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Abstract1

This study reports an ultrasound biomicroscopy (UBM) imaging approach to monitor the 2

progressive trypsin-induced depletion of proteoglycan (PG) and its inhibition in articular 3

cartilage. Three fresh, normal bovine patellae were obtained, and four full-thickness 4

cartilage-bone specimens were prepared from the lower medial side of each patella. One 5

sample was used as a control and the other three were divided into three groups: Groups A, B,6

and C (n=3 for each group). After a 40 min 0.25% trypsin digestion, samples from Group A 7

were continuously digested in trypsin solution, while those in Groups B and C were immersed8

in physiological saline and fetal bovine serum (FBS), respectively, for another 280 min. The 9

trypsin penetration front was observed by UBM, and M-mode images were acquired using 50 10

MHz focused ultrasound and custom-developed software. The results show that the 40 min 11

trypsin digestion degraded nearly the whole surface layer of the cartilage tissue. Further 12

digestion in trypsin or residual digestion in saline for 280 min depleted most of the PG content,13

as observed in Groups A and B. The replacement of trypsin with a physiological saline 14

solution only slightly slowed the digestion process (Group B), while trypsin inhibitors in FBS 15

stopped the digestion in approximately 1.5 h (Group C). The normalized digestion fractions of 16

the digested tissues were calculated from ultrasound data and histology sections, and then 17

compared between the groups. Without the use of FBS, 80-100% of the full thickness was 18

digested, while this number was only approximately 50% when using FBS. Our findings 19

indicate that the UBM imaging system could provide 2-D visual information for monitoring 20

progressive trypsin-induced PG depletion in articular cartilage. The system also potentially 21

offers a useful tool for preparing cartilage degeneration models with precisely controlled PG 22

depletion.23
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INTRODUCTION1

Articular cartilage (artC) is a low frictional, load-bearing soft tissue that provides almost 2

frictionless support for several joints. The material composition of artC is a multi-phase3

hydrated mixture mainly composed of 5–10% proteoglycan (PG), 10–20% collagen, and 4

60–80% water (Mow et al. 2005). Aggregating PGs are negatively charged 5

bio-macromolecules that are enmeshed in the collagen matrix (Lai et al. 1991; Maroudas 6

1976). Therefore, PGs play an important role in determining the electrochemical and 7

mechanical properties of articular cartilage, such as shear modulus (Zhu et al. 1993), 8

compressive modulus (Qin et al. 2002; Zheng et al. 2001, 2005), swelling strain (Narmoneva 9

et al. 1999; Wang and Zheng 2006) and swelling aggregate modulus (Flahiff et al. 2004; 10

Narmoneva et al. 2002; Wang et al. 2007, 2008a). It has been widely reported that the loss of 11

PGs is one of the earliest signs of osteoarthritis (OA), which is one of the most common joint 12

diseases. Advanced stage OA is characterized by a partial or total loss of cartilage tissue and 13

the direct contact of bone across the joint. (Armstrong and Mow 1982; Martini 2004; Sandy 14

2003; Torzilli et al. 1990). Early diagnosis of artC degeneration is very important for the 15

treatment of OA. However, conventional methods using X-ray imaging can only detect very 16

late stage OA. Most existing MRI systems do not have sufficient resolution for the assessment 17

of artC. Conventional ultrasound scanners are not suited to the direct study of OA, as their 18

resolution is also usually insufficient to image changes in artC. Further, it is difficult to scan19

the whole articulating surface with an ultrasound probe located outside the body. New 20

approaches using arthroscopic imaging can provide more information about artC degeneration 21

processes such as surface fibrillation, but it remains challenging to assess early stage OA 22
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using video inspection. In order to evaluate new therapies such as mosaic plasty, cultured 1

chondrocyte transplantation, and even the use of tissue-engineered cartilage, it is necessary to 2

develop sensitive assays of the therapeutic outcome (Detterline et al. 2005; Fu et al. 2003). 3

During the last decade, various techniques have been developed for this purpose, including 4

mechanical indentation (Toyras et al. 2001), quantitative ultrasound (Saied et al. 1997; Joiner 5

et al. 2001; Hattori et al. 2003; Nieminen et al. 2002, ), ultrasound combined with indentation6

(Zheng and Mak 1996; Suh et al. 2001; Laasanen et al. 2002), water-jet indentation (Lu et al. 7

2009), compression (Zheng et al. 2004a), osmotic loading (Wang et al. 2008a), optical 8

coherence tomography (OCT) (Herrmann et al. 1999), air-jet OCT indentation (Huang et al. 9

2009), and electromechanical measurement (Legare A et al. 2002). 10

11

Various in-vitro and in-vivo animal models mimicking human articular cartilage degeneration 12

have been reported in the literature. These models are intended to aid the development of new 13

diagnostic approaches and the investigation of the mechanism of degeneration. To study how 14

the loss of PGs results in changes in morphological, biomechanical, acoustic, and bioelectrical 15

parameters, many studies have treated normal articular cartilage with enzymes such as trypsin. 16

Such treatment depletes PGs, mimicking natural cartilage degeneration (Basser et al., 1998; 17

Brown et al., 2007; Deng et al., 2007; Disilvestro and Suh, 2002; Harris et al., 1972; Hunziker 18

and Rosbenberg 1996; Laasanen et al., 2002; Moody et al., 2006; Nieminen et al., 2002; Qin 19

et al., 2002; Saarakkala et al., 2004; Suh et al., 2001; Toyras et al., 2002; Zheng et al., 2001, 20

2004). In terms of the understanding of how the loss of PGs affects different physical 21

parameters of cartilage, tremendous achievements have been made using these trypsin-treated 22
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animal and human cartilage models. In spite of these advances, one fundamental problem in 1

preparing these models has not been solved: how to quantify the degree of PG depletion 2

during the trypsin treatment. In other words, how can we prepare a cartilage degeneration 3

model with exactly the required degree of PG depletion? 4

5

The conventional way to quantify PGs in cartilage is to use histological assays by binding 6

different stains, such as safranin-O, toluidine blue, hematocylin and eosin (H&E), and alcian 7

blue, to differentiate different compositions in cartilage (Lyons et al. 2006). However, this 8

method is time-consuming and invasive since it involves specimen collection, fixing, staining, 9

slicing, imaging, and analyzing. In many studies, pilot tests are used to determine the degree 10

of PG depletion under a certain concentration of trypsin, operating temperature, and period of 11

treatment. Since variations in the cartilage thickness and in the distribution of PGs and 12

chondrocytes are commonly observed between different specimens (Moody et al. 2006), it is 13

difficult to control the trypsin digestion process using histological techniques to create 14

calibration standards. An alternative method is to conduct histological examination after 15

completing all necessary (nondestructive) tests on the trypsin-treated cartilage specimen, so as 16

to quantify the PG depletion level of each specimen. This is time-consuming and, in many 17

cases, the histologically examined PG depletion level may not be the level expected for the 18

experimental design. Unfortunately, at that point, it is too late to alter the experiment based on 19

this knowledge. Therefore, it is very important to have a real-time monitoring approach for 20

preparing cartilage degeneration models with a defined PG depletion level. Furthermore, 21

enzyme inhibitors such as fetal bovine serum (FBS) are commonly used to stop trypsin 22
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digestion at a certain PG depletion level (Xiang et al., 2006). Using routinely available 1

methods, it is not possible to determine precisely how long it takes for FBS to stop the trypsin 2

digestion process or how the inhibition process proceeds, though it has been estimated in 3

previous studies that a FBS solution can stop trypsin digestion within approximately one hour 4

(Qin et al., 2002; Rieppo et al., 2003). In addition, although washing with saline after trypsin 5

treatment is a very commonly used technique in the literature, we do not know whether 6

replacing the trypsin solution with a saline solution can stop the digestion process. 7

8

Inspired by the reduction of elasticity of articular cartilage with depletion of PGs, a novel 9

technique using high frequency ultrasound to monitor the process of trypsin digestion has10

been recently reported (Toyras et al., 2002; Nieminen et al. 2002; Zheng et al. 2004b; Wang et 11

al. 2008b). The fundamental principle of this technique is that the reduction in the elasticity of 12

PG-depleted cartilage leads to a decrease in its acoustic impedance and, thus, creates an 13

artificial acoustic interface between the digested and undigested cartilage tissues. An 14

ultrasound echo can be generated at this interface, and this echo shifts as the trypsin digestion15

progresses deeper into the tissue. With continuous recording of ultrasound signals, the trace of 16

digestion can be viewed in an M-mode ultrasound image. This novel technique allows 17

real-time monitoring of the process of PG depletion induced by trypsin digestion, though the 18

reported works are still very preliminary. These earlier studies were mainly focused on the 19

feasibility of this technique (Toyras et al., 2002; Nieminen et al. 2002; Zheng et al. 2004b). 20

The digestion speed of a certain concentration of trypsin in cartilage was recently reported 21

(Wang et al. 2008b). In these studies, the ultrasound beam was focused at a single location in 22
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the articular cartilage. Thus, it is difficult to get an accurate digestion profile and it is not 1

known whether the digestion process is site-sensitive. Furthermore, no study has been 2

reported that monitors the trypsin inhibition process, an important step in preparing OA 3

models with different degeneration levels. 4

5

In the present study, we test the feasibility of ultrasound biomicroscopy (UBM) imaging, or 6

“acoustic microscopy” (Foster et al., 2000; Saijo and Chubachi 2000) for monitoring the 7

progressive trypsin digestion process along the digestion front, as well as the inhibition 8

process of FBS against trypsin. To investigate the inhibition efficiency of FBS against trypsin, 9

we also examined residual trypsin digestion in physiological saline. Instead of monitoring the 10

cartilage tissue at a single location as was done in earlier works, UBM provides a real-time,11

continuous view of the digestion front on the entire cross-section of the cartilage. The results 12

obtained in this study could help in understanding the interaction between trypsin and its 13

inhibitors. If proved feasible, UBM imaging would qualify as a useful tool for future studies 14

involving the examination of the diffusion of different solutes, including enzymes and their 15

inhibitors, in articular cartilage. 16

17

MATERIALS AND METHODS18

Specimen preparation19

Three fresh mature bovine patellae without apparent lesions were obtained from a local 20

butcher shop within 6 hours of slaughter, and were stored at -20C until further preparation. 21

For each patella, four cartilage-bone plugs were prepared from the lower medial side using a 22
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metallic punch with a diameter of 6.35 mm (Fig. 1). One of these samples was be used as a 1

control, and the other three divided into three groups (A, B, and C) for trypsin treatment. The 2

experimental protocols for each group are described in subsequent sections. The prepared 3

cartilage-bone plugs were wrapped in wet gauze soaked with physiological saline and stored 4

at -20C until the experiment.5

6

The ultrasound biomicroscopy (UBM) system7

The ultrasound signals backscattered from the cartilage sample were acquired using a UBM 8

system similar to the ultrasound system described in our previous reports (Wang and Zheng, 9

2006; Zheng et al., 2006). The UBM system, as shown in Fig. 2a, comprised a nominal 50 10

MHz focused ultrasound transducer (Model PI50-2, Panametrics, Waltham, MA, USA), a 11

pulser/receiver (Model 5601A, Panametrics, Waltham, MA, USA), a 500 MHz 8-bit A/D 12

converter (Model CompuScope 8500PCI, Gage, Canada), and a computer with 13

custom-designed software. The transducer had a focal length of 12.7 mm, a diameter of 6.35 14

mm, a -6 dB beamwidth of 0.1 mm, and a -6 dB focal zone depth of 0.95 mm. The system 15

was equipped with a 3-D translating device (Parker Hannifin Corporation, Irvine, CA, USA), 16

which was used to adjust the position of the transducer and to drive the transducer to scan the 17

specimen. The scan length was 6.8 mm with a displacement step of 50 µm along the specimen 18

diameter. These conditions allowed acquisition of 2-D UBM images of the tissue in 19

approximately 60 sec (Fig. 2). The UBM images displayed the echoes reflected from the 20

saline-cartilage interface and the cartilage-bone interface, as well as those scattered from the 21

cartilage tissue (Fig. 2b). Each UBM image was formed by 137 lines of A-mode ultrasound 22
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signals, the amplitude of which corresponded to the grey levels in the image. The baseline of 1

the radiofrequency (RF) ultrasound signal, i.e., zero magnitude, corresponded to grey level 2

128 out of 256. A brighter pixel in the image represents a more positive magnitude and a 3

darker pixel represents a more negative magnitude. Fig. 3 shows the interface of the 4

custom-developed software, in which a UBM image, the A-mode ultrasound RF signals, and 5

an M-mode image are simultaneously displayed. The assignment of grey levels for different 6

signal magnitudes was the same as that used for forming the UMB image. 7

8

Ultrasound examination9

Before testing, the frozen cartilage-bone specimen was thawed in physiological saline solution 10

(0.15 M NaCl) for three hours at room temperature (25±1ºC). The sample was then installed11

in the container, and the outer ring of the cartilage surface was gently covered using rubber 12

gel (Blu-Tack, Thomastown, Australia). This gel allowed trypsin or serum to penetrate into 13

the sample only from the surface layer toward the cartilage-bone interface (Fig. 2a). 14

15

After the specimen equilibrated in physiological saline, ultrasound examination was 16

performed in two phases. In the first phase, the saline solution was removed from the 17

container using an injection syringe and quickly (within 30 seconds) replaced with the trypsin 18

solution (0.25%, Cat. No. 25200-056, GiBCO, Invitrogen Inc. Burlington, ON, Canada). The 19

progressive digestion of all specimens from Groups A, B, and C was monitored by the UBM 20

system for 40 minutes. In the second phase, the specimens of Group A were continuously 21

immersed in the trypsin solution, while the trypsin solution in Group B and Group C was 22
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removed within 30 seconds and replaced with physiological saline and fetal bovine serum 1

(Cat. No. 16000-036, GiBCO, Invitrogen Inc. Grand Island, NY, USA), respectively. We 2

refer to these two processes as the residual trypsin digestion in physiological saline and the 3

inhibition in FBS. This phase lasted for 280 minutes. 4

5

In M-mode images, markers were manually inserted at an interval of approximately 5 min 6

along the inclined trace (see Fig. 3 M-mode Display). This trace represents the process of 7

trypsin degradation of the PGs, or the interaction between trypsin and its inhibitors. 8

According to the locations of these markers, the software automatically interpolates the curve 9

representing the depth of trypsin digestion as a function of time. This procedure was repeated 10

six times for each specimen at different locations along the center of the 2-D cross-sectional 11

image to obtain 6 different interpolation curves. These curves were then averaged to reduce 12

possible site variance of the digestion and to smooth the trace. The variation among the 6 13

digestion traces of each individual specimen was tested by calculating the root mean square 14

(RMS) difference with respect to the averaged trace. The average curve was used for 15

estimation of the digestion fraction (the digestion depth normalized to the cartilage 16

full-thickness). These normalized values were used for comparison between the ultrasonic and 17

histological measurements, as the normalization can reduce effects caused by variations of 18

ultrasound speed between different cartilage samples and potential shrinkage of the specimen 19

during the process of histological analysis. The averaged digestion traces obtained for the 3 20

individual samples for each group were further averaged, and their RMS differences were also 21

calculated, to examine the variation among samples. 22
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1

In this study, the full thickness of the cartilage layer and the digestion depth were calculated 2

using a previously described method (Zheng et al., 2002). The cartilage thickness 3

measurement was based on the estimation of the time-of-flight between the echoes reflected 4

from the cartilage surface and the cartilage-bone interface. A cross-correlation technique was 5

used to match echoes. Since the use of a constant sound speed in both healthy and 6

PG-depleted cartilage causes an overestimation in the measurement of cartilage thickness 7

(Pellaumail et al., 2002), sound speeds of 1675 m/s and 1668 m/s were taken for the normal 8

and PG-depleted cartilage tissues, respectively (Nieminen et al., 2002; Patil et al., 2004). 9

10

Histology11

After ultrasound examination, all control and trypsin-treated specimens were fixed in a 12

buffered formalin solution (10%), decalcified in a 10% EDTA solution using an ultrasound 13

method reported by Guo et al. (2007), then embedded in paraffin. The central region of the 14

specimen was serially sectioned using a rotary microtome (Leica RM-2135, Cambridge, UK). 15

The 4 μm-thick deparaffined sections were stained with safranin O (Cat. No. F7258, SiGMA, 16

MO, USA) and contra-stained with fast green (Cat. No. S-2255, SiGMA, MO, USA). The 17

sections were viewed with an imaging system comprising a microscope (Model FN-S2N, 18

Nikon, Japan) and a digital camera (DXM 1200X, Nikon, Japan). In the optical micrographs, 19

red color due to safranin O indicates the presence of PG (Leung et al. 1999; Qin et al. 2002). 20

The depth of the trypsin-digested zone was estimated by measuring the depth of the fast 21

green-stained zone in the histological image. To obtain the digested fraction, the digestion 22
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depth was normalized by the full cartilage thickness, measured from the cartilage surface to 1

the interface between the deep cartilage layer and the bone. The 3 digestion fraction values2

obtained from 3 sections for each specimen were averaged, and the mean value was compared 3

with the ultrasound measurement.4

5

RESULTS6

Fig. 4 shows UBM images at the central sample section collected after 0 min, 40 min, 2 h, and 7

4 h of trypsin digestion of three cartilage samples from Groups A, B and C. As the trypsin 8

penetrated into the cartilage tissue and broke down the aggregating PGs, an interface between 9

the digested and undigested tissues was generated due to the change in the acoustic impedance 10

of the PG-depleted tissue. Consequently, an additional ultrasound echo appeared. As digestion 11

continued, this interface moved deeper into the tissue (Fig. 4). In the first phase of this study,12

we observed that the 40 min trypsin treatment digested approximately 30-40% of the full13

thickness of the cartilage (Fig. 4b, f, j). In the second phase, the digestion of Group A 14

continued until, after 2 h of trypsin digestion, the interface was close to the bone (Fig. 4c).15

The digestion front reached the bone and disappeared after 4 h of digestion (Fig. 4d). For 16

Group B, the digestion front continued to shift down into the deep layer even after trypsin was 17

replaced with physiological saline (Fig. 4g, h). In Group C, trypsin was replaced with FBS, 18

which contains trypsin inhibitors. Although this replacement is supposed to stop trypsin 19

digestion, the digestion front (Fig. 4k) kept moving deeper after 2 h of inhibition, as compared 20

to the front in Fig. 4j. Between 2 h and 4 h of inhibition (Fig. 4k and Fig. 4l), the digestion 21

front entered a static phase and moved little. As seen in Fig. 4, the digestion level of Groups A 22
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and B was much deeper than that of Group C.1

2

The results demonstrate that the digestion trace extracted from the M-mode image was rather 3

repeatable among the 6 traces for a single specimen, and among the traces of the three 4

specimens in each group. The averaged root mean square (RMS) variations (with respect to 5

the corresponding averaged traces) were 5.11.5% for a single specimen and 7.43.0%6

among the three specimens. By analyzing the inclined digestion traces in the M-mode images 7

from different groups (Fig. 5), we found that the pattern of residual trypsin digestion 8

experienced by Group B was similar to the trypsin digestion pattern of Group A, but different 9

from the inhibition process of Group C. In the second phase of the study, i.e., after the first 4010

min trypsin digestion, we measured the digestion depth and plotted it as a function of time for 11

the three groups (Fig. 6). Since no more trypsin entered into the tissue, the residual digestion12

of Group B in physiological saline slowed down in comparison to the continuous trypsin 13

digestion in Group A. Approximately 0.8 mm and 0.6 mm of cartilage were digested after 28014

min for groups A and B, respectively. Group C underwent a digestion process similar to 15

Groups A and B during the first 50 min, when the trypsin inhibitors might have not penetrated 16

into the tissue. After that time, the inhibitors started to affect the function of trypsin. This17

inhibiting process lasted for approximately one hour (Fig. 6), until the movement of the 18

digestion front stopped. The final digestion depth for Group C was approximately 0.3 mm. 19

20

We calculated the digestion fractions from histological sections of the specimens in the 21

control group and groups A, B, and C and compared these with the results of the ultrasonic 22
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measurements (Fig. 5, Table 1). The results reveal that all or almost all of the PGs in the entire 1

cartilage layer were digested by the 280-minute trypsin digestion and by the residual digestion. 2

FBS effectively stopped trypsin digestion at the middle layer, while physiological saline only 3

slightly weakened the trypsin digestion in the cartilage. According to Table 1, the results of 4

the ultrasonic and histological measurements on the digested portion of the trypsin-treated 5

articular cartilage did not agree well for specimens treated only by trypsin, or for those treated 6

with trypsin and serum. The results of the specimens treated with trypsin and saline did agree 7

well. 8

9

DISCUSSION10

In this study, we observed in real-time the penetration of trypsin digestion and the process of 11

FBS inhibition using UBM cross-sectional images as well as M-mode ultrasound images. We 12

performed both imaging techniques by detecting the additional echoes reflected from the 13

interface between the digested and undigested tissues. The enzyme digestion front moved 14

vertically from the surface layer to the deeper layer with long digestion times. Among the 15

three specimen groups tested, the overall process of trypsin digestion was similar within the 16

first 40 min. Further digestion in trypsin, residual digestion in saline, and inhibition of 17

digestion in FBS gave consistent results within the 3 specimens tested for each group, with an18

RMS deviation of 7.43.0%. However, we observed differences between the specimens in the 19

profile of the digestion front, the magnitude of the interface echo, and the depth of the 20

digestion front at a given time. This finding agrees with the results of a recent study that also 21

reported variations in trypsin digestion between different specimens (Moody et al., 2006). 22
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Most importantly and interestingly, we found that the digestion front in the tissue section was 1

not a straight line. This finding indicates that either the distribution of the PGs or the diffusion 2

rate of trypsin along the depth direction varied from site to site, even in a cartilage disc with a 3

diameter of only 6.35 mm. Our histological images also showed that the interfaces between 4

the safranin O-stained and fast green-stained areas were not exactly horizontal for all 5

specimens. This inhomogeneity of tryspin digestion further demonstrates the inhomogeneous 6

distribution of PGs and other components in cartilage tissue. The results also confirm the 7

necessity of using 2-D imaging to monitor the digestion and inhibition process, as the 8

single-location monitoring reported in earlier studies may not give a complete description of 9

the digestion front (Toyras et al., 2002; Nieminen et al. 2002; Zheng et al. 2004b; Wang et al. 10

2008). Although the sides of the cartilage specimens were sealed with a rubber gel, it might be 11

still possible that the trypsin solution diffused into the cartilage tissue from the sides. This12

possibility may explain why the interface echo was relatively weak or disappeared towards the 13

two sides of the cross-sectional image, as observed in the images of Fig. 4. Further studies 14

may be warranted to systematically investigate the lateral diffusion of trypsin solution from 15

the sides of specimens. 3-D ultrasound imaging of articular cartilage may provide even more 16

insight and direct information about what occurs in the tissue during progressive degeneration.17

Early studies have attempted 3-D imaging of articular cartilage with morphological lesions or 18

topographic changes due to OA (Cashman et al., 2002; Gaddipati et al., 2004; Lefebvre et al., 19

1998). Methods have also been developed to attempt to provide 3-D information about effects 20

of drugs on articular cartilage (Jaffre et al., 2003). However, little work has been done to 21

provide real-time 3-D imaging of degeneration processes in articular cartilage. Using 3-D 22
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ultrasound imaging techniques to display the progressive degeneration of articular cartilage 1

should be the subject of further study. 2

3

Besides studying the digestion process, we also investigated the inhibiting effect of FBS4

against trypsin digestion using UBM in this study. It has been reported that a FBS solution can 5

stop trypsin digestion within approximately one hour (Qin et al., 2002; Rieppo et al., 2003). In 6

our study, it took about one and half hours for FBS to totally inhibit digestion at a trypsin7

concentration of 0.25%. In addition to the time required for inhibition, we have also reported, 8

for the first time, the process of FBS inhibition, which is rather consistent among the three 9

specimens. In the future, it would be very interesting to study what affects the inhibition 10

process, and what the differences are between articular cartilage tissue from different species.11

12

Using UBM, we monitored trypsin digestion, residual digestion in physiological saline, and 13

the inhibition process of FBS, and revealed the differences between the three processes. Our 14

results show that the 40 min trypsin-digested specimens continued to be digested by residual 15

enzyme in the tissue. Replacement of the external solution with saline solution appeared to 16

have little influence on this digestion. Therefore, using enzyme inhibitors is necessary to 17

minimize the residual enzyme digestion effect (~0.6 mm further penetration in 280 min) to 18

achieve a more accurate assessment of the degeneration level of the specimens. Use of 19

inhibitors will also increase the accuracy of subsequent biomechanical or acoustic 20

measurements. It should be noted that, despite the use of a digestion inhibitor, the digestion 21

depth increased approximately 0.2 mm (Fig. 6) during the inhibition process of FBS. This 22
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result should be taken into account when using FBS as an inhibition solution. It would very1

interesting to further investigate the inhibition process of other types of trypsin inhibitor 2

solutions. The potential of this ultrasound method to monitor the diffusion process of other 3

solutes in articular cartilage, such as those studied by MRI techniques (Burstein et al., 1993; 4

Xia et al., 1995; Woertler et al., 2004), could also be explored in future studies. In our earlier 5

studies, we have demonstrated that the diffusion of salt (NaCl) between cartilage and the6

bathing solution can be monitored using real-time ultrasound. This monitoring is 7

accomplished by measuring changes in the speed of sound and osmotic swelling in cartilage 8

(Zheng et al. 2004b; Wang and Zheng 2006; Wang et al. 2007, 2008). Using MRI or 9

radioisotope marking techniques, the target molecules are directly monitored by their MR or 10

radiation features. In this ultrasound method, the target molecules are indirectly monitored 11

through changes in the morphological or acoustic features of the tissue induced by the target 12

molecules during diffusion. If the feasibility of this ultrasonic approach can be more 13

systematically demonstrated in future studies, it may potentially provide a more accessible 14

technique for monitoring various solute transport processes in cartilage and, potentially, other 15

tissues.16

17

The finding that residual digestion progresses in saline partially explains the disagreement we 18

noted in an earlier study between the trypsin digestion depths measured by ultrasound and 19

histology (Wang et al. 2008b). With the residual digestion in saline taken into account in the 20

calculation of the digested portion, the results obtained in this study by histology and 21

ultrasound agree very well for all three cartilage specimens (0.84±0.22 vs. 0.83±0.19).22
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However, for the three specimens treated solely by trypsin for 40 + 280 min, the digested1

portion measured with histology was larger than that obtained by ultrasound (0.96±0.07 vs.2

0.88±0.06). This difference can still be explained by residual digestion after the termination of 3

the experiments. Even though the specimen has not been put in saline solution after the 4

trypsin treatment, the trypsin in the specimen may continue to degrade the sample after the 5

end of ultrasound monitoring and removal from the trypsin solution. This residual digestion 6

occurred after the trypsin treatment, but before the histology test. Thus, this digestion7

increased the value of the digestion portion measured by histology, but not the value 8

measured by ultrasound. For the three specimens treated with trypsin followed by FBS 9

inhibition, the digested portion measured by histology was smaller than that obtained by 10

ultrasound (0.38±0.06 vs. 0.50±0.02). One possible reason for this observation might be that 11

some of the digestion that occurred during the inhibition process (approximately 0.2 mm, see 12

Fig. 6) could not be detected by histology (safarin O still stained this portion red). This 13

phenomenon might result if the PG had not been completely depleted by trypsin prior to the 14

treatment with FBS. Such an incomplete depletion might have already reduced the tissue 15

elasticity, affecting the acoustic impedance. However, if the fragments were not small enough 16

to move out of the collagen network, the main components of PG, chondroitin sulphate and 17

keratan sulphate, could still be stained red by safarin O. This explanation would account for 18

the observed transition in color intensity (Fig. 6). Due to the extremely long experimental time 19

for testing each specimen, we could only test 3x3 specimens in this study, and were not able to 20

conduct any statistical analysis of these results. Future studies with more cartilage specimens 21

would be required to draw firmer conclusions about these findings. Further efforts with more 22
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specimens and other reference methods are also needed to confirm whether the digestion that 1

occurred after the appearance of FBS could be viewed with safarin O staining in histology. 2

These efforts would also confirm whether the mechanical/acoustic interface induced by the 3

partial trypsin digestion matches the safarin O staining interface. Since the digestion front 4

observed in ultrasound images moves only when PGs are digested deeper in the sample, we 5

can use this ultrasound method to detect the real interface between PG-depleted and intact 6

cartilage tissues. This ability is unaffected by whether the specimen is in trypsin, saline or 7

inhibitor solution, and does not depend on whether the depleted PG can be viewed by safarin 8

O staining. Furthermore, it has been reported that histological staining might not accurately 9

reflect the total PG content in articular cartilage (Camplejohn and Allard, 1998). Considering 10

these points, the presently-reported ultrasound method may provide not only the benefits of 11

simplicity and real-time measurements, but possibly also increased accuracy in monitoring PG 12

depletion in articular cartilage.13

14

CONCLUSIONS15

This study provides a useful approach to observe a dynamic digestion process inside cartilage 16

tissue. We compared the processes of tryspin digestion, residual digestion in physiological 17

saline, and FBS inhibition of trypsin digestion. The results show that residual digestion in 18

physiological saline can degrade cartilage nearly as much as continuous trypsin digestion.19

Although FBS did stop digestion in approximately one and half hours, the digestion continued 20

during the first 30 min of this period. Due to the labor-intensive experiments and extremely 21

long experimental time, we could only test a limited number of specimens in this study. Future 22
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studies with more cartilage specimens from different species could lead to more definite 1

conclusions. This method may be used to prepare in vitro cartilage degeneration models with 2

precisely controlled PG depletion levels, or to investigate the diffusion of various solutes, 3

such as various enzymes or chemicals, inside articular cartilage, as long as they can induce a 4

change in the acoustic impedance of cartilage. Such precisely controlled OA models may 5

facilitate the development of new diagnostic tools for early degeneration of articular cartilage 6

and the investigation of the mechanisms of cartilage degeneration. 7
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Figure Captions1

2

Fig. 1 Schematic of specimen preparation and the experimental protocol.3

4

Fig. 2 (a) Block diagram of the ultrasound biomicroscopy system. (b) A frame of an 5

ultrasound biomicroscopic (UBM) image of an area 6.8 mm in width. The image height 6

represents a single-way ultrasound time-of-flight of 2.05 s, which corresponds to 3.3 mm in 7

cartilage.8

9

Fig.3 The user interface of the signal processing software. An M-mode image (upper left, with 10

a scanning time of 60 s), an UBM image (upper right, representing a width of 6.8 mm) and 11

A-mode ultrasound RF signals (lower, with a scanning depth of 3.3 mm if fully in cartilage) of 12

articular cartilage during trypsin digestion were displayed in real-time using the 13

custom-designed program. The grey levels of the M-mode and UBM image linearly represent 14

the amplitude of the RF signals, with a grey level 128 out of 256 representing zero magnitude 15

of the RF signal. The black dots in the M-mode image are the manually placed markers used 16

for interpolation of the inclined digestion trace. The interval between markers was 17

approximately 5 min. To avoid overlapping the trace, fewer marks than required are indicated 18

in the figure.19

20

Fig. 4 UBM images collected from a typical specimen of Groups A (a-d), B (e-h), and C (i-l). 21

The samples shown in panels a, e, and i were collected at the beginning of trypsin digestion; 22

the samples in panels b, f, and j were from the end of the 40 min trypsin digestion; the 23

samples in c, g, and k were collected after specimens were submerged in trypsin, 24
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physiological saline, and FBS, respectively, for 2 hours; panels d, h, and l are the UBM 1

images after specimens were submerged in trypsin, physiological saline, and FBS, 2

respectively, for 4 hours. In all images, the width was 6.8 mm and the scanning depth was 3.3 3

mm if fully in cartilage.4

5

Fig. 5 M-mode ultrasound images and histological sections obtained at the central region of a 6

typical specimen from Groups A (a), B (b) and C (c). M-mode images were collected during 7

the 40 min trypsin digestion, the 280 min trypsin digestion, residual digestion in physiological 8

saline, and the inhibition process in FBS. Solid white arrows indicate the digestion trace.9

Histological images on the right and left sides were collected from intact and digested 10

specimens, respectively. The dashed line indicates the interface of the PG-depleted and 11

PG-unaffected cartilage zone. Red staining by safranin O indicates the presence of PGs.12

13

Fig. 6 Curves of the averaged digestion depth as a function of time for the three groups. After 14

the replacement of trypsin with FBS, a period of approximately 1.5 hours was needed to 15

completely stop the trypsin digestion. 16

17

18

19

20

Table Caption21

22

Table 1: The mean digestion fraction of the digested samples measured at the end of the 4023

min trypsin digestion and during various 280 min treatments. 24

25
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