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Abstract—Dynamic SPECT has the potential to provide absolute
physiological parameter estimates. However, the low sensitivity
of SPECT typically results in very noisy dynamic SPECT data.
Filtering can reduce the noise, but at the expense of degrading the
already poor resolution further. The effect of reconstruction pa-
rameters, post-reconstruction filtering and resolution recovery on
kinetic parameter estimation bias and reliability was systematically
investigated. Dynamic projection data were generated using Monte
Carlo (MC) simulations of a mathematical brain phantom at 10
different levels of Poisson noise. The projection data were recon-
structed with OSEM with varying numbers of iterations and subsets
and were filtered with three-dimensional (3-D) Gaussian filters with
varying FWHM. Bias and reliability of the main parameters of
interest ( 1 , and binding potential) for thalamus, cerebellum,
and frontal cortex were estimated for the three-compartment model
fits to the tissue time-activity curves derived from the reconstructed
data. Reliability (standard deviation) of parameter estimates was
obtained with the Bootstrap MC technique, which showed good
agreement with conventional MC in a subset of data sets, but re-
quired only a small fraction of conventional MC computation time.
Post-reconstruction filtering increased bias, without improving
the reliability of parameter estimates and, hence, no post-recon-
struction filtering is recommended. For reconstructions without
resolution recovery, an effective number of 40 iterations overall
provided the best tradeoff between bias and reliability for the
range of noise levels studied. Resolution recovery achieved a
modest reduction in bias.

Index Terms—Filtering, image reconstruction, Monte Carlo
methods, quantitative analysis, single photon emission computed
tomography.

I. INTRODUCTION

WITH the more widespread availability of multidetector
single photon emission computed tomography (SPECT)

systems and advances in attenuation and scatter correction, es-
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timation of regional physiological kinetic rates has become fea-
sible with quantitative dynamic SPECT [1], [2]. The kinetic pa-
rameters, describing the biological and physiological process of
interest, are typically estimated by fitting compartment models
to curves derived from quantitative dynamic SPECT studies.
Even with the improved sensitivity of multidetector systems,
the sensitivity of SPECT is still at least an order of magnitude
lower than that achievable with Positron Emission Tomography
(PET), resulting in a high level of image noise at the short dy-
namic frame times required for kinetic modeling, which can af-
fect the reliability of the parameter estimates. In addition, the
resolution of SPECT is relatively poor, leading to biased esti-
mates due to partial volume effects.

The most frequently used reconstruction algorithm in clin-
ical SPECT is still filtered backprojection (FBP). FBP is attrac-
tive due to its high speed, but potentially suffers from streak
artifacts [3] and absolute quantification is difficult to achieve
with FBP. Iterative algorithms can offer improved reconstructed
image quality and quantitative accuracy [4]. Their main dis-
advantage of long reconstruction times has largely been over-
come with the introduction of faster computers and accelerated
algorithms. Maximum likelihood estimation with expectation
maximization (ML-EM) is an efficient iterative reconstruction
method for SPECT [5] and can take into account many physical
processes, such as nonuniform attenuation, scatter effect, and
noise properties [6]–[9]. Several methods have been proposed to
speed up the algorithms. The Ordered Subsets Expectation Max-
imization (OS-EM) proposed in [10] has been shown to share
the desirable properties of ML-EM, especially predictability and
nonnegativity [11], while accelerating reconstruction time by a
factor close to the number of subsets used [12].

In SPECT, some form of low-pass filtering is typically ap-
plied to reduce noise and aid in the visual interpretation of the
images [3]. Filtering can be applied pre-, during, and post-re-
construction. While various filters can be used for SPECT re-
construction [13]–[15], the three-dimensional (3-D) Gaussian
filter is attractive for quantitative studies as it does not intro-
duce negative values and maintains quantitative accuracy [16],
[17] and thus was selected for this study.

Filtering reduces noise and, hence, may improve the relia-
bility of the estimated kinetic parameters, whereas it further
degrades the already poor resolution and accentuates partial
volume effects and may thus have an adverse affect on pa-
rameter estimate bias. While the effect of post-reconstruction
filtering on image quality has been investigated [18], [19],
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these studies did not take into account the quantitative infor-
mation for dynamic SPECT. The objective of this study thus
was to evaluate the effect of post-reconstruction filtering and
reconstruction parameters (number of iterations and subsets for
OS-EM) on kinetic parameter estimation bias and reliability
for dynamic SPECT in the human brain. Furthermore, inves-
tigation into the tradeoff between post-reconstruction filtering
and reconstruction parameters was also performed.

II. METHODS

A. 3-D Brain Phantom

Simulations were based on a mathematical brain phantom
based on the Zubal anatomical phantom [20]. The phantom was
derived from MRI data and anatomical structures within the
brain were identified by index number in the 256 256 128
volume covering the brain.

B. Projection Data Acquisition

Projection data were generated with the SimSET Monte Carlo
code [21]. A parallel hole collimator and an energy window
of 20% centered around 159 keV for I were assumed. The
detector module specified a simple Gaussian energy blurring
model for a flat SPECT detector with an energy resolution of
10% full-width at half maximum (FWHM). Scatter and photon
attenuation effects were included in the simulations. The simu-
lated data were binned into 120 projections over the 360 rota-
tion. Matrix size used for each projection was 128 85 (pixel
size 2.344 mm 2.353 mm).

To allow different kinetics to be assigned to different brain
structures, each of the individual brain structures, identified in
Table I, were simulated in isolation (activity in all other struc-
tures set to zero) for a total number of five hundred million de-
cays each. This provided low-noise projection data sets for each
identified structure. Projections for total brain activity could
then be generated by weighted sum of the projections for the
individual structures.

C. Dynamic Projection Data With Poisson Noise

To simulate the dynamic data set, the tissue time-activity
curves (TTAC) (see Fig. 1) were generated from the esti-
mated rate constants and plasma time-activity curve (PTAC)
determined in baboon experiments of the neuronal nicotinic
acetylcholine receptor tracer 5-[ I]-iodo-A-85 380 [22],
[23]. The composite sets of dynamic projections for all brain
structures were generated by multiplying the projections of in-
dividual structures with the corresponding values from TTACs
at the selected time points. The final dynamic projection set
consisted of fifteen 60 s scans, nine 300 s scans and twelve 600 s
scans for a total collection time of 3 h. The composite dynamic
projection data were then scaled to appropriate pixel counts
typical of those observed with the tracer in the experimental
study to allow adding realistic noise levels. The maximum pixel
count for a 5 min frame near peak uptake in the brain was found
to be about 30 counts/pixel. A scaling factor was thus deter-
mined to give a maximum pixel count of 30 counts per pixel for
a similar 5 min frame in the simulated composite dynamic pro-

TABLE I
THE SIMULATED BRAIN STRUCTURES AND CORRESPONDING TISSUE

TIME-ACTIVITY CURVES

Fig. 1. Plots of plasma time-activity curve and tissue time-activity curves for
the frontal cortex, thalamus, cerebellum, and white matter.

jection and the whole dynamic projection data set was scaled
by the scaling factor. Frames with collection times other than
5 min were further scaled based on the relative collection time
(i.e., divided by 5 for 1 min frames). Poisson noise was then
added to the scaled projections and the noisy projections were
normalized to represent counts per minute. The same proce-
dure was utilized to generate noisy projections simulating max-
imum 5 min frame pixel counts which ranged from 10 to 50,
to allow evaluation for different noise levels. Low-noise projec-
tions were also generated using the same method, but without
adding Poisson noise.
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D. Reconstruction and Post-Reconstruction Filtering

Emission projections were reconstructed using the OS-EM
iterative reconstruction algorithm with varying number of
iterations and different numbers of subsets [10]. The number of
subsets used was 5, 10, 20, 30, 40, and 60, while the number
of iterations ranged from 1 to 8. Attenuation was corrected
with the attenuation maps derived from the mathematical brain
phantom and attenuation coefficients appropriate for I [22].
Compensations for the effect of scatter and the detector-colli-
mator response functions were not applied. The reconstructed
slices were stored in 128 128 85 data volumes with voxel
sizes of 2.344 2.344 2.353 mm. Finally, 3-D Gaussian
filters were applied to smooth the reconstructed images with
the FWHM ranging from 3 to 8 pixels (7 to 19 mm). Data
without any post-reconstruction filtering were
also included in the analysis.

The limited resolution of SPECT imaging can be included in
the imaging model of OS-EM reconstruction to achieve resolu-
tion recovery and potentially reduce bias due to partial volume
effects. Reconstructions were also performed with resolution re-
covery, using the known resolution degradation from the Monte
Carlo simulations. Due to the slower convergence with resolu-
tion recovery, reconstructions with 40 subsets and 10 iterations,
40 subsets and 20 iterations were performed. TTACs were gen-
erated and fitted as for the reconstructions without resolution
recovery. As the aim of resolution recovery was to optimize res-
olution and minimize bias, no post reconstruction filtering was
performed for these reconstructions.

E. Kinetic Analysis

Tight volumes of interest (VOIs) for frontal cortex, thalamus,
and cerebellum were derived by eroding the definition of the
structure in the mathematical brain phantom with 2, 3, and 5
pixel wide masks for frontal cortex, thalamus and cerebellum,
respectively. TTACs generated for each VOI were fitted to a
three-compartment (two tissue compartments) model, using
nonlinear least squares curve fitting with Marquardt-Levenberg
minimization [24]. The PTAC was scaled in the same fashion
as the projection data and is also shown in Fig. 1. A modified
cost function was used in the fitting based on integrating the
count rates over the frame duration [25], [26].

Parameters of primary interest for this tracer were the influx
rate constant , the volume of distribution (1), the binding
potentials (2) [27], and defined by (3) [28]

(1)

(2)

(3)

To ensure successful fits to the three-compartment model, the
following strategy was used. The data were first fitted with a
two-compartment model, and the initial conditions for the three-
compartment model fit were derived from the fitted parame-
ters of the two-compartment model fit. If the three-compartment
model fit gave a which was greater than twice that of the
two-compartment model fit, or if the residual sums of square
(RSSQ) of three compartment fit was greater than

TABLE II
THE REFERENCE PARAMETER SETS FOR THE VOLUMES OF INTERESTS

of the two-compartment model fit, the fit of the three-compart-
ment model fit was repeated with a different random perturba-
tion of the initial conditions so as to eliminate poor fits to the
data and clearly nonphysiological values.

The “bootstrap” Monte Carlo technique with 100 iterations
was used to determine the standard deviations (SD) and coeffi-
cients of variation (CV) of the parameters of interest. Given a
curve of n data points, for each bootstrap Monte Carlo iteration,
n points are randomly selected from the curve and the model
fitted to the n randomly selected points. As each point is ob-
tained by randomly drawing from the curve of n points, some
of the points from the original data set will be used more than
once for a particular realization, while others will not be used.
The points which are duplicated and not selected will vary ran-
domly for each iteration. For the 36 point TTACs used in this
study an example of a sample of randomly drawn points for one
realization is using points (sorted in ascending order) [1, 1, 2,
4, 6, 6, 6, 11, 12, 13, 13, 16, 17, 18, 18, 18, 19, 21, 21, 21, 21,
22, 23, 23, 24, 26, 26, 28, 28, 30, 31, 34, 34, 34, 36]. For this
particular realization, point 1 is used twice, point 3 is not used at
all and point 21 is used 4 times etc. In this way, 100 “bootstrap”
TTACs were generated for each noise level and cortex region.

F. Evaluation

Bias was calculated by comparing the mean fitted parameters
from the 100 bootstrap Monte Carlo iterations with the known
parameters (see Table II) for the TTACs (see Fig. 1) used for
generating the dynamic projection. Parameter estimate CV was
calculated from the standard deviation derived from the boot-
strap Monte Carlo iterations, and then divided by the known pa-
rameters listed in Table II.

Graphs of percentage bias vs. CV were plotted for the pa-
rameters of interests and for all noise levels and structures for
the different reconstruction and filtering parameters. The points
then represent the effect of reconstruction parameters and post-
reconstruction filtering on bias and reliability of the estimated
parameters (see Fig. 2). A region was identified manually on
the graph, which provided the best tradeoff between reliability
and bias (elliptical region on Fig. 2), i.e., achieved the best com-
promise between bias and CV. As shown in Fig. 2, points with
low bias and slightly elevated, but acceptable CV % also
included in the region, as these points were also considered ac-
ceptable from the point of view of bias versus CV tradeoff. How-
ever, the point with clearly elevated CV % , but low bias
was excluded.

If a particular combination of subset, iteration, and filtering
produces a bias/CV point within the identified region, then it
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Fig. 2. Plot of %-bias versus CV for K in the cerebellum for the noise level 30 data. Curve points representing best compromise between bias and reliability
are enclosed by an ellipse and the corresponding reconstruction and filter parameters received a score of 1. All others received a score of zero for this parameter
(K ) and region (cerebellum).

received a score of 1, otherwise a score of 0. The scores for all
data sets (different noise levels and brain structures) were then
summed to provide an overall score for each combination of
subset, iteration, and filtering.

G. Comparison Between Conventional and Bootstrap Monte
Carlo Simulations

As indicated above, the Bootstrap Monte Carlo technique was
used to estimate the SD and CV associated with the estimated
parameters to demonstrate the effects of noise and filtering on the
parameter estimation reliability. The main advantage of the Boot-
strap Monte Carlo technique over conventional Monte Carlo in
this application is a substantial reduction in the number of recon-
structions. For the 10 noise levels, 36 frames per dynamic study
and 24 different reconstruction parameters, Bootstrap Monte
Carlo required 8640 sets of projections to be reconstructed.
Assuming 100 iterations, conventional Monte Carlo technique
generating a different set of projection for each iteration would
have required 864 000 sets of projections to be reconstructed
which is associated with an almost prohibitive computation time.

To compare Bootstrap Monte Carlo Estimation of SD and
CV with conventional Monte Carlo estimation, 100 iterations
of conventional Monte Carlo simulations were generated for all
noise levels and one set of reconstruction parameters (20 sub-
sets and two iterations). TTACs were then generated for each of
the reconstructed sets of data and fitted with the compartmental
model as described above. The SDs and CVs were calculated
from the fits to the 100 iterations. These were then compared
with the Bootstrap Monte Carlo estimates of CV and SD.

III. RESULTS

A. Percentage Bias and CV

Successful reconstructions and curve fits were obtained for
noise free and the nine noise levels based on the maximum pixel
values for 5 min frame of 10, 15, 20, 25, 30, 35, 40, 45, and 50.
Fig. 3 shows curves of percentage bias and CV for and
over the range of noise levels studied as a function of post-re-
construction filter FWHM for a reconstruction using 20 subsets
and two iterations for the thalamus. Little systematic improve-
ment in CV was observed with increasing filter FWHM and
this was also observed for the cerebellum and frontal cortex re-
gions. The CVs of were below 5% for all selected regions
and noise levels and those for were less than 1.5%. Filtering
did not improve the reliability, whereas increasing FWHM in-
creased the bias of and estimates. A similar trend in bias
with increasing FWHM was also observed in the cerebellum
and frontal cortex. Compared with the thalamus, bias in the
frontal cortex was more pronounced (for noise30, bias of

% and % for FWHM of 0 and 8 pixels, respec-
tively and bias of % and % for FWHM of 0 and
8 pixels, respectively) and not unexpectedly, less in the larger
cerebellum region (for noise30, bias of % and %
for FWHM of 0 and 8 pixels, respectively and bias of %
and % for FWHM of 0 and 8 pixels, respectively).

Similar graphs for bias and CV are shown for and
in Fig. 4 for the thalamus. The findings for were similar
to those for and . for the thalamus showed only
moderate increase in bias with increasing filter FWHM, as well
as showing some improvement in CV with a moderate amount
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Fig. 3. Percentage bias (top) and CV (bottom) of estimated (a) K and (b) V for the thalamus as a function of filter FWHM. Data were reconstructed with
20 subsets and two iterations.

Fig. 4. Percentage bias (top) and CV (bottom) of estimated (a) BP and (b) BP for the thalamus as a function of filter FWHM. Data were reconstructed with
20 subsets and two iterations.
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Fig. 5. Percentage bias of estimated BP for (a) the cerebellum and (b) the frontal cortex.

Fig. 6. Plots of %-bias and CV as a function of reconstruction parameters (number of subsets: number of iterations). Results are for reconstructions without any
post-reconstruction filtering.

offiltering.Percentagebiasgraphs for in thecerebellumand
frontal cortex are shown in Fig. 5. These regions did not show the
pronounced bias and bias was relatively constant as a function of
filterFWHM.Againreliability improvedmoderatelyfora limited
amountoffiltering ( pixel). isa functionof true
rate constants only, which unlike are not affected by reduction
in counts in the defined region due to limited resolution and par-
tial volume effects. Hence, for an isolated structure, should
not show the pronounced bias associated with partial volume ef-

fects. However, spill over from adjacent structures with different
kinetics, such as white matter into cortical regions, can introduce
some bias in the estimates. Compared with the other parameters,
the reliability of estimating is relatively poor, with CV in
some cases exceeding 80% and, hence, bias can also be expected
due to the uncertainty in estimating this parameter. While some
bias is still observed for due to the reasons outlined above,
it is less than the bias of the other parameters and there is a lack
of systematic increase in bias of with increasing FWHM.
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TABLE III
EVALUATION SCORES OF ESTIMATEDK AND V

Fig. 6 plots the bias and CV as a function of reconstruction
parameters (number of iterations and subsets) for estimates of

and in the thalamus without any post-reconstruction fil-
tering. Low number of equivalent iterations, i.e., low number
of subsets, combined with a low number of iterations, provides
the least noise, but also the lowest resolution reconstruction and,
hence, the largest bias. Particularly for , low number of equiv-
alent iteration does have a positive effect on CV. However, CV
is quite low % for all reconstruction parameter combina-
tions and the small gain in CV is outweighed by the increase in
bias. CV of is insensitive to the reconstruction parameters
and % for all reconstructions of this parameter except one
point with a spuriously elevated CV of 12.5%. The data suggest
that an equivalent number of at least 40 iterations should be used
based on bias considerations.

B. The Overall Evaluation Scores

ThescoresderivedfromthebiasversusCVplots (seeFig.2)are
giveninTableIII for and andinTableIVfor and .
The maximum score for any filter and reconstruction parameter
combinationobtainableis60(3regions,10noise levels, including
noiseless data, and 2 parameters for each table). Based on these

TABLE IV
EVALUATION SCORES OF ESTIMATED BP AND BP

scores, reconstructions without filtering provided the best results
for all reconstructions. This was quite clear cut for and , but
less pronounced for the binding potentials, as increased bias with
increasing FWHM was not observed for (see Figs. 4 and 5).
Overall, the reconstructions that provided an equivalent number
of 40 normal ML-EM iterations (i.e., 40 subsets and one iteration,
20 subsets and two iterations, 10 subsets and four iterations, five
subsets and eight iterations) scored best. However, the exact re-
construction parameters do not appear to be critical. The param-
eter estimation only suffered from high noise at relatively high
equivalent number of iterations (e.g., 40 subsets, four iterations).
Conversely, at a low number of iterations (e.g., 10 subsets, one it-
eration) bias due to partial volume effect becomes pronounced.
The overall evaluation for all the parameters of interest thus sug-
gest that the noise control using the moderate number of 40 ef-
fective iterations and no post-reconstruction filtering provided
the best tradeoff between bias and reliability.

C. Comparison Between Conventional and Bootstrap Monte
Carlo Simulations

Table V lists the mean SDs and CVs estimated with Boot-
strap and conventional MC of the parameters of interest for all
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TABLE V
MEAN VALUES OF SD AND CV FOR BOOTSTRAP AND CONVENTIONAL MONTE

CARLO SIMULATIONS FOR THE THREE VOLUMES OF INTERESTS AT NINE NOISE

LEVELS (27 POINTS)

VOIs and noise levels used for the comparisons. Good agree-
ment is found between the SD and CV estimates obtained with
Bootstrap and conventional MC techniques, vindicating taking
advantage of the Bootstrap MC’s substantial reduction in com-
putation time.

D. Results With Resolution Recovery

Table VI compares the percentage bias from reconstructions
with resolution recovery with bias obtained without resolution
recovery for noise30. For and , resolution recovery re-
duces the underestimation of the parameters observed without
resolution recovery. The effect is most pronounced in the thal-
amus. A similar trend was also observed for , except in the
cerebellum, where there was an increase in the overestimation
of the parameter. showed a slight reduction with resolu-
tion recovery of the overestimation observed without resolution
recovery in all three regions.

CVs with resolution recovery were very similar to those
without resolution recovery and were % for all the param-
eters of interests except . Although some CVs of
exceeded 80%, there was again little difference in reliability
between reconstructions with and without resolution recovery
for this parameter. Similar results for bias and CV were also
observed at the other eight noise levels and the noise free data.

IV. DISCUSSION

While absolute physiological parameter estimation is well
established in PET, it has only recently attracted attention in
SPECT. Compared to PET, SPECT suffers from poorer resolu-
tion and decreased sensitivity, giving rise to more pronounced
bias due to partial volume effects and high-noise levels in the
image. Noise in the image can potentially be reduced with
appropriate filtering or by reducing the effective number of
iterations of the OS-EM reconstruction algorithm, but at the
potential expense of degraded resolution and increased bias
due to partial volume effects. In this study, we investigated
the effect of reconstruction parameters and filtering on kinetic
parameter bias and reliability for dynamic SPECT at varying
noise levels.

To provide realistic simulated data, high-count Monte Carlo
simulations of individual brain structures of a mathematical
brain phantom were performed. Once projections of structures
have been simulated, these can be combined into dynamic

frames for any arbitrary tracer kinetics and noise level, without
having to repeat any of the computationally intensive Monte
Carlo simulations. For this study we elected to use the kinetics
of the 5-[ I]-iodo-A-85380, which had previously been
studied in our institution [22], [23]. This tracer is fairly typical
of the relatively slow kinetics observed with SPECT tracers.
Simulating dynamic projection data allowed Poisson noise
to be added to the projection data. This allowed the effect of
the reconstruction, attenuation and scatter to be included in the
simulations and evaluation and avoided the question of appro-
priate noise model and magnitude typically arising if noise is
added to simulated dynamic curves or reconstructed image slice
data.

As expected, bias increased with increasing filter FWHM and
this effect was more pronounced for structures more affected
by partial volume effect (thalamus and frontal cortex) than the
larger, more homogenous cerebellum. Deriving TTACs from
volumes of interest encompassing the structures provides spa-
tial averaging of data with reduced noise compared to individual
voxels, which may at least partially explain the lack of improve-
ment in fit reliability with increased spatial filtering, which ef-
fectively is a form of spatial averaging (weighted) of the data.
Increased spatial filtering will also increase spill-over between
structures and, hence, curves derived from particular volumes of
interest will contain a mixture of kinetics from different struc-
tures, and contamination from adjacent structures will increase
with increasing filter FWHM, which may decrease the reliability
of the estimated parameters. There was no systematic trend be-
tween bias and noise level. This suggests that the variation in
bias between different noise levels is due to the uncertainty in
estimating the parameters and slight differences in curve shape
due to noise for the data sets, rather than systematic, noise level
related bias.

Inclusion of resolution recovery in the OS-EM reconstruc-
tion has the potential of reducing partial volume effects. Less
underestimation of , and was indeed observed with
resolution recovery. However, resolution recovery was unable
to completely recover the signal for small and thin structures
like the thalamus and frontal cortex. Particularly for the frontal
cortex, the improvement in bias was only modest. Convergence
is significantly slower with resolution recovery, which increased
reconstruction time by at least a factor of 20. Other methods
for correcting for partial volume, such as techniques based on
anatomical imaging [29], [30] or kinetic model based methods
[31], [32] may perhaps be more successful in reducing bias, but
are beyond the scope of this paper.

Due to interaction and high correlation between individual
micro rate constants , the CV of these parameters
was very high and reliability was poor. As in this case, the in-
dividual rate constants are usually of less interest and macro
parameters related to physiological processes are more impor-
tant. In this case gives an indication of tracer delivery and
the macro parameters related to receptor binding ( , binding
potentials) were of primary interest [22], [27], [28], [33] and,
hence, investigation concentrated on these, rather than the indi-
vidual rate constants. Fortunately, the reliability of the param-
eters of interest estimates is acceptable, even when the CVs of
individual rate constants are very high.
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TABLE VI
PERCENTAGE BIAS FOR PARAMETERS OF INTERESTS WITH AND WITHOUT RESOLUTION RECOVERY AT A MODERATE NOISE LEVEL FOR

CEREBELLUM, FRONTAL CORTEX, AND THALAMUS

The reliability of the parameter estimates can be directly de-
rived from the fit of the parameters [24]. However, this only pro-
vides an indication of the CV of the parameters fitted, and not of
the derived macro parameters, unless the fit is reformulated in
terms of the macro parameters. In this case, the fitting equation
would have had to be reformulated and applied separately for
estimating CV of , and . Bootstrap Monte Carlo
technique avoided the need for reformulating the fit equation,
with the potential for affecting results, while allowing CVs of
both the micro and derived macro parameters to be estimated.
The main disadvantage of Bootstrap Monte Carlo technique is
increased computation time (100 fits to each TTAC in this case),
which takes approximately 2 h on a Dell Dimension-4300 PC
(1.5 GHz CPU, 512 MB of memory) including one reconstruc-
tion. However, it is significantly faster than conventional Monte
Carlo simulations, which in this case would have taken 150 h to
achieve 100 iterations of projection generation and reconstruc-
tion. Conventional Monte Carlo simulations were carried out for
one reconstruction parameter set (20 subsets, two iterations) at
all noise levels. This showed good agreement for estimates of
SD and CV between conventional and bootstrap Monte Carlo
simulations (Table V).

While the Bootstrap Monte Carlo technique is more time con-
suming than estimating the parameters’ SD and CV directly
with the fitting routine, the final parameter estimates are the
mean of the parameter estimated at each Bootstrap Monte Carlo
iterations. This should provide an improved estimate of the pa-
rameters compared to just a single fit to the data, as the standard
error of the mean from the Bootstrap Monte Carlo estimates can
be expected to be lower than the standard deviation of individual
parameter fits returned by the fitting routine on convergence.

Rate constants , and are not affected by partial
volume effects and only and derived parameters containing

are sensitive to partial volume effects. Thus, (1) and
(3) are expected to be affected by partial volume effects,

while (2) should be relatively immune to resolution
effects. This is indeed observed (see Figs. 4 and 5). However,
reliability of estimating is relatively poor and interaction
between the fitted parameters as well as spill-over from regions
with different kinetics may have resulted in some of the high
biases observed for for some reconstructions. was
the only parameter investigated which potentially benefited
from post-reconstruction filtering.

V. CONCLUSION

We have investigated the effect of reconstruction and filtering
on dynamic SPECT kinetic parameter estimation bias and re-
liability. Dynamic projection data were generated from high-
count Monte Carlo simulations of a mathematical human brain
phantom. Poisson noise at 10 different noise levels based on ex-
perimental count levels was added to the scaled projection. It
was found that post-reconstruction filtering was not effective in
improving reliability, but adversely affected bias, particularly in
areas most affected by partial volume effect. Noise control using
a moderate number of 40 effective iterations and no filtering pro-
vided the best tradeoff between bias and reliability. Further in-
vestigations are warranted such as incorporation of regulariza-
tion into the reconstruction and clustering to improve reliability
of estimates, particularly for high-noise studies, while not ad-
versely affecting the bias of the estimated parameters [34], [35].
Incorporation of resolution recovery was only moderately suc-
cessful in reducing bias and exploration of other partial volume
correction techniques is warranted to reduce bias.
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