Provided by PolyU Institutional Repository
IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 1, NO. 4, DECEMBER 1997

Metadata, citation and similar papers at core.ac.uk

243

A Technique for Extracting Physiological

Parameters and

the Required Input

Function Simultaneously from PET Image
Measurements: Theory and Simulation Study
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Abstract—Positron emission tomography (PET) is an important
tool for enabling quantification of human brain function. How-
ever, quantitative studies using tracer kinetic modeling require
the measurement of the tracer time-activity curve in plasma
(PTAC) as the model input function. It is widely believed that
the insertion of arterial lines and the subsequent collection and
processing of the biomedical signal sampled from the arterial
blood are not compatible with the practice of clinical PET, as it

is invasive and exposes personnel to the risks associated with

the handling of patient blood and radiation dose. Therefore,
it is of interest to develop practical noninvasive measurement
techniques for tracer kinetic modeling with PET. In this paper,
a technique is proposed to extract the input function together
with the physiological parameters from the brain dynamic images
alone. The identifiability of this method is tested rigorously by
using Monte Carlo simulation. The results show that the proposed
method is able to quantify all the required parameters by using
the information obtained from two or more regions of interest
(ROI's) with very different dynamics in the PET dynamic images.
There is no significant improvement in parameter estimation for
the local cerebral metabolic rate of glucose (LCMRGIc) if the
number of ROI's are more than three. The proposed method
can provide very reliable estimation of LCMRGIc, which is our
primary interest in this study.

Index Terms—Modeling, noninvasive measurement, positron
emission tomography (PET), simulation.

I. INTRODUCTION

positron emission tomography (PET) enables quantifi

tion of physiological and biochemical processes in hunians

vivo. Measurements of thi#acer time-activity curvesn both

plasma(PTAC) andtissue(TTAC) are required to estimate the
physiological parameters, i.e., to fit the parameters of certain
compartmental models by using PTAC and TTAC as the moaae?

input and output functions, respectively. The input PTAC are
usually obtained by taking blood samples invasively from an
artery (or arterialized vein) [1], [2].

It is generally accepted that the insertion of arterial lines and
the subsequent collection and processing of arterial blood is
not compatible with the practice of clinical PET, as it requires
extra personnel and processing time, exposes the patient to
the risks associated with the insertion of an arterial line, and
exposes personnel to the risks associated with the handling
of patient blood and increased radiation from proximity to
the patient [3]. Therefore, it is of interest to develop practical
noninvasive techniques for tracer kinetic modeling with PET.

Watabeet al. recently presented a method for the pixel-by-
pixel quantification of regional cerebral blood flow (rCBF)
by using Oxygen-15 water [4]. They defined two regions
as grey matter and whole brain, respectively. Two equa-
tions representing two regions derived from the CBF model
were utilized for eliminating blood terms. The method can
accurately detect relative changes in CBF, which is mainly
restricted to brain activation studies. Carsetnal. presented
a method for absolute CBF determination without a measured
input function by also using Oxygen-15 water and PET [5].
They treated the unmeasurédi-discrete blood samples as the
M-unknown parameters to be estimated during the modeling
process together with th&-pixel blood flow parameters. In
. other words,N + M parameters would be estimated from
C'Ehe M-scan frames, with the total number of measurements

8éing N x M. If the number of scan frames is large, the
computational complexity is very high. Moreover, this method
is difficult to extend to the tracer fluoro-deoxy-glucose (FDG)
for glucose metabolism or other general second-order systems,
many discrete PTAC sample values are involved.
In cardiac studies, input functions can be derived noninva-
sively from regions of interest (ROI's) drawn on the vascular
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Fig. 1 Plot of input function used in the simulation study. Data were obtained from actual human study.

With the aim of solving the noise and spillover problems ifunctions [16]. We are going to use this model here to extract
noninvasive measurements, various PTAC models have bé¢lea input function from the overall PET measurements. The
studied based on the FDG experimental data obtained fronathematical expression for this PTAC model without the
blood samples. The use of a model for PTAC to filter the noiglelay factor is given by
input function during the physiological parameter estimation
procedure can significantly improve estimation accuracy [8],

[9]. Among these studies of PTAC models, a fourth-order — cj(t) = (Ait — Ay — Ag)eM! 4+ Aze™' + Aze™! (1)
model with a pair of repeated eigenvalues can best describe
the complicated behavior of PTAC in PET studies [9].

There have been a number of methods proposed for thbere \;, A2, and A3 (in min~—1!) are the eigenvalues of the
simplification of FDG studies. One was proposed by Hutchimsodel andA; (in xCi/ml/min), A, and Az (in xCi/ml) are
et al. for an efficient quantification of FDG studies by usinghe coefficients of the model. A typical PTAC curve is shown
single-scan frame for the estimation of local cerebral metaboiit Fig. 1.
rate of glucose (LCMRGIc) [10], while some studies on the
noninvasive measurement of input function have also begn FpG Model
reported in the literature [11], [12]. In this paper, a new tech- . .
nique is proposed to extract the input function together with The three-compartment FDG model (shown in Fig. 2)

. : . . - iginally proposed by Sokoloft al. [17] and further
the physiological parameters from brain dynamic images eith€f> ordina .
with or without late venous blood samples. The identifiabilitz)(tendetd bytHuagg'lt "fll‘ [1].andtPrl1)eIp$t zl'.[z]' Thlsttr:jree—
of this method is tested by using Monte Carlo simulatio ompartment model 1S going to be used in our study as an

We used the FDG three-compartment model as an exampleef(gmple to illustrate the new method. The differential equa-

investigate the technique. tions descrlbl_ng the kinetics of FDG for the three-compartment
model are given by

[I. THEORY d
g Ce(t) =Ricp(t) — (k3 + k3)ec(t) +hicn () ()

A. Plasma Time-Activity Input Function d
The PTACc;(t) is used as the input function in modeling ar O =ksee(t) = ki, (t) 3)
the tracer kinetic model. PTAC is usually represented by a e (t) =) + e, (t) 4)

sequence of blood samples. A model for PTAC was proposed

in [9], which has been used in optimizing the input-functiomwherek;—k} are the rate constants;(t) is the FDG concen-
sampling schedule [13], in correcting the contaminated inptrtion in plasmag?(¢) is the free FDG in tissues’,(¢) is the
function [14], [15], and in using the indirectly measured inputoncentration of FDG-6-phosphate in tissue, ahg) is the
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Fig. 2. Three-compartment FDG model used in the simulation study.

total tissue activity. The solution off(¢) is given by and their formulation are the same as those given by [1] and
Lk [2]. LCMRGIc can then be calculated by the following formula
) ={ S - e o D] 2]

Qo — (X1
ik o _t} 1 kykg
————(eT M — e S (t 5 LCMRGIc = — 9
e —e o0 6) T ©)
where . . :
. . . _ _ o — where LC is the lumped constant that embodies the difference
ay g = k3 + k5 4+ kE F /(R + k5 4 kp)? — 4k3k] (6) between FDG and glucose in transportation and phosphoryla-

2 tion, and it is usually assumed to be constaptdenotes the
and® denotes the operation of convolution. Equation (5) caiold” glucose concentration in plasma, which can be obtained
then be described by the macroparameters of the model agrom external blood sampling. Further details and assumptions
about LC can be found in [1]. Estimation dfi—k;, the

* — —Iqt — Lot * )
ci(t) = (Bre + BT @ (1) (7) CBV, the combined parametek = kik3/(k3 + k%), and
where the determination of the PTAC are our primary interest in this
B k; L4 study.
l_ag—a1(3+ 1—o), Li=m
k¥ C. PET Measurements
By=—2 (- k5 - k), La=a
Qg — oy The PET measurements are the accumulated counts of pho-
are the macroparameters in the FDG model aj{d) is the tons for each particular time intervd). (k = 1, 2, ---, M).
PTAC. Therefore, the PET measurements obtained during a sequence

In dynamic PET studies, the calculation of the rate constar@ts time interval I;, are affected by the length of the corre-
requires the TTAC generated from sequential tomograptiponding time intervals. In this paper, the average value over
images. The total activity of tracer in tissue, however, includége length of the scanning interval is usedsgt;,), which
the activity in the vascular space of tissue, which is very higfluals
in the early time of the scanning period. The contribution of "
the act|_V|ty in the_vas_cular space of tissue can cause significant h(ty) = 1 / i (t) dt (10)
errors in the estimation of the model rate constants and the Aty Jiy_,
derived value of the local cerebral metabolic rate of glucose
(LCMRGIc) [18]. In view of this, a cerebral blood volumewheret; = (tx_1 +tx)/2 and Aty =t — tx_1 is the length
(CBV) term is included in the FDG model to account for thi®f scanning intervally,.
effect and to model thén vivo situation. The observed total

tissue activity,c%(), is D. PET Measurement Variance Structure

cy(t) = (1= CBV) - ¢;(t) + CBV - ci(?) (8) It is very important to have an appropriate variance structure
to account for the effects of the length of scanning time on

N . the measurement. As the measurements in PET are actually
measurements of both PTAGP(t)] and TTAC [c;(t)], (8) the average of counts acquired during the scanning intervals,

can be used to estimatB;, L, B2, Lo, and CBV via the . . .
: . the variances of the measurement noise are proportional to
nonlinear regression method. Once the macroparameters are

. : . N fie radioactivity concentrations and inversely proportional to
estimated, the corresponding microparametdrs-A;) can the lengths of the scanning intervals [8], [14]. Therefore, the

thus be obtained by the following simple algebraic relatlons\'/ariance structure of PET measurement can be described as

where By, Li, B>, and L, are defined above. With the

ki =581+ By a X S (t)
pr — Biln+ Balo o2(t)) = # (11)
2 By + Bo K
ki = Bily + Byln _ Lila(Bi + By) where o%(#),) are the corresponding variances of the output
Bi+ B> Bily+ B2 Ly function measurements at midtim¢ of the kth scanning
k= L1Lo(B1 + Bs) interval anda is the proportionality constant that determines
BiLy + BaLy the noise level in the measurement.
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Fig. 3. TTAC's from the images are used to fit the convolution of the PTAC with the tissue impulse-response functions; vettée convolution operator.
From the fitted-rate constant parameters in the FDG model, the physiological parameters corresponding to the local regions can be obtained.

E. The Proposed New Method was generated from (1) with the average values obtained in

For a given output curve of a linear time-invariant sys[—g]: Al = 8511225, Ay = 21.8798, A3 = 208113, Ay =
tem, if the system transfer function is known, we can usg1339; A2 = —0.1191, and A; = —0.0104, sampled at

deconvolution techniques to obtain the input function, or §-25 05, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.5, 3, 3.5, 7, 10, 15,

the input function is known, we can estimate the transfglo’ 30, 6g’b90’ ?”d 1h20 r‘gin. Fig. 1fShOWS . inputdfunctiolr_1
function. Nevertheless, we cannot obtain the input function afignerated by using the above set of parameters and sampling

the system transfer function simultaneously from the sing hedule. The TTAC'scr(t) were calculated according to

output function. In PET dynamic studies, multiple outpu ) by u5|ngtcp(t),f%|1ve2Dac?ove(,j ?ndbftogr Ze.tShOf typlc?ld
functions can be obtained from different ROIl's, as sho ICroparameters of the MOAEIS obtained In human study

in Fig. 3. These output functions or measurements are ], as shown in Table I. For each TTAC, there were 22

convolution of the physiological impulse-response functiongo N9 intervals, consisting of 1012-s scans, 2« 0.5-

, . : . . min scans, 2x 1-min scans, Ix 1.5-min scan, Ix 3.5-min
(IRF’s) corresponding to the local regions with theemeinput . ; :
; : : scan, 2x 5-min scans, 1x 10-min scan, and 3« 30-min
function (PTAC). The PTAC and physiological parameters
; . Scans. A pseudorandom number generator was used to generate
may thus be estimated simultaneously friwo or moreoutput ; ; .
curves (TTAC'’s) sampled from various regions in the d namltcr:1e Gaussian noise added ondp(t), according to the error
images P 9 y variance formula (11), in whichk was set to 0.1, 0.5, 1.0, 2.0,

Although using more ROI information may provide moré"md 4.0, respectively.

reliable parameter estimation, the number of parameters to
be estimated and the computational complexity will alsB:
be increased. Therefore, we need to find how many ROI'sUse of Blood Samplestn the PTAC model, the last two

are adequate to be used in parameter estimation. In fherametersd; and A; will dominate the tail of the PTAC
following study, we compare the identifiability and reliabilityfunction (i.e., whert is greater than a large constant or near
for parameter estimation using the information obtained frothe end of the scanning period). In practical applications, these
two, three, and four ROI's. In addition, we are going téwo parameters can be determined by fitting two or more blood
show the results when only TTAC'’s are used for parametsamples measured near the end or after the image scanning,
estimation and what happens when a couple of blood samp#és blood samples are needed to measure the cold glucose
are used to help quantification of parameters in IRF’s ag@ncentration anyway. Thus, the computational complexity for

Implementation of the New Method

PTAC. simultaneous fitting of the parameters of the PTAC and the
IRF's can be reduced, while the numerical identifiability of
[ll. SIMULATION STUDY the parameters can also be improved. In our simulation, these
. . . two parameters were kept constants to emulate the act of blood
A. Generation of Simulation Data sampling of the two blood samples at time instantstfer 90

Computer simulation was performed to test the identifiabiknd ¢ = 120 min, respectively, i.e., the last two time instants
ity and reliability of the proposed method. The PTAg(t) of the PTAC sampling schedule given above. On the other
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TABLE | run was done for noise-free data. The coefficient of variation
SET oF RATE CONSTANTS USED IN THE SIMULATION STUDY of a parameter estimate is calculated from
Rate constants SD+
I 2 B I CBV |P|
Structure (ml/min/g) (min~!') (min™') (min~!) | (ml/100g)
Grey matter 0.041 0.119  0.064  0.0075 5.80 where P is the parameter estimated over 100 runs angs;SD
White matter 0.023 0.073 0.034  0.0098 2.50 is the standard deviation aP, and the bias is calculated in
Tumor 0.028 0.087  0.047  0.0084 4.40 the following way:
Hemisphere 0.034 0.112 0.061 0.0098 5.00 Ptrue P
[ - o
Bias= —ptrue x 100% (14)

hand, the effects of ignoring these two blood samples to the true - .
quantification of the parameters in IRF's and PTAC have al¥giere P~ "~ is the true parameter value @, and P’ is the
been studied by simultaneous fitting of the parameters in PTAFEan value obtained from the proposed method. The above
and IRF’s without the two blood samples, and the results tatistical values were mainly used as the criteria to evaluate
also compared to those obtained with the blood samples!f¢ Performance of the proposed method.
see the changes in precision and accuracy of the estimated
parameters in IRF's and PTAC. V. RESULTS AND DISCUSSION

Cost Function: The parameters in the tissue IRF’s and the
parameters in the PTAC model were estimated simultaneougly Recovery of the Input Function

using the weighted nonlinear least-squares (WNLS) methOdTable Il shows the statistical results of PTAC function

The t(;ta_l rlumbertﬁf paramfe_:ters to be testlm;tedn(;rmgoBlvs parameters with a different number of ROI's used, in which
.(m > 1) is 5m, as there are five parametefg £ an ) a) corresponds to the results obtained from noise-free data
in the FDG model. Thus, the total number of parameters to

estimated in simultaneous fitting 8n + P, whereP is the o =0.0) and (b)—(f) correspond o the resilts obtained from

ber of ters to b imated in PTAC. Th | nqisy data under different noise levels. In this table, the mean
numboer of parameters to be estimated in - 1N Value @ o5 and the biases of the parameter estimates are given. For
this ngm_bgr is dependent on whether two blopd samples Adeh entry showing the number of ROI's used, there are two
used in f|tt|ng.. If.tWO.bIOOd samples are used, ids,andAs o of results, in which the top rows (designated by i) are
are knowna priori, P is equal to four, as onlyi;, A;, A, and

. ! i ) the results obtained without the use of blood samples, while
A2 n PTA.C are to be estimated, otherwﬂéshould_be e_qual the results shown at the bottom rows (designated by ii) are
to six, which is the total number of parameters given in (1)

. . . obtained with the use of blood samples. Note that the values
In the simulation, the Levenberg—Marquardt algorithm [19 b

[20] was used to optimize the following cost function: nd biases ofiz and A3 are equal to their true values and zero,
P 9 ' for all rows designated by ii (i.e., with blood samples) for a

non different number of ROI's used, since the two blood samples
(0) = Z Z wu{ [C;(t) @ hi(kt, k3, k3, ki, CBV; t)] are kept constant, which in turn, have fixed the values of these

i=1j=1 two parameters. The residual sum of squares (RSS) and the

@6(t —t;) — cp. (tj)}Q (12) area under the estimated curves (AUC'’s) are also tabulated in

the last two columns of the same table.
i X It would be useful to know how many ROI's are adequate
six) parameters to be esUmqteﬁi;( i, k3, k3, k;;,*CB*V; %) for accurate parameter estimates with reasonable computa-
is the impulse response of thith RO, in which £k are iona) complexity. From Table II, it is clearly seen that the
the rate cons_tant p_arameters and _CBV_'S the cerebral bloé’é:{imation results of the PTAC function parameters obtained
volume; §(¢) is a Dirac-delta functiony is the number of from three and four ROI's are almost equivalent and are
samples for each TTACiz, is theith tissue response curve,yoneraily better than those obtained from two ROI's, by

that "?”.thefi:]h FTTAC function; andy is ahparameter Veﬁo(rjassessing the biases of the parameter estimates to their true
cr?ntaln_lnﬁ] tde‘)_m +h7) p_ararlne_ters_. Fﬁr t_ € WNLSf rr;et OYyalues under the same noise level. In other words, two ROI's
the weight during the simulation Is the inverse of the errqf, already able to provide sufficient information to quantify

variance. Therefore, the weight;;, which is equal to the y,o pTAC function. As the number of ROI's used increases,
inverse of the error varlanceuafj) is used to obtain the t%

wherec(¢) is the PTAC function (1) withP (either four or

. . oo the biases of the parameter estimates and RSS are generally
smallest variance of estimates. The estimation method, Whl&

L creased, and the calculated AUC’s will approach the one
usesd(6) as the cost function, is referred to as the new methed o eq by true PTAC. This is as expected because more
in the following discussion. '

ROI's may provide more information of the input function to
o o be recovered if the additional ROI's have kinetics differences
C. Statistical Criteria from those being used.

Various statistical values, such as mean, standard deviatiomhe advantages of using the blood samples are obvious if
(SD), coefficient of variation (CV), and bias were calculatedle analyze the RSS and AUC's given in Table Il. The RSS
from the 100 simulation runs for each noise level. Only onaf PTAC’s generated with the parameter estimates obtained
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TABLE I
ESTIMATION RESULTS OF THEINPUT FUNCTION PARAMETERS A1, A1, A2, Ao, A3z, AND A3 FOR DIFFERENT NOISE LEVELS. o« DEFINES THE SIMULATED NOISE
LEVEL. THE MEAN VALUES AND THE BIASES ARE CALCULATED FROM 100 SMULATION RUNS FORNOISY DATA AND ONE RUN FOR NOISE-FREE DATA. NOTE THAT
THERE ARE TwO Rows oF RESULTS FORUSING A DIFFERENT NUMBER OF ROI’'s UNDER DIFFERENT NOISE LEVELS. THE ToP Rows (DESIGNATED BY i) ARE THE
ResuLTs OBTAINED WiTHOUT USING THE Two BLooD SampLES, WHILE THE BoTTomM Rows (DESIGNATED BY ii) A RE THE RESULTS OBTAINED WITH THE Two
BLooD SampLES. AREA UNDER THE CALCULATED PTAC’S AND THE RESIDUAL SUM OF SQUARES FOREACH CURVE TO THE TRUE INPUT CURVE ARE ALSO LISTED

Parameter estimates

RO{is Ay A1 As Ao Az A3 RSS* AUCH
use mean bias mean bias mean bias mean bias mean blas mean bias
true value 851.1225 0.0 | -4.1339 0.0 21.8798 0.0 { -0.1191 0.0 20.8113 0.0 -0.0104 0.0 0.00 1649.81
(a): 1 run with noise level o = 0.0

9-ROIs | 1 851.1225 0.0 | -4.1339 0.0 21.8798 0.0 | -0.1191 0.0 | 20.8113 0.0 -0.0104 0.0 0.00 1649.81
1 851.1225 0.0 | -4.1339 0.0 21.8798 0.0 | -0.1191 0.0 | 20.8113 0.0 -0.0104 0.0 0.00 1649.81
3.ROIs | } 851.1225 0.0 | -4.1339 0.0 21.8798 0.0 | -0.1191 0.0 20.8113 0.0 -0.0104 0.0 0.00 1649.81
11 851.1225 0.0 | -4.1339 0.0 | 21.8798 0.0 | -0.1191 0.0 20.8113 0.0 -0.0104 0.0 0.00 | 1649.81
4.ROIs | } 851.1225 0.0 | -4.1339 0.0 | 21.8798 0.0 | -0.1191 0.0 20.8113 0.0 -0.0104 0.0 0.00 | 1649.81
i 851.1225 0.0 | -4.1339 0.0 21.8798 0.0 | -0.1191 0.0 20.8113 0.0 -0.0104 0.0 0.00 | 1649.81

(b): 100 runs with noise level o = 0.1
2.ROIs | X 907.7383 6.7 | -4.2176 2.0 27.7798 26.7 | -0.1791 504 21.6935 4.2 -0.0191 83.7 279.43 | 1215.41
11 785.5303 7.7 | -4.2311 2.4 21.6236 1.2 | -0.1266 6.3 20.8113 0.0 -0.0104 0.0 126.95 1631.27
3 ROIs | 1 10929739 284 | -4.1887 1.3 27.2268 244 | -0.1812 52.1 21.5089 34 -0.0188 80.8 1182.18 | 1225.14
11 880.3888 3.4 | -4.2105 1.9 21.8590 1.0 | -0.1225 29 20.8113 0.0 -0.0104 0.0 3.28 1644.58
4ROIs | 1 899.2629 5.7 | -4.1977 1.5 26.0864 19.2 | -0.1210 1.6 20.8930 04 -0.0121 16.3 163.29 1577.91
11 877.6562 3.1 -4.1960 1.5 21.9050 6.1 -0.1213 1.8 20.8113 0.0 -0.0104 0.0 2.50 | 1646.87

(c): 100 runs with noise level @ = 0.5
2.ROIs | } 1097.8081 29.0 | -4.2224 2.1 26.2661 20.0 | -0.1812 52.1 21.1459 1.6 -0.0175 68.3 985.04 1255.67
11 939.0012 10.3 | -4.3062 4.2 22.2780 1.8 | -0.1214 1.9 20.8113 0.0 -0.0104 0.0 29.41 1650.76
3 ROIs 1 1061.2721 24.7 | -4.2257 2.2 26.6108 21.6 | -0.1803 514 20.8849 04 -0.0171 644 756.99 1260.21
11 909.3292 6.8 | -4.2466 2.7 | 22.2706 1.8 | -0.1194 0.3 20.8113 0.0 -0.0104 0.0 14.61 1653.41
4-ROIs 1 919.7122 8.1 -4.2227 2.1 25.0314 144 | -0.1157 2.9 20.3098 2.4 -0.0130 25.0 108.00 1491.19
11 910.4514 7.0 | -4.2193 2.1 22.1317 1.2 | -0.1204 1.1 20.8113 0.0 -0.0104 0.0 19.64 1651.40

(d): 100 runs with noise level o = 1.0
9-ROIs | L 1030.1894 21.0 | -3.9574 4.3 26.8702 228 | -0.1840 54.5 21.4619 3.1 -0.0180 73.1 1365.01 1254.42
i1 926.4015 8.8 | -4.4765 8.3 21.9403 0.3 | -0.1239 4.0 208113 0.0 -0.0104 0.0 44.86 | 1640.38
3 ROIs | 1 1006.9439 18.3 | -4.3819 6.0 28.3321 295 | -0.1086 8.8 20.1719 3.1 -0.0132  26.9 446.14 | 1516.92
1 981.8803 154 | -4.4090 6.7 | 21.9760 0.4 | -0.1191 0.0 20.8113 0.0 -0.0104 0.0 55.74 | 1651.94
4-ROTs | 1 964.4576 13.3 | -4.3179 4.5 26.1224 194 | -0.1068 10.3 19.9775 4.0 -0.0127 22.1 191.95 1516.01
11 913.0922 7.3 | -4.3578 5.4 22.1739 1.3 | -0.1192 0.1 20.8113 0.0 -0.0104 0.0 14.19 | 1650.86

(e): 100 runs with noise level o = 2.0
2-ROIs 1 1092.2661 28.3 | -4.9384 19.5 27.4472 254 | -0.1880 579 21.0809 1.3 -0.0177 70.2 226.72 1229.58
11 911.0770 7.0 | -4.5291 9.6 22.2017 1.5 | -0.1257 5.5 20.8113 0.0 -0.0104 0.0 73.10 1638.16
3 ROIs | 1 962.0124 13.0 | -4.1962 1.5 24.1430 10.3 | -0.1038 12.8 19.8406 4.7 -0.0125 20.2 177.55 1509.83
1 854.0221 0.4 | -4.2433 2.6 22.4233 2.5 | -0.1197 0.5 20.8113 0.0 -0.0104 0.0 8.74 1651.19
4ROIs | 1 926.5917 8.9 | -4.2344 2.4 259773 187 | -0.1055 114 19.7864 4.9 -0.0132 269 154.18 1478.55
11 850.9847 0.0 | -4.2126 19 22.3236 20 | -0.1217 2.2 20.8113 0.0 -0.0104 0.0 5.31 1647.76

(f): 100 runs with noise level o = 4.0
2.ROIs | 1} 1343.7089 57.9 | -4.6371 2.2 25.7558 17.7 | -0.1830 53.7 20.9690 0.8 -0.0172" 654 1523.59 1257.52
11 1182.1540 389 | -4.9993 20.9 | 21.8519 0.1 -0.1260 5.8 20.8113 0.0 -0.0104 0.0 249.26 1638.81
3 ROIs | 1 1091.9457 28.3 | -4.3527 5.3 23.6479 8.1 -0.1020 144 19.9308 4.2 -0.0124 19.2 43763 1523.81
i 923.2316 8.5 | -4.4767 8.3 22.1959 14 | -0.1190 0.1 20.8113 0.0 -0.0104 0.0 38.68 1649.60
4-ROIs | ! 941.2364 106 | -4.2809 3.6 24.9430 140 | -0.1044 123 19.7817 4.9 -0.0132 269 103.73 1471.00
1t 869.2379 21 -4.3710 5.7 | 22.0382 0.7 | -0.1164 2.3 20.8113 0.0 -0.0104 0.0 42.30 1651.64

*RSS = Residual sum of squares.
#AUC = Area under the calculated PTAC from O to 120 minutes.

without using the blood samples in estimation are much largeeak region is overestimated [Fig. 4(b)] if the blood samples
than those with them. The AUC’s, however, are much less thare not used during estimation. As a result, the area covered is
those calculated from PTAC’s, whose parameters are estimatedlerestimated by 9-25% on the average. However, the fitted
with blood samples. In addition, the quality of the paramet&TAC's (with the use of blood samples during estimation)
estimates is poor in terms of the biases if the blood samples aggee well with the true input function in terms of their shapes
not used in the estimation process. It appears Xgateviates and the areas covered.
very much from their true values, though the scaling parameter
As can be estimated very accurately. B. Estimation oftf—k%, CBV, andK

On the other hand, Fhe recovergd ian_Jt curves generatedrables Il and IV summarize the results of the IRF's pa-
from the parameter estimates obtained with the use of blopg aters estimated using two, three, and four ROI's, with
samples can closely resemble the true input curve. The R without the blood samples in the estimation process.
and biases are generally much better than those estimajgfies I1i(a) and IV(a) correspond to the simulation results
without the use of blood samples, and the calculated AUCG$ noise-free data, while Tables llI(b)—(f) and IV(b)—(f) cor-
are very close to the one covered by the true input functiospond to the simulation results obtained from data with
The true input function and the fitted PTAC’s estimated with @ifferent noise levels by using two, three, and four ROI’s,
different number of ROI's at the highest noise level= 4.0) respectively, in the estimation é&f -k}, CBV, and the com-
are plotted in Fig. 4. It is not difficult to see that the estimatesined paramete in grey matter and white matter. It can
input curve is underestimated after 20 min [Fig. 4(a)] and tH® seen that two ROI's have already been able to provide
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Fig. 4. (a) Graph shows the generated input function and the fitted PTAC’s obtained from using a different number of ROI's in simulation (noise level
a = 4.0) and (b) graph shows the expanded peak region from 0-10 min. In all of the graphs, solid lines with symhglande are the results obtained

from using two venous samples with two, three, and four ROI's, respectively, while dashed lines with symbk®jsand e are the results obtained from

using image information only, i.e., without using the two venous samples for parameter estimation. A solid line with symbol + is the generatadtioput fu

sufficient information to quantify the parameters in IRF’s and It would be of interest to see the improvement in parameter
PTAC. In general, additional ROI's can provide improved pastimation accuracy if late blood samples are used to help
rameter estimation accuracy. However, there is no significastovery of the input function and the estimation Ajt-+7,
improvement of parameter estimation accuracy if more th&BYV in IRF’s. Without using blood samples in the estimation
three ROI's are used, unless the kinetics in the fourth regipnocess, there are very large fluctuations in parameter estimates
are very different from those in the three regions being usedf IRF’s. It can been seen from Tables Il and IV that the
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TABLE I
EsTIMATES OF RATE CONSTANTS k7 —k, THE CBV, AND THE COMBINED PARAMETER /' IN GREY MATTER FOR DIFFERENT NOISE LEVELS,
ESTIMATED WITH AND WITHOUT USING THE INFORMATION OF THE TWO BLOOD SAMPLES. v CORRESPONDS TO THEPROPORTIONALITY CONSTANT
THAT DEFINES THE SMULATED NoISE LEVELS. THE MEAN VALUES k7—k}, CBV, AND K ARE CALCULATED FROM 100 SMULATION RUNS

No. of Parameter estimates
ROIs Without blood samples With blood samples
used kT k3 k3 k; CBV K kY k3 k3 k3 CBV K

true value | 0.0410 0.1190 0.0640 0.0075 5.80 0.0143 | 0.0410 0.1190 0.0640 0.0075 5.80 0.0143
(a): 1 run with noise level a = 0.0

2-ROIs 0.0410 0.1190 0.0640 0.0075 5.80 0.0143 | 0.0410 0.1190 0.0640 0.0075 5.80 0.0143
3-ROIs 0.0410 0.1190 0.0640 0.0075 5.80 0.0143 | 0.0410 0.1190 0.0640 0.0075 5.80 0.0143
4-ROIs 0.0410 0.1190 0.0640 0.0075 5.80 0.0143 | 0.0410 0.1190 0.0640 0.0075 5.80 0.0143
(b): 100 runs with noise level o = 0.1

2-ROIs 0.0361 0.0801 0.0639 0.0016 5.55 0.0159 | 0.0405 0.1115 0.0616 0.0075 6.54 0.0144
3-ROIs 0.0367 0.0828 0.0638 0.0020 4.73 0.0159 | 0.0405 0.1152 0.0628 0.0075 5.93 0.0143
4-ROIs 0.0369 0.1106 0.0708 0.0066 5.65 0.0144 | 0.0405 0.1158 0.0630 0.0075 5.90 0.0143
(¢): 100 runs with noise level & = 0.5

2-ROIs 0.0374 0.0831 0.0588 0.0020 4.81 0.0154 | 0.0401 0.1155 0.0629 0.0074 5.97 0.0142
3-ROIs 0.0377 0.0838 0.0574 0.0019 4.914 0.0153 | 0.0402 0.1171 0.0637 0.0074 5.90 0.0142
4-ROIs 0.0389 0.1155 0.0722 0.0059 5.72 0.0148 | 0.0403 0.1165 0.0631 0.0074 5.79 0.0142
(d): 100 runs with noise level & = 1.0

2-ROIs 0.0380 0.0921 0.0637 0.0018 5.20 0.0153} 0.0407 0.1195 0.0636 0.0074 6.42 0.0142
3-ROIs 0.0364 0.1288 0.0819 0.0058 5.41 0.0143 ] 0.0409 0.1224 0.0651 0.0075 5.98 0.0142
4-ROIs 0.0394 0.1441 0.0852 0.00568 5.53 0.0146 | 0.0408 0.1232 0.0657 0.0075 6.06 0.0143
(e): 100 runs with noise level @ = 2.0

2-ROIs 0.0382 0.1000 0.0653 0.0018 5.13 0.0153 1 0.0403 0.1192 0.0636 0.0073 6.67 0.0142
3-ROIs 0.0401 0.1357 0.0740 0.0056 5.66 0.0145{ 0.0403 0.1217 0.0656 0.0074 6.24 0.0142
4-RO1s 0.0390 0.1370 0.0792 0.0051 5.70 0.0145 | 0.0403 0.1198 0.0650 0.0074 6.22 0.0142
(f): 100 runs with noise level & = 4.0

2-RO1s 0.0392 0.1029 0.0656 0.0023 4.81 0.0152 { 0.0414 0.1304 0.0638 0.0071 6.44 0.0140
3-ROIs 0.0404 0.1426 0.0738 0.0055 5.42 0.0142 | 0.0408 0.1290 0.0660 0.0072 6.37 0.0141
4-ROIs 0.0399 0.1436 0.0792 0.0046 5.55 0.0145 { 0.0410 0.1284 0.0657 0.0072 6.35 0.0141

forward-transport rate constahf and the dephosphorylationand the recovery of the input function without introducing
rate constant} are significantly underestimated (2-15% foany additional burden, but it greatly improves the quality of
k7 and 10-80% fok}), while there are very large deviations ofidentification in the present study.
the reverse-transport rate constaft(maximum=+25%) and Note that one of our major goals in modeling is to estimate
the phosphorylation rate constaklf (maximum=+20%) from K or, equivalently, the LCMRGIc. The statistical results given
their true values. However, their parameter estimates are verylables Il and IV demonstrate thaf can be estimated very
stable if blood samples are used during the estimation. Retiably with the new method. It is clear that if late blood sam-
the CBV, the fluctuations of parameter estimates are moderptes are used in the estimation, the new method can provide
(about 10% on the average), which reveal that the paramed@runbiased estimation df. Considerable overestimation of
estimates are at an acceptable accuracy level. K (up to 11 and 5% on the average) can be observed if late
Figs. 5 and 6 plot the CV’s as a function of noise level foblood samples have not been used in the estimation. This may
all of the parameters in IRF's of grey matter and white mattdoe due to very large variations in rate constakgsand k3
respectively. By investigating the CV’s, we can observe thahd significant underestimation &f and k}. Figs. 5(f) and
the CV's of some of the parameter estimates are very lar§éf) show the CV’s of estimated values &f in grey matter
even if blood samples are used in the estimation proceasd white matter, respectively. It can be seen that the CV’s
Examples include the estimation 6§ and k3. As expected, of K obtained without the blood samples are generally larger
the forward-transport rate constakit can be estimated very than those with them. This is as expected since uncertainties in
accurately because it is the most sensitive parameter in th&ée constants are much smaller and their estimates are more
FDG model. The dephosphorylation rate constgnhowever, reliable if the blood samples are used during the estimation.
is the poorest among all parameters in IRF. The improveme®d a result, X can be estimated very accurately and the
in parameter estimation with the use of blood samples is alsorresponding CV’s are also smaller.
revealed in these figures. The CV's of parameter estimatesAs discussed previously, if output data obtained from a
obtained without the use of blood samples are generalingle ROl alone are used, we are able to identify neither
higher than those obtained with them. This justifies the usetbie FDG model parameters nor the input function parameters.
blood samples to help the estimation of parameters in IRFFsom the above results, we can see that when two ROI's
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TABLE IV
EsTIMATES OF THE RATE CONSTANTS k7 —k, THE CBV, AND THE COMBINED PARAMETER /{ IN WHITE MATTER IN DIFFERENT NOISE LEVELS,
ESTIMATED WITH AND WITHOUT USING THE INFORMATION OF THE TWO BLOOD SAMPLES. v CORRESPONDS TO THEPROPORTIONALITY CONSTANT
THAT DEFINES THE SMULATED NoISE LEVELS. THE MEAN VALUES k7—k}, CBV, AND K ARE CALCULATED FROM 100 SMULATION RUNS

No. of Parameter estimates
ROIs Without blood samples With blood samples
used kT k3 k3 K CBV K kY k3 k3 k; CBV K

true value | 0.0230 0.0730 0.0340 0.0098 2.50 0.0073 | 0.0230 0.0730 0.0340 0.0098 2.50 0.0073
(a): 1 run with noise level @ = 0.0

2-ROIs 0.0230 0.0730 0.0340 0.0098 2.50 0.0073 | 0.0230 0.0730 0.0340 0.0098 2.50 0.0073
3-ROIs 0.0230 0.0730 0.0340 0.0098 2.50 0.0073 | 0.0230 0.0730 0.0340 0.0098 2.50 0.0073
4-ROIs 0.0230 0.0730 0.0340 0.0098 2.50 0.0073 | 0.0230 0.0730 0.0340 0.0098 2.50 0.0073
(b): 100 runs with noise level o = 0.1

2-ROIs 0.0208 0.0479 0.0312 0.0022 2.37 0.0080 | 0.0233 0.0720 0.0325 0.0094 2.80 0.0072
3-ROIs 0.0254 0.0573 0.0434 0.0018 3.57 0.0079 | 0.0230 0.0720 0.0332 0.0096 2.53 0.0072
4-ROIs 0.0210 0.0671 0.0374 0.0091 2.43 0.0075] 0.0229 0.0722 0.0334 0.0096 2.52 0.0072
(¢): 100 runs with noise level a = 0.5

2-ROIs 0.0213 0.0496 0.0287 0.0024 2.05 0.0077 | 0.0228 0.0725 0.0333 0.0093 2.56 0.0071
3-ROIs 0.0214 0.0495 0.0274 0.0020 2.10 0.0075 | 0.0227 0.0728 0.0338 0.0094 2.54 0.0072
4-ROIs 0.0221 0.0702 0.0385 0.0083 2.47 0.0077 | 0.0228 0.0726 0.0335 0.0094 2.48 0.0072
(d): 100 runs with noise level @ = 1.0

2-ROIs 0.0214 0.0518 0.0306 0.0025 2.22 0.0077 | 0.0232 0.0743 0.0335 0.0092 2.75 0.0071
3-ROIs 0.0205 0.0749 0.0438 0.0087 2.32 0.0076 | 0.0229 0.0737 0.0340 0.0095 2.57 0.0072
4-ROIs 0.0217 0.0773 0.0438 0.0089 2.38 0.0078 | 0.0229 0.0741 0.0343 0.0096 2.60 0.0072
(e): 100 runs with noise level & = 2.0

2-ROIs 0.0212 0.0526 0.0313 0.0026 2.17 0.0077 | 0.0231 0.0759 0.0345 0.0091 2.82 0.0071
3-ROIs 0.0219 0.0741 0.0391 0.0077 2.41 0.0075| 0.0228 0.0755 0.0351 0.0094 2.64 0.0072
4-ROIs 0.0215 0.0774 0.0428 0.0073 2.43 0.0076 | 0.0229 0.0749 0.0347 0.0094 2.63 0.0072
(f): 100 runs with noise level a = 4.0

2-ROIs 0.0217 0.0569 0.0330 0.0040 2.04 0.0079 | 0.0234 0.0776 0.0351 0.0093 2.72 0.0072
3-ROIs 0.0226 0.0869 0.0437 0.0086 2.31 0.0077 | 0.0229 0.0763 0.0356 0.0096 2.73 0.0072
4-ROIs 0.0220 0.0837 0.0469 0.0078 2.41 0.0079 | 0.0230 0.0776 0.0362 0.0098 2.72 0.0073

are used, the parameters in the FDG models and the inpuatcording to the simulation results, the method proposed is
function are identifiable. However, if the kinetics of these twpromising for dynamic FDG-PET studies to provide noninva-
ROI's are identical, no additional independent information &ive quantification of LCMRGIc and the input function. The
added. We still have insufficient information to identify theapplication to human studies is currently under investigation,
required parameters. In order to estimate the parametersaad the results will be reported separately.

reliably as possible, the kinetics of these two ROI's should

be as different as possible. In this paper, we have used V. CONCLUSION
gp;craelyT;,gge:u;:;m;;ew;otr\:veosgsgggz, tgnv?/hictzrrrijt)tc; TT_EGA noninvasive technique to extract the physiological pa-

e ; . rameters and the required input function for modeling from
kinetics in these two regions are very different, and henca N P 9

o b hieved. We then introd t % PET dynamic images in conjunction with two or more late
reasongt?le est|mat|on can be achieved. vie then intro U¢iGod samples was proposed in this paper. The identifiability
an additional ROI with its kinetics derived from a tumo

) e Lo . . NOTot this method was tested by using Monte Carlo simulation.
Th? |d§nt|f|ab|I|ty has begn improved; .., a more rellabl‘fhe results show that the proposed method is able to quantify
estimation has been achieved. However, if the third ROl J§| e required parameters by using the information obtained
identical to any one of the two ROI's used, we do not expeghm two or more ROI's with very different kinetics in the

to have any improvement in parameter estimation. Insteadpitt dynamic images. When three or more ROI's are used,
would increase the computational complexity and numericglore reliable parameter estimation can be achieved. However,
difficulty, and hence, the parameter estimation accuracy M@ére is no significant improvement in parameter estimation
be reduced. A fourth ROI defined in hemisphere is then addegﬂ)r K or, equivalently, LCMRGIc) if the number of ROI's
Although, we have more additional information, the compuare more than three unless the kinetics in the additional regions
tational complexity and numerical difficulty are increased age very different from those in the existing three regions. We
well. Therefore, the improvement in accuracy for parametsuggest that three ROI's, with very different kinetics, should be
estimation is not significant, particularly fak'. From our used in practice to achieve reliable estimation and manageable
simulation study, we conclude that using three different ROlsomputational complexity. The proposed method can provide
can achieve sufficiently good estimation results in practiceery reliable estimation of LCMRGlIc, which is the primary
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Fig. 5. Comparison of CV's for (ak}, (b) k3, (c) k3, (d) &}, (e) CBV, and (f)K in grey matterusing two, three, and four ROI's in simulation for
different noise levels. In all of the graphs, solid lines with symbgrlsA, and e represent the results obtained from using two venous samples with
two, three, and four ROI's, respectively, while dashed lines with symbqlg\, and e are the results obtained from using image information only, i.e.,
without using the two venous samples for parameter estimation.

interest in dynamic FDG studies with PET and may be a moR¥ince Alfred Hospital, Australia, for their valuable comments
practical alternative to the traditional method, which requirem this work.
frequent blood sampling during the course of scanning.
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without using the two venous samples for parameter estimation.
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