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ABSTRACT 
Global motion estimation is used for esploiting temporal 
redundancies in arbitrarily shaped video objects, which is 
coinpulatiorlally Uie most demanding part within the 
MPEG-4 standard. In this paper, we propose a robust and 
fast method for the estimation of global motion of video 
objects used in the MPEG-4. Predictors are widely used 
in block-based motion estimation and it is well proven that 
the use of good predictors can speed up the motion 
estimation process. The proposed algorithm makes use of 
the shape information (alpha-plane) of video objects to 
form a new predictor, From the experiniental results, we 
conclude< that the new predictor provides additional 
performance gains with reducing computational 
complesiry of global motion estimation. 

1. INTRODUCTION 
MPEG4 is an inlernational standard which provides a 
coding scheme for arbitrarily shaped video objects (VOs) 
[l-31. Each VO is composed of its tempom1 instances, 
video object planes (VOPs). which is the central concept 
of MPEG-4 video. A VOP can be fully described by 
teaure variations and shape representation, as shown in 
Figure 1. In 'natural scenes, VOPs are obtained by a 
semiautomatic [4-51 or automatic segmentation [6 ] ,  and 
the resulting shape informatioii can be represented as a 
binary alpha-plane. The alpln-plane contaih the 
information to identlfy the pixels which are inside of an 
object (value of alpha-plane = I), and the pixels which are 
outside of the object (value of alpha-plane = 0), as 
depicted in Figure 1@). 

Coding of ar6itrarily shaped video objects relies on the 
reduction of statistical redundancies in the data and on the 
exploitation of the human visual system limitations. As the 
lunlinance and color in dynamic images are most 
correlated in the direction of motion, any redundancy 
removal is highly dependent on motion information. For 
tlus purpose, a nonlinear prediction technique, called 
niotion compensation (MC), has been developed and used 
with a renuirkable success It consists of two steps: 
estimating motion behveen successive video frames and 
then predicting the current frame from previously 
tmmnitted frames using the motion infonnation [7-XI. 

Motion compensation is a core technology of all video 
compression standards developed to date, such as MPEG- 
1 [9 ]  andMPEG-2 [10], 

(b) 

Figure 1. Representation of the VOP. (a) Image of 
original "Bream" VOP. (b) Binary alpha-plane of 
"B"" VOP , 

In general, motion in a VO results from entire motion of 
the VO and fmm displacements of individual parts 
cotnposing the VO. The former is often referred to as 
global motion of the VO and the latter as local motion of 
the VO. Most motion estimation techniques ignore t l k  
aspect and make no distinction between the global and 
local niotion; global motion is taken into account only 
implicitly though local estimates. For instance, in terms of 
motion compensation, MPEG-1 [9] and MPEG-2 [ 101 rely 
on local motion model of blocks under translation. 
However. it is usually advantageous to process global and 
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local motion separately. Not only does it result in more 
precise estimates, but it also leads to a more compact 
representation o f  the motion infonnation. 

Consequently. global motion estimation (GME) for an 
individual VO is a new coding teclmology for video 
compression in the recent MPEG-4 standard, as can be 
found in the MPEG-4 verification model (VM) [ll]. 
However. techniques for global motion estimation of each 
foreground VO just directly employ the tools that are used 
in dynamic sprites generation [12]. In this paper, by 
considering the shape infomtion of video objects, we 
propose a novel global motion estimation algorithm that is 
especially tailored for arbitmily shaped VOs. 
The paper is organized as follows. Section 2 gives an 
ovenku. of global motidn estimation. Section 3 describes 
the proposed algoritlun. Section 4 demonstrates 
esperimental results. Finally, section 5 provides the 
conclusions. 

2. GLOBAL MOTION ESTIMATION 
The GME technique is designed to minimize the s u m  of 
squared daerence between the current VOP 1 and the 
motion-compensated previous VOP 2'. 

with e ( i , j )  = l ( i , j )  - I ' ( i ' ,  j ' )  

where w is the alpha-plane of the current VOP, ( i j ]  
denotes the spatial coordinates of the pixel in the current 
VOP. (i ; j ' )  denotes the Coordinates of the corresponding 
pisel in the previous VOP, A4x N is the size of the 
bounding box that is a box surrounding the current VOP 
with the minimum number of macroblocks, and the 
suimnation is carried out over all corresponding pairs of 
pisels inside the current VOP, that is, the value of w(i,j,J is 
equal to 1. 

To describe the global motion field, a 4garameter affine 
motion model is typically used, which can be written as 

where m = [ma ml, m2, m3, m4, ms] are the global motion 
parameters. Basically. m2 and m5 describe the VO under 
translation while m& mi, m3 and m, describe rotation and 
deformation of the VO. This affine model can deal with 
the majority of motion types encountered in video coding. 

To compute model parameters, implicit in (i ', j I ) ,  we use a 
gradient descent method to nuniinize E in equation (l), In 
the MFEG-4 VM, the Levenberg-Marquardt iterative 
nodinear (LM) algoritlun [13] is employed to perform the 

object-based minimization in order to get affine 
parameters [vih m,, mA m4 ni4, ms]. Since the dependence 
of E on m is nonlinear, LM algorithm updates motion 
parameters m iteratively [ 131 as follows: 

(3 )  

where m'"" and are the motion parameters at iteration 
t + I  and t, respectively, H is the Hessian matrix and 6 is 
the weighted gradient vector. More specifically. the 
coefficients of matrix Hand vector b are given by 

and 

(4) 

( 5 )  

We are now to describe the flow of the LM algorithm. 
The motion parameters mina are first initialized with the 
translational vector. The initialization will be discussed in 
Section 3 .  Each iteration of the LM algorithm consists of 
the following steps: 

For each pixel at location (i,J which is inside the 
VO, compute its corresponding position in the 
position (i ',j 3 according to equation (2); 

Compute the error e(ij) and the partial derivative of 
e(iJ) with respect to the mk; add the pixel's 
contribution to matrix EI and vector b as equations 
( I )  and (5). 

Solve the system o f  equations and update the motion 
parameters defined in equation (3). 

Continue iterating until the error starts to increase or 
IV,,,~ iterations are ccarried out. 

1. 

2. 

3 .  

4. 

3. ROBUST ESTIMATION OF INITIAL 
MOTION PARAMETERS 

However, GME is a computation-intensive, time 
consuming task. In order to reduce the computational 
complexity, the estimation of initial motion parameters - 
the predictor is desired. This predictor is also to assure the 
convergence of the subsequent LM algorithm. Note that 
this predictor does not need Lo accurate. However, it must 
be robust enough to make the starting point of the LM 
algorithm tie within a convergence "basin" of the global 
minimum of E. For this purpose, an initial estimation of 
the translational components (ma ms) of the displacement 
is computed in the MPEG-4 VM [l 11. This predictor is 
obtained by a matching technique, which minimizes E 
using a n-step hierarchical starch (n-SHS) [14]. 
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However, it is well known in block-based motion 
cstiination that n-SHS can give reasonable translational 
inotion within a search area of +7. But when the global 
translational motion of a VO is larger than f7,  n-SBS 
would typtically give very unreliable values resulting in 
inany iterations in LM. The worst case performance of 
GME using n-SHS as initialization is poor in our 
esperiiiients, And even if the global transfational motion 
of a VO is within *7, it is well known that the motion 
parameters from n-SHS can be chaotic. This gives rise to 
many iterations in the LM algorithm resulting in poor 
performance. 

Our improvement over GME using n-SHS is achieved by 
incorporating the binary alpha-plane to accurately predict 
the initial motion parameters such that a good initial 
condition is applied in the LM algorithm to reduce the 
number of iterations, Since global tmnslational motion is 
mostly the entire translation between two consecutive 
VOPs. we can approximate the global translational motion 
as tlie displacement of centroids between the current and 
previous alpha-planes. The coordinates of the centroid of 
the current alpha-plane w, (c.,, cy), are determined using 
the moment. as defined in following equations: 

M-l N-i 

i x w(i, j )  

1-0 i=O 

and 

(7) 

j=o i=o 

Similarly, tlie coordinates of the centroid of the previous 
alpha-plane w ’ , (c :- c &, are then computed as 

= 

and 

M-I N-1 

c’ = 
Y (9) 

Thus, the proposed initial predictor mhit is [ I ,  0, cIx-c, 0, 
I, cjcyl. 

4. SIMULATION RESULTS 
A series of computer simulations have been conducted to 
evaluate the p e r f ~ t ~ ~ i ~ ~ e  of the proposed algorithm. 
Sirnulations have been carried out using arbitrarily shaped 
video objects of “Bream” and “AkiT sequences. The 
mean square error WSE) is used to compare the 
performance of the proposed algorithin with some related 
techniques. For the stopping criterion of GME, N,,,, was 
set to 32. 

Table 1 compares tlie performance of GME without 
predictor (GME+no-Pred) versus the cases when the 
predictor is computed using the displacement of centroids 
(GME+DoC-Pred) or the conventional n-SHS 
(GME+nSHS_Pred). In Table 1, the performance of GME 
using both predictors (GME+Both-hd) is also shown. 
For GME+Both-PEd, E as defined in equation (1) of both 
predictors are calculated and the predictor with the 
minimum E is chosen as the starting point of the LM 

The detailed comparisons of the average MSE and the 
number of iterations of the LM algorithm between 
GME+no-Pred, GME+nSHS-Pred md the proposed 
GME+DoC-Pred are tabulated in Table 1 in which the 
fraines are temporally dropped by a factor of 0 (no 
dropping), 1, 2 and 3. Note that the number of iterations 
can reflect the computational complexity of GME since 
the initialization process is simple as compared with each 
iteration step of the LM algorithm. We show that 
GME+DoC-Pred outperforms GME+no-Pred and 
GME+nSHS-Pred. The results m more significant for 

algorithm. 

the larger skipping factors. In those cases, since the 
motion between two consecutive VOPs is increasing, the 
initial predictor becomes critical for G m .  Figure 2 
shows that the proposed GhE+DoC-Pred usually gives 
the minimum initial MSE for all of the frames. Thus, our 
proposed estimation of predictor can provide a good initial 
condition for the LM algorithm such that the number of 
iterations can be reduced and it is also robust enough to 
make the starting point of the LM algorithm lie within a 
convergence- “basin” of the global minimum of E. 
Besides, since GME+Both-Pred has the advantage of 
selecting the best predictor, it can firther improves the 
performance. 

( 8 )  
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5. CONCLUSIONS 
In this paper, a robust predictor for global motion [14] T. Koga, K. Iinuma, A. Hirano, Y. Iijima, and T. Ishiguro, 
estimation of arbitrarily shaped video objects in MPEG-4 “Motion compensated interframe coding of video 
has been proposed. The b i w  alpha-plane is used for tlie conferencing,” in Roc. Nat. Telecomniun. Cod.,  New 
adjustment of tlie starting point of the LM algorithm such Orleaiis,LA,pp.G.5.3.1-G.j.3.5,Dec. 1981. 

Coding 
initialization 

predictor 
Sequence 

tl&t a number o f  iterations can be significantly reduced 
Experimental results show that our proposed algorithm 
can also improve the reconstmction quality of arbitrarily 
shaped video objects. Thus. this algorithm has the 
advantage of being siiiiultaneously robust and fast. 
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Figure 2. Initial MSE for different predictors. 

Table 1. Comparison of GME without and with 
predictor($. 
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