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Abstract— Reverse playback is the most common video cassette
recording (VCR) functions in many digital video players. How-
ever, the predictive processing techniques employed in MPEG
severely complicate the reverse-play operation. One approach to
achieve the reverse playback is to store an additional backward-
encoded bitstream into the server. Once the client requests a
backward-play operation, the server will select an appropriate
frame for the client from either the forward or backward-encoded
bitstream by considering the cost of network bandwidth and the
decoder complexity. Unfortunately, the forward and backward-
encoded bistreams are encoded separately. The frame that has
previously decoded by the client may not exactly identical to the
reference of the current selected frame and the drift problem is
occurred. In this paper, we propose a macroblock-based approach
to alleviate the drift problem with the minimal requirements
on the network bandwidth and the decoder complexity. The
novel macroblock-based techniques are used to manipulate the
necessary macroblocks in the compressed-domain and the server
then sends the processed macroblocks to the client machine.
Experimental results show that, as compared to the conventional
dual-bitstream system, the new streaming system enhances the
quality of the reconstructed frame significantly.

I. INTRODUCTION

With the rapid growth of online multimedia contents, it is
also highly desirable that video streaming systems should have
the capability of providing fast and effective browsing. A key
technique that facilitates fast and user-friendly browsing of
video content is to provide full video cassette recording (VCR)
functionality. The set of effective VCR functionality consists
of forward, backward, stop, pause, fast forward, fast backward,
and random access.

Recently, some works on the implementation of backward
playback for MPEG compressed video in streaming applica-
tions have been introduced [3]–[6]. Chen and Kandlur [3]
suggested an approach of converting an incoming MPEG
bitstream with I-B-P structure into a local bitstream with I-
B structure by performing a P-to-I frame conversion at the
client machine. This P-to-I frame conversion was used to break
the inter-frame dependencies between the P-frames and the I-
frames. After the frame conversion and frame re-ordering, the
motion-vector reversing approach developed in [4] could be
used for backward playback of the new I-B stream. However,
this approach requires extra decoder complexity to perform the
P-to-I conversion and higher storage cost to store the local bit-
stream in the client. Wee and Vasudev [5] described a reverse-
play transcoder which is used to convert the I-P frames into

another I-P bitstream with a reversed frame order. Lin et al [6]
recently proposed to store the forward-encoded bitstream and
the backward-encoded bitstream in the server. The idea behind
is to switch frames between the forward-encoded bitstream and
the backward-encoded bitstream based on a frame-selection
scheme which is used to minimize the transmitted frames
over the network for any speed-up factors. This dual-bitstream
technique can alleviate the decoder complexity while main-
taining the low network bandwidth requirement in the VCR
operations. However, the frame-selection scheme employed
by dual-bitstream technique does not work well when the
speed-up factor is smaller than N/4, where N is the group-of-
picture size [6], and the bitstream switching is occurred. In this
case, it would cause the drift problem because the P-frames
in the backward-encoded bitstream would be approximated
by the P-frame in the forward-encoded bitstream and vice
versa. Although the drift problem could be compensated by
additional drift-compensated bitstreams, it is too complicated.

In this paper, we provide a computationally efficient solution
to perform bitstream switching in the dual-bitstream MPEG
streaming video system to reduce the drift problem arising
from mismatch between the forward-encoded and backward-
encoded bitstreams. Since the proposed scheme mainly op-
erates on the compressed-domain, complete decoding and
encoding are not required in the server. Thus, an additional
processing requirement in the server can be minimized.

The organization of this paper is as follows. Section II
of this paper presents an macroblock-based algorithm for
performing bitstream switching in the dual-bitstream MPEG
video streaming . Simulation results are presented in Section
III. Finally, some concluding remarks are provided in Section
IV.

II. MACROBLOCK-BASED TECHNIQUE FOR BITSTREAM

SWITCHING IN THE DUAL-BITSTREAM MPEG VIDEO

STREAMING SYSTEM

For dual-bitstream system, if the cost of current displayed
frame (dC) has the smallest value among all distances, then
the bitstream switching is required and the drift problem are
occurred. This is the case when the current VCR mode is
forward play and then backward is requested. In this paper,
we consider a macroblock-based solution to reduce the drift
for a P-to-P approximation in which the switching between
the FB and RB is at predictive frames. In the following,
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Fig. 1. Definition of the drift-free macroblock (DFMB) and non-drift-free
macroblock (non-DFMB).

we provide a detailed description and formulation of the
proposed macroblock-based algorithm. Since the process of
the FB to RB switching is quite similar to that of the RB
to FB switching, for the sake of simplicity, we only focus
the discussion on the case that the FB is switched to the
RB. To illustrate the proposed algorithm, we use the example
where the current VCR mode is normal forward play and
then backward-play request is launched. The situation in
macroblock level is depicted in Fig. 1. In the server, MBFBn

(k,l)

and MBRBn

(k,l) represent the macroblocks at the kth row and lth

column of frame n in the FB and the RB respectively. In this
example, for simplicity of the presentation, the MPEG video is
coded in I- and P-frames only. The extension of our discussion
to the case with the general I-B-P structure is straightforward.

A. Macroblock viewpoint of the dual-bitstream algorithm

In MPEG video coding standards, block motion-
compensated prediction (MCP) is used to reduce the temporal
redundancies in video sources [1], [2]. The prediction process
is what gives the MPEG codecs the advantage over pure still-
frame coding methods. In motion-compensated prediction,
the previously transmitted and decoded frame serves as the

prediction for the current frame. The difference between the
prediction and the actual current frame is the prediction error.
The prediction errors in the FB, eFBn

(k,l) , and the RB, e
RBn−1

(k,l) ,
are given by

eFBn

(k,l) = MBFBn

(k,l) − MCMBFBn−1(mvFBn

(k,l) ) (1)

e
RBn−1

(k,l) = MB
RBn−1

(k,l) − MCMBRBn(mv
RBn−1

(k,l) ) (2)

where MCMBFBn−1(mvFBn

(k,l) ) stands for the motion-

compensated macroblock of MBFBn

(k,l) which is translated by

the motion vector mvFBn

(k,l) in the previously reconstructed

frame n−1 of the FB and MCMBRBn(mv
RBn−1

(k,l) ) represents

the motion-compensated macroblock of MB
RBn−1

(k,l) which is

translated by the motion vector mv
RBn−1

(k,l) in the previously
reconstructed frame n of the RB. Noted that, in contrast to
the FB, frame n − 1 is predicted from frame n in the RB
since this bitstream is generated by encoding the video frames
in the reverse order. All these prediction errors are variable-
length encoded and stored in the server.

Fig. 1 also shows the client side where a user requests
a backward-play command at frame n, the next displayed
frame is frame n − 1. At that moment, frame n is stored in
frame buffer at the client machine as it is used for decoding
subsequent frame n + 1 in the forward play operation. In
other words, all MBFBn

(k,l) are available at the decoder. When
macroblocks of the requested frame (frame n−1) is requested,
the distance dC in the frame-selection scheme has the smallest
value among all distances. Thus the current displayed frame
of the FB (frame n) is selected as the reference to predict
the requested frame (frame n − 1) and the coded prediction
error of frame n − 1 in the RB is transmitted to the client
machine. The client machine of the dual bit-stream system
decodes the coded prediction error by using the value of the
quantized DCT coefficients. These quantized coefficients are
de-quantized and put through an inverse DCT. This process
yields the residual signal e

RBn−1

(k,l) of frame n − 1 in the RB.

The requested macroblock of frame n− 1, MB
Rn−1

(k,l) , can be
reconstructed by adding the prediction which results from the
previously decoded frame by applying motion compensation,
as indicated below,

MB
Rn−1

(k,l) = MCMBFBn(mv
RBn−1

(k,l) ) + e
RBn−1

(k,l) (3)

where MCMBFBn(mv
RBn−1

(k,l) ) is the motion-compensated

macroblock of MB
Rn−1

(k,l) which is translated by the motion

vector mv
RBn−1

(k,l) in the previously reconstructed frame of the

decoder. Note that, for MCMBFBn(mv
RBn−1

(k,l) ), the refer-
ence frame is come from the FB whereas the motion vector
mv

RBn−1

(k,l) is extracted from the RB. Substitution of (2) into
(3) yields

MB
Rn−1

(k,l) = MB
RBn−1

(k,l) + [MCMBFBn(mv
RBn−1

(k,l) )

−MCMBRBn(mv
RBn−1

(k,l) )] (4)
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This equation implies that the reconstructed macroblock in
the client machine MB

Rn−1

(k,l) is deviated from the MB
RBn−1

(k,l)

of the RB in the server by MCMBFBn(mv
RBn−1

(k,l) ) −
MCMBRBn(mv

RBn−1

(k,l) ). This term indicates the mismatch
due to the use of the current displayed frame of the FB (frame
n) as an approximation of frame n of the RB to predict the
requested macroblocks in frame n−1 of the RB. It would lead
to the drift errors. Furthermore, such errors could propagate
and be accumulated in the subsequent P-frames.

B. Classification of Macroblocks at the switching point

In order to reduce such mismatch, in contrast to the frame-
based scheme used in the conventional dual-bitstream architec-
ture, a macroblock-based algorithm is proposed to use at the
switching point. During the bitstream switching from the FB
to the RB, motion vectors of the current displayed frame are
extracted from the FB and these motion vectors are used by
a macroblock classifier to identify the types of macroblocks.
Two types of macroblocks are now defined. For illustration,
we use the example in Fig. 1 again to give a clearer account for
defining macroblocks in the requested frame n−1, MB

Rn−1

(k,l) .
In this figure, a user requests a backward-play operation at
frame n, the next frame to be displayed is frame n − 1.
MB

Rn−1

(k,l) is defined as a drift-free macroblock (DFMB) if

the macroblock in frame n of the FB, MBFBn

(k,l) , having the

same spatial position of MB
Rn−1

(k,l) is coded without motion
compensation (non-MC macroblock). Otherwise, it is defined
as a non-drift-free macroblock (non-DFMB). For example, in
Fig. 1, since the motion vector of MBFBn

(0,0) , mvFBn

(0,0) , is zero, it

means that MBFBn

(0,0) is a non-MC macroblock and MB
FBn−1

(0,0)

is classified as DFMB. On the other hand, since MBFBn

(1,0) is

coded with motion compensation (MC-macroblock), MB
Rn−1

(1,0)
is classified as non-DFMB. In this paper, our proposed algo-
rithm works at the level of macroblocks. The server processes
those non-DFMBs the same as the conventional dual-bitstream
algorithm. The server gets the data from the RB and the drift
problem mentioned in (4) cannot be avoided. As it will be
described in detail, for DFMBs, the server will use only the
MPEG data from the FB to avoid the drift errors. Note that
the server will process each DFMB in the compressed-domain
such that a complete decoding and encoding are not required
at the server.

C. Sign inversion technique for DFMBs

Since frame n of the FB is stored in the frame buffer at the
client machine when a user issues the backward-play operation
at frame n. For each DFMB, we are interested in obtaining
MB

Rn−1

(k,l) from the FB. If this can be done, no mismatch
will be occurred since both reference frame and the prediction
errors are come from the FB. We will now present in detail
how a DFMB can be reconstructed from the FB provided that
the frame n of the FB is available at the decoder. Rearranging
(1), we obtain an expression for MCMBFBn−1(mvFBn

(k,l) )

MCMBFBn−1(mvFBn

(k,l) ) = MBFBn

(k,l) − eFBn

(k,l) (5)

When the requested MB
Rn−1

(k,l) is found to be a DFMB,
its corresponding macroblock in frame n of the FB.
MBFBn

(k,l) , is coded without motion compensation. It means

that the spatial position of MB
FBn−1

(k,l) in the FB is the

same as that of MBFBn

(k,l) . Hence, for this specific case,

MCMBFBn−1(mvFBn

(k,l) ) is equal to MB
FBn−1

(k,l) , and (5) can
be rewritten as

MB
FBn−1

(k,l) = MBFBn

(k,l) + ẽFBn

(k,l) (6)

where ẽFBn

(k,l) = −eFBn

(k,l) . Note that the client machine has
the frame n when a user issues the backward-play request
at frame n. In other words, pixels of MBFBn

(k,l) are available at

the decoder. To reconstruct MB
FBn−1

(k,l) in the backward-play
operation, (6) indicates that, for a DFMB, the only data that
the server needs to send is the quantized DCT coefficients
of ẽFBn

(k,l) . In the following discussions, we will describe how

to compute these quantized DCT coefficients of ẽFBn

(k,l) from
the existing MPEG video stream in the server. By applying
the DCT to ẽFBn

(k,l) and considering that the DCT is an odd

transform, we can find the DCT of ẽFBn

(k,l) in the DCT-domain,
as indicated below,

DCT (ẽFBn

(k,l) ) = −DCT (eFBn

(k,l) ) (7)

Then the quantized DCT coefficients of ẽFBn

(k,l) are given by

Q[DCT (ẽFBn

(k,l) )] = −Q[DCT (eFBn

(k,l) )] (8)

From (8), Q[DCT (ẽFBn

(k,l) )] can be obtained by inverting the

sign of all DCT coefficients in Q[DCT (eFBn

(k,l) )], which can be
directly extracted from the FB of the server. From the above
derivation, we can conclude that the server only needs to invert
the sign of all DCT coefficients for each DFMB and send
them to the client. The client machine uses the previously
reconstructed frame in the frame buffer of the decoder as the
reference frame which adds the inverted DCT coefficients to
reconstruct the macroblocks classified as DFMB. Since both
of reference frame and inverted DCT coefficients are from
the FB, the reconstructed pixels of the DFMB are identical to
corresponding pixels of the macroblock in the FB. No drift
errors would be introduced in the DFMB.

Furthermore, for the same backward playback example, the
next frame to be displayed is frame n − 2 after frame n − 1
has been decoded and displayed in the client machine. Now,
the reconstructed pixels of frame n − 1 are stored in the
frame buffer of the decoder. Therefore, the proposed technique
can be processed in the recursive way to reduce the drift
problem. However, if the macroblock has already defined as
non-DFMB, in which the drift errors have already introduced
in this reconstructed macroblock. It is useless to employ the
technique of the sign inversion of DCT coefficients for the
remaining macroblock that have same spatial position.

III. SIMULATION RESULTS

In this section, we present some simulation results. All the
test sequences have a length of 148 frames and were encoded
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TABLE I

OVERALL AVERAGE PSNR COMPARISON FOR ALL SWITCHING POINTS.

Sequences Bitrate Dual-bitstream
algorithm

Macroblock-based
algorithm

Gain

Salesman 1.5M 36.59 37.48 0.80

(352x288) 3M 39.51 40.70 1.19

Football 1.5M 28.94 29.39 0.40

(352x240) 3M 32.58 33.38 0.80

Foreman 64K 25.69 25.91 0.22

(176x144) 128K 27.60 28.12 0.52

Carphone 64K 28.73 29.06 0.33

(176x144) 128K 31.72 32.30 0.58

Claire 64K 34.10 34.77 0.67

(176x144) 128K 39.65 40.87 1.22

at different bitrates. Each test sequence is encoded into two
bitstreams, FB and RB, and I-frames in the RB are interleaved
between I-frames in the FB. For all test sequences, the frame-
rate of the video stream was 30 frames/s and the GOP length
is 14 with an I-P structure. To evaluate the performance of
the proposed macroblock-based algorithm, two simulations
condition were carried out. First, we have simulated the
situation from forward to backward-play operations on every
possible switching points in which P-to-P frames bitstreams
switching are occurred. Table I shows the PSNR performance
of all requested frames n − 1 where FB to RB bitstream
switching at all switching points n are simulated. It is obvious
that there is significant improvement for all video sequences,
especially the slow motion sequences, such as “Salesman” and
“Claire” sequences. For the high motion sequences such as
“Football”, the proposed algorithm achieves up to 0.8dB PSNR
gain.

Second, we extend our simulations to the real MPEG
video streaming condition. Actually, the drift errors will be
introduced after performing bitstreams switching from FB to
RB, and then these errors propagate and accumulate to the
next displayed frame until the next I-frame. Fig. 2 demonstrate
the performance of the dual-bitstream and macroblock-based
algorithm in the situation that bitstream switching occurs at
the switching point that have initiated longest duration of
drift propagation. As shown in Fig. 2, the performance of
macroblock-based algorithm outperforms the dual-bitstream
algorithm without error compensation in all GOPs. However,
the quality of the requested frames after bitstream switching
drops gradually as the distance from the switching point
increase. It is due to the fact that the number of non-DFMBs
increases and the drift errors accumulate from frame to next
requested frame, however, the quality would be better than the
dual-bitstream algorithm.

IV. CONCLUSION

In this paper, we proposed an efficient macroblock-based se-
lection techniques for the dual-bitstream system. The proposed
techniques are motivated by the center-biased motion vec-
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Fig. 2. The performance of the dual-bitstream algorithm and macroblock-
based algorithm in the situation when the user requests a forward to backward-
play operation at the end of each GOPs(RB) until received the next I-frame
for the ”Salesman” encoded at 3Mb/s.

tor distribution characteristics of real-world video sequences.
With the motion information, the video streaming server
organizes the macroblocks in the requested frame into two
categories - a drift-free macroblock (DFMB) and a non-drift-
free macroblock (non-DFMB). Then it selects the necessary
macroblocks adaptively, processes them in the compressed-
domain and sends the processed macroblocks to the client
machine. Since the re-encoding of DFMB is not required,
the visual quality for DFMB during reverse playback will
be exactly the same as that of forward playback. Simulation
results show that, with our proposed scheme, the MPEG video
streaming system with reverse-play functionality can alleviate
the drift problem significantly.
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