning point is significantly larger than that 
of the global minimum. It will degrade the quality of the motion- 
compensated prediction frame. For the new BBGDS algorithm, 
a similar procedure is conducted. In order to maximize the 
possibility for finding the global minimum in the situation like 
Fig. l(b), it is necessary to determine whether the winning center 
of the current checking block be identified as the “final winner”. 
Thus, a Confidence Measure of Error Surface (CMES) is 
proposed to prevent an unsuitable termination of the search being 
misled by insufficient information. In other words, the CMES is 
used to determine the continuation of the search by enlarging the 
checking block according to the superiority of the best-matched 
center position to others in the current checking block. Let us 
define the CMES as follows: 

+I + I  

(2) 
C Z(MAD(U + i ,v  + j ) -  MAD,,(u,v)) 
I=-, j - - ,  

cMEs = ;LO 
+I +I x ~ M A D , , ( w )  

,;-I ,.-I 
i d  j d  

where 1 is the size of the checking block; Emi.(u,v) and 
E(u+i,v+j) are the smallest and other values of the MAD of the 
checking block, respectively. Values of the CMES can reflect 
the statistical behaviour of the error surface in the checking 
block. If the CMES is close to 0, it means that it is insufficient to 
make sure that this center point is a winner. That is, the best- 
matched center position in the checking block is probably a local 
minimum, and hence the size of the checking block, I, is 
increased to further evaluate the behaviour of this enlarged error 
surface, as depicted in Fig. 4. On the other hand, if the CMES is 
far away from 0, it indicates that the center point is probably 
located at the global minimum. 

3382 

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on June 29,2010 at 08:45:19 UTC from IEEE Xplore.  Restrictions apply. 



-7 -6 -5 -4-3-2 -1 0 1 2 3 4 5 6 7 

-7 
-6 
-5 
-4 
-3 
-2 
- 1  
0 
1 
2 
3 
4 
5 
6 
7 

min. MAD of 
. the checking 

Mock 

.checking 
block 

Figure 2. Example of the BBGDS search procedure, 
where motion vector (3, -4) is found. 
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Figure 3. A nonunimodal error surface sampled by 
checking block. 

MAD v l l v  

t 

-a*-- 
Figure 4. Reliable search through the CMES. 

Now by using this CMES, more search positions are allowed in 
search windows which contain more local minimum values for 
error surface than in search windows which have monotonically 
decreasing values of error surface. However, there is still some 
inefficient use of the search positions. Consider the search 
window with the MAD error surface shown in Fig. l(c). The 
modified BBGDS will find many local minima in this search 
window, the value calculated for the confidence measure will be 
small, and consequently, if only the CMES is used, many search 
positions will be allowed for this search window. It can be seen 
however that the value of the MAD at all the local minimum 
positions found will be very small, and hence, any of these 
positions will correspond to a good prediction for the current 
block. Therefore, a MAD threshold detector is needed to limit 
the number of search positions in the search window where the 
MAD value at the local minimum positions has already reached 
an acceptably small value. 

According to the above discussion, a reliable solution to 
terminate the search process in the BBGDS is proposed. The 
details are given below: 

If the minimum MAD point in the search step occurs at the 
center of checking block and its value is smaller than an 
acceptable error, MAD,h, stop the search. Let us refer this as 
error-acceptable stop. 

If the minimum MAD point in the search step occurs at the 
center of checking block and the value of its CMES is larger than 
a confident threshold, a, stop the search. This refers to as CMES 
verification stop. 

The block diagram of the new BBGDS is shown in Fig. 5. 
Clearly, if the CMES verification stop does not occur, the 
checking block is enlarged as shown in Fig. 4, and it continues 
this CMES verification of the new checking block until the 
CMES is larger than a or the minimum MAD point is not in the 
center. Note that, in the latter case, the size of checking block 
has to be reset to I. 

Initialize the c k k i n g  block 
centered at (0.0) with 1 =1 

Evaluate the MAD values for all 
points in the checking block 

Set the checking block 
csnlered at thc min. 

MAD point and 1 = I 

Keep this checking 
block center and 

1 I 

Motion Vector 
Figure 5. Block diagram of the new BBGDS algorithm 

4. SIMULATION RESULTS 
The algorithm introduced in this paper has been developed in 
accordance with the statistical behaviour of error surface. The 
performance of the proposed algorithm has been tested for a 
large variety of real image sequences, including "Table Tennis" 
and "Football". Results of the performance of the block motion 
vector estimation of the new BBGDS through the CMES and 
some conventional methods are compared in terms of quality and 
computational complexity. Parameters MAD,,,, and a for the 
stopping criteria of our new BBGDS were set to 3000 and 0.3 
respectively. The maximum allowable displacement in both the x 
and y directions was set to 25. and a block size of 16x26 has 
been used. We have also used the Mean Square Error (MSE) per 
pixel as the measure of performance. 
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Fig. 6 shows the results of the MSE of the motion-compensated 
prediction frarncs together with some traditional approaches for 
the comparison. In Fig. 6, there is a great increase in prediction 
error of the n-SHS and the conventional BBGDS as compared 
with that of the FSA. It is because the probability of occurring 
the situation like Fig. I(b) is more often in the fast moving 
sequences. This situation makes an inappropriate choice in early 
steps of the n-SHS, and the unreliable stop in searching of the 
conventional BBGDS implies that such kind of algorithms are 
more easily to be trapped in a local minimum. However, our new 
BBGDS can resolve the misleading stop of the searching by 
evaluating the confidence measure of error surface, CMES. As 
shown in Fig.6, the new BBGDS through the CMES is 
significantly bet:er than that of the n-SHS and the conventional 
BBGDS. Also, we can see that the MSE performance of our 
approach is very close to the FSA. From Table 1, it is shown that 
the new BBGDS requires only 2.1% to 2.5% complexity of the 
FSA. It is much better than the famous n-SHS and has a slight 
increase in complexity as compared to the conventional BBGDS. 

5. SUMMARY 

In this paper, we have presented a thorough study on the error 
surface behaviour of motion vector of video signals. Then, we 
propose a new measurement for the fast search algorithm design 
and performance comparison. It has been shown that the 
Confidence Measure of Error Surface (CMES) is a criterion for 
measuring the certainty to stop the searching process. As the 
unimodal error surface is checked in our approach, the searching 
through the CMES is usually nonuniform so that it is able to best 
adapt to the statistical behaviour of a particular video sequence. 
This criterion naturally makes robust and fast motion estimation 
possible. We have tested the proposed CMES with the BBGDS 
and found that, a speed-up of about 40-50 times is achievable as 
compared with the Full Search Algorithm, and both algorithms 
give similar performance. 
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Table 1. The complexity of the algorithms 
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Figure 6. MSE produced by different algorithms for 
image sequences, the “Table Tennis” and the “Football”. 
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