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Abstract 
Quantitative PET studies usually require invasive 

blood sampling from a peripheral artery to obtal11 an 
input function for accurate niodelling. However, blood 
sampling is inipractical in clinical PET studies. We 
recently proposed a non-invasive modelling approach 
that can simultaneously estimate parameters which 
describe both the input and output functions using 
two or more regions of interest (ROIs). However, 
this approach is still limited by manual delineation of 
ROIs which is subjective and time-consuming. In this 
work, we present an extension to  our method where 
ROI delineation is performed automatically by cluster 
analysis so that subjectivity is reduced while at the 
same time ensuring that the extracted time-activity 
curves have distinct kinetics. Our aim was to  investigate 
the feasibility of using the kinetics extracted by cluster 
analysis for non-invasive quantification of physiological 
parameters. The estimates and the fitted curves 
obtained by simultaneous estimation are in good 
agreement with those obtained by model fitting with the 
measured input function (gold standard method). We 
conclude that cluster analysis is able to  identify distinct 
kinetics and hence can be used for the non-invasive 
quantification ,of physiological parameters. 

I. INTRODUCTION 
Positron emission tomography (PET) with 

[18F]-fluorodeoxyglucose (FDG) has been widely used 
for the study of neurologic disorders, cardiac disease 
and cancer because it provides pathophysiological 
information that is not available from anatomical 
imaging modalities such as magnetic resonance (MR) 
and computed tomography (CT). Various approaches 
including qualitative, semi-quantitative and quantitative 
methods, have been proposed for the analysis of PET 
data. It is believed that quantitative PET can provide 
more accurate and detailed diagnostic information 
about the uptake characteristics of a variety of tracers 
despite the complicated experimental procedures. The 
assessment of treatment response in neurological and 
oncological conditions offers an important potential 
application of quantitative PET.  However, one of the 
major disadvantages is the requirement for measurement 
of the input function (IF) for accurate modelling. The 
gold standard method is to  obtain the IF by frequent 
blood sampling from a peripheral artery under local 

anaesthesia [l]. However, arterial catheterisation 
is invasive and frequent blood sampling may result 
in increased radiation exposure to  P E T  personnel. 
Therefore, full arterial blood sampling is usually not 
performed in routine clinical PET studies. 

A nuniber of approaches have been proposed to  
reduce the need for arterial blood sampling [2-81. We 
recently proposed a simultaneous estimation (SIME) 
approach to  estimate the IF and the kinetic model 
parameters from two or more ROIs, making use of one 
or more late venous blood samples for calibration [9]. 
We modified the method to  improve the reliability of 
parameter estimation (SIMEP) and our results with 
in-vivo PET data are promising [lo]. The method 
is still limited, however, by the selection of ROIs 
whose time-activity curves (TACs) must have distinct 
kinetics so that the physiological parameters in the 
impulse response functions (IRFs) obtained by SIME 
are numerically identifiable. The ROIs are usually 
drawn manually on the PET images but this process 
requires skilled operators, reproducibility is difficult to  
measure and it is time-consuming. This study presents 
a further extension whereby tissue TACs are extracted 
automatically from dynamic PET data by cluster 
analysis which is used to  segment tissues with different 
kinetics. Our aim is to  investigate the feasibility of using 
the kinetics extracted by cluster analysis for non-invasive 
quantification of physiological parameters. 

11. MATERIALS AND METHODS 

A. Simultaneous Estimation of Physiological 

We have reported the Monte-Carlo simulations [9] 
and the zn-woo FDG-PET studies that validate our 
method [lo]. Only a brief summary of the method is 
presented here. We first assume that (1) all the tissue 
TACs are driven by the same IF, (2) the information 
of the IF  is embedded in the tissue TACs, and (3) the 
parameters in the IF and the IRFs are identifiable. The 
main aim is to  make use of the multiple tissue TACs 
that can be obtained by defining different ROIs on the 
dynamic PET images to recover the IF embedded in 
the tissue TACs. Since the TACs are the convolution 
integration of the IF with the IRFs of the corresponding 
ROIs, it is possible to  estimate the IRF parameters 
and the IF by minimising the errors between the 
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model predicted tissue response and the corresponding 
measurements in two or more ROIs simultaneously. 

In order to improve the numerical identifiability of the 
parameters to be estimated, one or two late venous blood 
samples are required to calibrate the estimated IF [9, lo]. 
Nonlinear least squares (NLLS) is used to optimise the 
IF and the IRF parameters based on the following cost 
function: 

N M 

z = l 3 = 1  
m 

+ C P O k  [?E(tA.) - (1) 
k = l  

1 

where Ar is the total iiuniber of ROIs incorporated into 
the model fitting procedure; AI is the number of frames 
for each tissue TAC; h,(t) is the IRF of the i-th ROI; 8 
denotes the vector of parameters to  be estimated: d(t-t:) 
is a Dirac delta function shifted h time by t j  units; @ is 
the convolution integral operator; e ; ( t )  is the estimated 
arterial IF; m is the number of venous blood samples 
taken late in the course of the study for calibration; ? ; ( t k )  

is the tracer concentration in plasma measured at  time 
t k  (k = 1 ,2 , .  . . , m); and Wk is chosen to  be 100 so that the 
late venous samples, c;(tk), are given more weight as they 
are usually more reliable than the PET measurements. 
This method is referred to  as simultaneous estimation 
(SIME) [lo]. 

Although precise parameter estimates can be 
obtained theoretically with SIME, we found that the 
estimation of the standard deviations for the parameter 
estimates are usually very poor even though the values 
of the parameter estimates are accurate [lo]. This may 
be because a large number of noisy data are fitted 
simultaneously and the information matrix may be 
poorly-conditioned since the stability of its Jacobian 
matrix is disrupted by noise. Another possibility could 
be the high nonlinearity of the parameter space. We 
have developed a technique that is applied after SIME 
for the above situations and we refer to this method as 
post-estimation (SIMEP) [lo] in which the parameters 
in the IRFs are estimated separately by using the 
estimated IF from SIME and the individual tissue TACs 
as input-output pairs. The standard deviations of the 
parameters can be greatly improved due to  the reduction 
in dimensionality of parameter space. 

B. Automatic Extraction of Tissue TACs 
Cluster analysis is used to extract the different kinetics 

present in dynamic PET data based on the shape and 
magnitude of the tissue TACs. By assuming that there 
exists k characteristic kinetics in the PET data, the tissue 
TACs with similar shape and magnitude can be classified 
into the same cluster whose kinetics (cluster centroids) 
are the average of the constituent tissue T-ACs. Those 
TACs with different shape and magnitude are classified 
into different clusters so that the weighted residual sum 

Figure 1: A modified template in a slice of the Hoffman 
brain phantom. A tumour in white matter (white arrow) and 
an adjacent hypometabolic region (shaded region) in the left 
middle temporal gyrus are shown. 
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Figure 2: Simulated noisy FDG kinetics in grey matter, 
white matter, tumour, thalamus, and hypometabolic region 
adjacent to the tumour. 

of squares (WRSS) and the WRSS within a cluster are 
minimised [ l l ] .  Since there may not be a priori known 
about the value of I ; ,  it is safer to  vary the value of I ;  
over a range of integers so that the possible optimum 
segmentation (thus the optimum value of k )  of the data 
set is covered [ll]. The method is similar to  the one 
proposed by Ashburner et al. [12] in that there is a finite 
number of kinetics present in the dynamic PET data. 
The difference is that the algorithm of Ashburner et al. 
maximises the probability of an arbitrary selected T.4C 
from the data belonging to a specified cluster while the 
method used in this work minimises the WRSS for an 
arbitrary selected TAC to its cluster centroid. 

G. Simulation 
A slice of the numerical Hoffman brain phantom [13] 

was modified using a template consisting of five different 
kinetics (grey matter, white matter, thalamus, tumour 
in white matter and an adjacent hypometabolic region 
in left middle temporal gyrus), as shown in Figure 1. 
The activities in grey matter and white matter were 
generated using a 5-parameter 3-compartment FDG 
model [14] with a measured arterial IF obt,ained from a 
patient, (constant infusion of 400 MBcl of FDG over 3 
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Figure 3: Five cluster images were generated by applying the clustering algorithm to the simulated dynamic FDG-PET data 
set. The images correspond to: (a) ventricles and scalp, (b) white matter and left middle temporal gyrus, (c) partial volume 
between grey matter and white matter, (d) grey matter and deep nuclei, and (e) tumour. 

minutes), and two ‘blood samples’ obtained a t  30 niin 
and 60 min (i.e. m = 2) were used as calibration factors 
to improve the numerical identifiability. The kinetics 
present in the hypometabolic region, thalamus and 
tumour were set to 0.7, 1.1 and 2.0 times the activity in 
grey matter. The kinetics were then assigned to  each 
brain region and a dynamic sequence of sinograms (22 
frames, 6 x 10 sec, 4 x 30 sec, 1 x 120 sec, 11 x 300 
sec) was obtained by forward projecting the images into 
3.13 mm bins on a 192 x 256 grid. Poisson noise and 
blurring were also added to  simulate realistic sinograms 
acquired on an ECAT 951R whole body tomograph 
(CTI/Siemens, Knoxville, TN). Dynamic images were 
reconstructed using filtered back-projection (FBP) with 
Hann filter cut-off at the Nyquist frequency. The noisy 
kinetics are shown in Figure 2 and some of the kinetics 
are,similar to  each other due to  the added noise and 
gaussian blurring, although their kinetics are different 
in the absence of noise. This is illustrated in the white 
matter and the hypometabolic region, and the grey 
matter and thalamus. 

Since there is no a priori knowledge about the 
optimum number of clusters in practice, the value of k 
has to  be varied so that the unknown value of k which 
yields the optimum segmentation can be determined [ll]. 
The value of k was varied from 3 to  10, and only those 
TACs with the most distinct kinetics were selected. 
This is in contrast to our previous work where TACs 
with different kinetics were selected from a collection 
of TACs obtained by manually placing ROIs over the 
PET images [lo]. The selected TACs were then used 
by SIME and SIMEP for non-invasive estimation of the 
physiological parameters. Compartmental model fitting 
to the three TACs with the measured IF (gold standard 
method) was also performed to assess the agreement 
between the parameter estimates obtained from different 
met hods. 

111. RESULTS AND DISCUSSION 
By applying the ‘cluster algorithm to  the noisy 

dynamic images, five cluster images (corresponding to 
the best segmentation in this study) were generated (see 
Figure 3) and their associated TACs were extracted. 
Three (grey matter, white matter and tumour) out 

of the five extracted TACs were selected because 
they possess different kinetics and represent different 
anatomical regions. The images in Figure 3 are arranged 
in ascending order (from left to right) according to  
their total sum of activity. It shows that the clustering 
algorithm performed well in extracting the underlying 
tissue kinetics in grey matter, white matter, and 
tumour. However, the kinetics in the thalamus and 
the hypometabolic region were not separated from 
those in grey and white matter. This is not surprising 
because their kinetics are very similar in the raw 
P E T  images (Figure 2).  Owing to the partial volume 
effects, there exists some vague regions whose kinetics 
are indeterminate (Figure 3(c)) and do not approach 
grey or white matter. The algorithm is unlikely to 
assign such kinetics to  the cluster corresponding to 
white matter or to the cluster corresponding to grey 
matter since the overall segmentation results would be 
deteriorated. Thus, a cluster is formed to account for 
the indeterminate kinetics. 

Table 1 summarises the estimated physiological 
parameters, I< = k ; k : / ( k ;  + k;), in the three TACs 
using different methods (SIME, SIMEP, and the gold 
standard method). It is seen that the estimates obtained 
from different methods are in good agreement. The 
coefficients of variation (CVs) of the K estimates, 
however, are quite different and varied with different 
methods. The worst CVs were those obtained with 
SIME, while the intermediates were those obtained 
with SIMEP, and, as expected, the CVs obtained from 
the gold standard method were the best. The results 
agree with our zn-wzwo data reported previously [lo]. 
Nevertheless, the CVs obtained by SIMEP are reasonable 
and are much better than those obtained from using 
SIME despite them being relatively larger than those 
obtained with the gold standard method. This finding 
is not unexpected because only the tissue kinetics and 
the two ‘blood samples’ are available for parameter 
estimation. In contrast, with the gold standard approach 
the entire measured IF is available in addition to the 
tissue kinetics. Given the very limited information 
available, the CVs obtained by SIMEP are acceptable. 
The three extracted TACs and the corresponding fitted 
curves by SIME are shown in Figure 4. It is apparent 
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that the fitted curves are in good agreement with 
the corresponding kinetic curves extracted by cluster 
analysis. 

Thus, our results show that the tissue TACs can be 
extracted automatically by cluster analysis, and the 
subjectivity of manual ROI delineation is minimised. 
Cluster analysis can segment tissues of different kinetics 
in PET data and is a reliable alternative to manual ROI 
delineation. 

IV. CONCLUSIONS 
Our results show that it is feasible to estimate the 

physiological parameters with SIME (and SIMEP) using 
the TACs extracted automatically by cluster analysis. 
The physiological parameters in different TACs estimated 
by SIME and SIMEP are comparable to those obtained 
from model fitting to the TACs with the measured input 
function (gold standard). Although this work used FDG- 
PET as an example for illustration, it is expected that 
the methodologies can be applied to PET studies with 
other tracers. 

V. ACKNOWLEDGEMENTS 

[6] S. Eberl, A. R. Anay%, R. R. Fulton, P. K. Hooper, 
and M. J. Fulham, “Evaluation of two population- 
based input functions for quantitative neurological 
FDG PET studies,” Eur. J. Nucl. Med., vol. 24, no. 

[7] I<. Chen, D. Bandy, E. Reiman, S. C. Huang, 
M. Lawson, D. Feng, L. S. Yun, and A. Palant, 
“Noninvasive quantification of the cerebral 
metabolic rate for glucose using positron emission 
tomography, 18F-fluoro-2-deoxyglucose, the Patlak 
method, and an image-derived input function,” J.  
Cereb. Blood Flow Metab., vol. 18, pp. 716-723, 
1998. 

[8] M. C. Asselin, V. J. Cunningham, N. Turjanski, 
L. M. Wahl, P. M. Bloomfield, R. N. Gunn, and 
C. Nahniias, “Venous sinuses vs. on-line arterial 
sampling as input functions in PET,” J. Cereb. 
Blood Flow Metab., vol. 19, no. suppl. 1, pp. S791, 
1999. 

[9] D. Feng, I<. P. Wong, C. M. Wu, and W. C. Siu, 
“A technique for extracting physiological parameters 
and the required input function simultaneously from 
PET image measurements: Theory and simulation 
study,” IEEE Trans. Info. Tech. Bzomed., vol. 1, 

3, pp. 299-304, 1997. 

pp. 243-254, 1997. 
[lo] E(. P. Wong, D. Feng, S. R. Meikle, and M. J. 

Fulhani, “Validation of noninvasive quantification 
teclinique for neurologic FDG-PET studies,,, J. 

Cereb. Blood Flow Metab., vol. 19, no. suppl. 1, pp. 

This work was supported by the National Health and 
Medical Research Council (NHMRC) of Australia under 
Grant No. 980042. 

S819, 1999. 

18-144 

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on June 29,2010 at 02:44:55 UTC from IEEE Xplore.  Restrictions apply. 



Ill] I(. P. Wong, D. Feng, S. R. Meikle, and M. J .  
Fulhani, “Segmentation of dynamic PET iniages 
using cluster analysis,” in Conf .  Record, I E E E  
Medzcal Imagzng Conf. 2000, Lyon, France, October 
15-20, 2000, IEEE Publication. 

[12] J .  Ashburner, J .  Haslam, C Taylor, V. J. 
Cunningham, and T. Jones, “A cluster analysis 
approach for the characterization of dynamic PET 
data,” in Quantzficatzon of Brain Functzon uszng 
PET, R. Myers, V. Cunningham, D. Eailey, and 
T. Jones, Eds., pp. 301-306. Academic Press, San 
Diego, 1996. 

[13] E. J. Hoffman, P. D. Cutler, W. M. Digby, and J. C. 
Mazziotta, “3-D phantom to simulate cerebral blood 
flow arid metabolic images for PET,” I E E E  Trans. 

[14] R. A. Hawkins, M. E. Phelps, and S. C. Huang, 
“Effects of temporal sampling, glucose metabolic 

r rates, and disruptions of the blood-brain barrier 
on the FDG model with and without a vascular 
conipartment: Studies in human brain tumors with 
PET,” J .  Cereb. Blood Flow Metab., vol. 6, pp. 170- 
183. 1986. 

Nucl. SCZ., vol. 37, pp. 616-620, 1990. 

18-145 

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on June 29,2010 at 02:44:55 UTC from IEEE Xplore.  Restrictions apply. 


