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ABSTRACT 

Motivated by a problem commonly faced by time-sensitive product manufacturers, we propose an 

analytical model to study the joint decisions of subcontracting and detailed job scheduling. In our model, a 

manufacturer operates in a make-to-order fashion and receives a set of orders from its customers at the 

beginning of the planning horizon. The orders can be either processed by the manufacturer in-house or 

subcontracted to one of several available subcontractors, possibly at a higher cost. The manufacturer needs 

to determine which orders should be produced in-house and which orders should be subcontracted. 

Furthermore, it needs to determine a production schedule for the orders to be produced in-house. The 

objective is to minimize the total production and subcontracting cost, subject to a constraint on the 

maximum completion time of the orders. We analyze the computational complexity of the model, develop 

a heuristic for solving it, and analyze worst-case and asymptotic performances of the heuristic. We also 

study the value of subcontracting by comparing our model and a model where no subcontracting option is 

available to the manufacturer. Computational results demonstrate that the subcontracting option gives the 

manufacturer a significant performance improvement. Related managerial insights are also provided. 

Key words: Scheduling; subcontracting; computational complexity; worst-case analysis; asymptotic 

analysis 
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1. INTRODUCTION 

Subcontracting is the procurement of an item or service that a firm is normally capable of producing using 

its own facilities and that requires the firm to make specifications available to the supplier (Day 1956). A 

more popular term, “outsourcing,” refers to the special case of subcontracting where the manufacturer has 

no in-house capability and is dependent on the subcontractor for the entire product volume. The practice of 

subcontracting and outsourcing is widespread in many industries because of the many advantages this can 

bring to a firm. When a firm subcontracts out some of its tasks, this allows it to concentrate on its core 

competencies. Subcontracting lowers investment requirements, and thus, the financial risk of the firm. It 

also helps the firm improve its response to customer demand. Furthermore, if a firm subcontracts an entire 

operation to a subcontractor, the demand uncertainty of the supply chain is reduced through the risk-

pooling effect. 

 In making subcontracting decisions, a firm needs to take into account many factors including, among 

others, its capacity and the cost for in-house production, customer demand, available subcontractors and 

their production costs and delivery lead times, and so forth. Clearly, analytical models and problem-

solving tools are needed if a firm is to optimize the tradeoffs from those factors.  

 In this paper, we present an analytical model to study the joint decisions of subcontracting and 

detailed job scheduling. Our model is motivated by the following problem commonly faced by 

manufacturers who make time-sensitive products, such as toys, fashion apparel, and high-tech consumer 

electronic products that typically have a large variety, a short life-cycle, and are sold in a very short selling 

season. On the one hand, because of the high demand uncertainty of the products, retailers typically do not 

place orders until reliable market information is available shortly before a selling season. On the other 

hand, since there are significant markdowns for unsold products at the end of the selling season, the 

manufacturer runs a high risk if it starts production early, before it has some information about retailers’ 

orders. As a result, the manufacturer will operate in a make-to-order fashion; i.e., it will not start 

production until orders from the retailers have been placed shortly before the selling season. Due to the 

fact that the available production time is limited, the manufacturer’s own capacity is usually not enough to 

satisfy a peak in demand in the upcoming selling season. Consequently, a good strategy often used by 

manufacturers is to subcontract some orders to subcontractors, but possibly at a higher cost than if the 

products had been produced in-house. Given a set of distinct orders from the retailers, the manufacturer 
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needs to determine which orders should be produced in-house and which should be subcontracted. 

Furthermore, the manufacturer needs to determine a production schedule for the orders to be produced in-

house. In order to deliver the orders to the retailers as soon as possible before the selling season ends, 

while controlling the production and subcontracting costs, the manufacturer needs to consider 

subcontracting and scheduling simultaneously. 

 In our model, there are multiple identical production lines available at the manufacturer’s own plant 

where the in-house orders are processed, and there are multiple subcontractors available, each capable of 

processing all the orders. The objective of the model is to minimize the total cost of production and 

subcontracting, subject to a constraint on the delivery lead time of the orders. We analyze the 

computational complexity of the model, develop a heuristic for solving it, and analyze worst-case and 

asymptotic performances of the heuristic. We also study the value of subcontracting by conducting a 

computational comparison between our model and a model where no subcontracting option is available to 

the manufacturer. As our literature review below indicates, this is one of few papers that examine the joint 

decisions of subcontracting and detailed order scheduling, and is the first paper that studies the value of 

subcontracting for this type of problem. 

 In the following we give a brief review of related studies. A large body of literature discusses the 

benefits and issues of subcontracting qualitatively. Some recent articles include, among others, Ioannou 

(1995), Webster et al. (1997), Bazinet et al. (1998), Craumer (2002), and Kolawa (2004). However, 

analytical models that study issues and decisions related to subcontracting are limited. In the literature on 

operations management, most existing analytical models study strategic or aggregate production planning 

decisions in a make-to-stock environment where inventory plays an important role in meeting customer 

demand. Kamien and Li (1990) introduced a multi-period game-theoretic model that incorporates 

subcontracting and aggregate production planning decisions. They showed that the option of 

subcontracting results in production smoothing. Van Mieghem (1999) studied a single-period game-

theoretic model with subcontracting, production, and capacity-investment decisions. Atamturk and 

Hochbaum (2001) analyzed dynamic lot-sizing problems with tradeoffs among capacity acquisition, 

subcontracting, production, and inventory holding. Kogan (2000), Bradley (2004), and Tan and Gershwin 

(2004) presented optimal control models for aggregate production, inventory, and subcontracting 
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decisions. Yang et al. (2005) studied a similar production-inventory-outsourcing model with Markovian 

in-house production capacity. Alp and Tan (2008) considered an integrated capacity management and 

inventory planning model where in addition to permanent capacity, contingent capacity can be acquired by 

hiring temporary workers (which can be viewed as some type of subcontracting). Lee et al. (1997), 

Logendran and Puvanunt (1997), and Logendran and Ramakrishna (1997) considered subcontracting 

jointly with production planning decisions in the context of cellular and flexible manufacturing systems. 

Our model differs from all these existing models because they consider a make-to-stock environment and 

study aggregate planning decisions, whereas our model considers detailed scheduling decisions in a make-

to-order environment with no finished product inventory involved.  

 There are a handful of existing articles that incorporate subcontracting into detailed scheduling 

decisions. Bertrand and Sridharan (2001) considered a make-to-order manufacturing environment where 

orders arrive over time randomly, and can either be processed in-house on a single machine or 

subcontracted. The objective is to maximize the utilization of in-house capacity while minimizing tardiness 

in fulfilling orders. Simple heuristic rules are proposed and computational results are reported. Lee et 

al. (2002) proposed a multi-stage scheduling model where each order requires multiple operations and 

each operation can be processed on a number of alternative machines in-house or subcontracted. The 

objective is to minimize the makespan for completing a given set of orders. They proposed a genetic 

algorithm based heuristic solution approach. Chung et al. (2005) considered a job shop scheduling problem 

where each order has a due date which must be satisfied, but operations of orders can be subcontracted at a 

certain cost. The objective is to minimize the total subcontracting cost. They proposed a heuristic 

algorithm. Qi (2007a) studied a problem where there is a single in-house machine and a single 

subcontractor with a single machine. Subcontracted orders need to be shipped back in batches. The 

objective is to minimize the weighted sum of a delivery lead time performance measure of orders and total 

subcontracting and transportation cost. He proposed dynamic programming algorithms for four problems 

where the time-based performance measure is total completion time, makespan, maximum lateness, and 

number of tardy orders, respectively. Qi (2007b) studied a two-stage flow shop scheduling problem with 

options of subcontracting some operations to subcontractors. He considered a minimum makespan 

objective and analyzed various models for different situations of subcontracting. Bukchin and Hanany 
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(2007) considered a decentralized scheduling problem involving competition among multiple decision 

makers, each having a set of jobs to be processed either by an in-house common machine or by a 

subcontractor. The objective is to minimize the total completion time of the jobs. They analyzed the ratio 

between the objective value of the decentralized problem and the objective value of the centralized system. 

 Our model differs from the above-reviewed models that integrate subcontracting with scheduling 

decisions in the following aspects. The machine configuration at the in-house plant in our model follows a 

parallel-machine configuration, whereas all the existing models consider a different configuration. Similar 

to the model of Qi (2007a), our model takes into account both customer service level and total cost. The 

other existing models do not consider both performance measures. However, it is assumed in Qi (2007a) 

that the subcontracting cost is always more expensive than the in-house production cost for processing a 

job, whereas we do not make such an assumption. Also, in Qi’s model, there is only one subcontractor 

available and the subcontractor has only a single machine, whereas in our model there are multiple 

subcontractors available. In addition, we study the value of subcontracting and derive related managerial 

insights, while none of the existing papers that consider detailed scheduling does this. Furthermore, our 

solution approaches and analyses are different from the ones used in the existing papers. 

 The rest of this paper is organized as follows: In Section 2, we provide a formal description of our 

problem. In Section 3, we show that the problem is NP-hard even with a special structure, and design an 

efficient heuristic for it. We analyze the worst-case and asymptotic performances of the heuristic. In 

Section 4, we conduct computational experiments to evaluate the performance of the proposed heuristic 

and examine the value of subcontracting. Computational results show that the heuristic often generates 

optimal solutions. Also, we find that subcontracting option leads to a significant improvement in 

performance for the manufacturer. In Section 5, we discuss other variants of our model. We conclude our 

paper in Section 6. Proofs of all theorems and lemmas are provided in the Appendix. 

2. MODEL DESCRIPTION 

At the beginning of a planning horizon, a manufacturer receives a set of n  jobs (i.e., customer orders with 

distinct product configurations) },,2,1{ nN =  from its customers downstream in the supply chain. The 

manufacturer can either process each job at its own plant or subcontract it to a subcontractor for 
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processing. There are m  identical parallel machines (i.e., production lines) },,2,1{ mM =  available at 

the manufacturer’s plant, such that if a job is processed at the manufacturer’s plant, it only needs to be 

processed by one of these machines. There are k  subcontractors },,2,1{ kK =  available. We assume 

that each job is indivisible; that is, it has to be processed either by an in-house machine as a whole or 

subcontracted to one of the subcontractors entirely. This assumption makes sense in many practical 

situations where there are a large number of product configurations such that each job represents a distinct 

configuration and needs to be processed and delivered together in order to minimize setup and 

coordination costs. It is also reasonable for situations where each job comes from a different customer and 

it must be handled by the same entity (either the in-house facility or a subcontractor) for convenience of 

accounting, packaging, and delivery. Such an assumption appears in all of the papers reviewed in Section 1 

that consider joint scheduling and subcontracting decisions. 

 If job Nj∈  is processed at the manufacturer’s own plant, a processing time of jp0  units is 

required and the cost to the manufacturer is jq0  dollars. If job Nj∈  is subcontracted to subcontractor 

Kh∈ , then the delivery lead time is hjp  (i.e., it takes hjp  units of time to complete the job using 

subcontractor h ) and the cost incurred is hjq  dollars. We note that we do not explicitly define the 

workload or size of each job. However, the workload of a job Nj∈  can be easily incorporated into the 

time and cost parameters jp0 , jq0 , hjp , and hjq . We can set these parameters such that they depend on 

(e.g., increase with) the workload of job j . For example, if the workload of job j  is jw , a possible 

instance of these parameters can be: jiij wp α= , and jihj wq β=  for },...,1,0{ Ki∈  and Nj∈ , where 

0, >ii βα  are facility-dependent parameters. 

 We assume that for each subcontractor Kh∈ , the delivery lead time hjp  and subcontracting cost 

hjq  for a job Nj∈  are independent of the total workload of the subcontractor. This assumption is made 

and justified in some of the existing papers in the literature. For example, Bertrand and Sridharan (2001) 

and Buckchin and Hanany (2007) make the same assumption on the subcontracting lead time of a job. 

Buckchin and Hanany assume that the subcontractor has an unlimited capacity and that the subcontracting 

lead time of a job is a constant factor multiplied by the in-house processing time of the job (which is 

independent of the total workload of the subcontractor). They justify the unlimited capacity assumption by 

stating that “The assumption that the subcontractor has unlimited capacity is adequate when the 
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subcontractor’s available capacity, related to the type of jobs in question, is significantly higher than the 

firm’s required capacity. In this case, a contract can be signed that clearly defines a due-date commitment 

on the subcontractor’s side.” In the models of Chung et al. (2005), Buckchin and Hanany (2007), and Qi 

(2007a), it is also assumed that the subcontracting cost of a job is independent of the other jobs processed 

by the same subcontractor. This assumption is appropriate if each subcontractor makes independent offers 

to the individual jobs received from the manufacturer with a promise in delivering a finished job within a 

certain deadline at a certain cost, where the deadline and cost for a job are determined by the workload of 

the job independent of the other jobs. 

 In our model, the manufacturer needs to determine (i) a subset of jobs to be subcontracted to each of 

the k  subcontractors, and (ii) a production schedule for the jobs processed on the m  machines at its own 

plant, such that a certain delivery lead performance is guaranteed and the total production cost is 

minimized. Each subcontractor takes care of its own production scheduling for the jobs subcontracted from 

the manufacturer and delivers completed jobs to the manufacturer by the pre-specified lead times. 

 The problem can be viewed as a generalized version of the classical parallel-machine scheduling 

problems. In classical parallel-machine scheduling problems, no production costs are involved, while some 

performance measure of job completion times is optimized. In our problem, the objective is to minimize 

the total operating costs, and each subcontractor Kh∈  can be viewed as having a sufficient number (e.g., 

n ) of identical parallel machines, such that each of these machines will handle at most one job. 

 Given a solution to this problem, let jC  denote the completion time of job Nj∈ . If job Nj∈  is 

subcontracted to some subcontractor Kh∈ , then hjj pC = . If job Nj∈  is processed in-house, then jC  

is determined by the schedule of the jobs processed by the manufacturer itself. Let 

}|max{max NjCC j ∈=  denote the maximum completion time of the jobs (also known as makespan, 

which is the time when all the jobs are completed) in a given solution. We note that makespan maxC  is one 

of the most widely used delivery lead time performance measures in the scheduling literature (see, e.g., 

Pinedo 2002). In our case, maxC  represents the time where all the customer orders are completed. By 

imposing a constraint on maxC , the production for a particular season (for fashion apparel) or the 

production of a particular product line (for short life-cycle toys and high-tech consumer products) is 

completed within a given time limit. Let G  denote the total cost of a given solution including the 
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production costs at the manufacturer’s plant and the subcontracting costs. Our problem is to minimize the 

total cost G  subject to the constraint of CC ≤max , where C  is a pre-specified threshold value. We denote 

this problem as max{ | }Min G C C≤ . This problem can be used to model situations where there is a desired 

level of customer service, represented by the constraint that all the jobs must be completed within a certain 

time frame C . It can also be used to determine all Pareto-optimal solutions with respect to G  and maxC  if 

we solve this problem repeatedly for different values of C . 

3. ANALYSIS OF PROBLEM }|{ max CCGMin ≤  

We first show that this problem is NP-hard even with a special structure. Then, we propose a heuristic and 

analyze its performance. 

Theorem 1: Problem }|{ max CCGMin ≤  is NP-hard even if there is only a single machine at the 

manufacturer, there is a single subcontractor, and the in-house production costs are proportional to the 

production times. 

 We now propose a heuristic for this problem with a general number of parallel machines at the 

manufacturer and multiple subcontractors. The heuristic is based on an integer programming formulation 

of the problem, and exploits a special property of the LP-relaxation of the IP formulation.  

 We note that linear programming based approaches have been used in the literature in developing 

approximation algorithms for classical parallel machine problems without subcontracting options but with 

makespan as the objective function (Potts 1985 and Lenstra et al. 1990) or as part of the objective function 

(Shmoys and Tardos 1993). However, the technical details we develop here are different from the ones in 

these papers. Our problem involves production costs, whereas the problems considered by Potts and 

Lenstra et al. do not. Hence, their techniques do not work for our problem. The techniques developed by 

Shmoys and Tardos may be applicable to our problem. However, their approach requires solving up to 

)log( maxnP  LP-relaxation problems, where maxP  is the maximum processing time of jobs. So, their 

approach is not strongly polynomial. As we will see below, our approach only requires solving one LP-

relaxation problem. As a result, our heuristic is strongly polynomial, and is therefore much more efficient 

than their solution method. Furthermore, we develop a simple procedure to solve the LP-relaxation 

problem involved in our approach, whereas all the existing papers rely on an LP solver (ellipsoid method). 
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Finally, we use a different approach from the ones used in these papers to scheduling the jobs for which 

the variables in the LP-relaxation problem have fractional values. 

 For each job Nj∈ , define a subset of subcontractors }|{ CpKhS hjj ≤∈= , which are the 

subcontractors that can process job j  with a delivery time no later than the required threshold of the 

makespan C . Define }|{ ∅≠∈= jSNjV , which is the set of jobs that can be subcontracted. For each 

Vj∈ , define a subcontractor arg min { }
jj v S vjs q∈= , which is the subcontractor that can process job j  at a 

minimum cost with a delivery time no later than C . The problem can then be formulated as the following 

mixed integer linear program: 

 ( )IP C : Minimize 01 1 j

m n
j ij s j ji j j V

q x q y
= = ∈

+∑ ∑ ∑  (1) 

  subject to 1
1

=+∑ = j
m

i ij yx , for j V∈  (2) 

   11 =∑ =

m
i ijx , for \j N V∈  (3) 

   ∑ =
≥

n

j ijj xpC
1 0max , for Mi∈  (4) 

   CC ≤max  (5) 

   }1 ,0{∈ijx , for Mi∈  and Nj∈  (6) 

   }1 ,0{∈jy , for j V∈ . (7) 

In this formulation, each binary variable ijx  is defined to be 1 if job j  is assigned to machine Mi∈  at the 

manufacturer’s own plant, and 0 otherwise. Variable jy  is defined to be 1 if job j  is assigned to 

subcontractor js , and 0 otherwise. Variable maxC  is the makespan. Objective function (1) is the total 

production and subcontracting cost. Constraints (2) and (3) ensure that each job Vj∈  is either assigned to 

an in-house machine or subcontracted to js , and that each job VNj \∈  is assigned to an in-house 

machine. Constraints (4) and (5) define the makespan and ensure that the threshold on the makespan is not 

violated. We will focus on the LP-relaxation problem of )(CIP , denoted as )(CLP , which is the same 

formulation as )(CIP  except that variables ijx  and jy  are allowed to take any nonnegative values. 

Constraints (2) and (3) enforce these variables to take values between 0 and 1. We have the following 

result. 

Lemma 1: In an optimal basic solution of )(CLP , if mn ≥  then among all ijx  and jy  variables, at least 

mn −  of them take the value of 1. 
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 Lemma 1 implies that in an optimal basic solution of )(CLP , there are at most m  jobs with some 

fractional values assigned to the corresponding ijx  or jy  variables. We show in the following that we do 

not have to use the simplex method to obtain an optimal basic solution of )(CLP . Instead, there is a fairly 

simple polynomial-time algorithm that can find an optimal basic solution of )(CLP  with at most m  jobs 

having fractional values of the corresponding ijx  or jy  variables. 

 We first consider the following auxiliary problem, denoted as AUX : We are given a set of t  jobs 

},,2,1{ tT =  to be scheduled on the m  parallel identical machines at the manufacturer, where each job 

Tj∈  has a processing time je . Each job j  can be split into subjobs, where each subjob is allowed to 

have a fractional amount of processing time as long as the total processing time of all subjobs of job j  is 

equal to je . The subjobs of a job are mutually independent and can be processed on different machines at 

the same time. The problem is to split at most m  jobs into subjobs and find a schedule for all the resulting 

subjobs and unsplit jobs on the m  machines, such that the makespan of the schedule is equal to 

∑ ∈
=

Tj jmT eE 1 . 

 We now present a procedure for solving problem AUX . The idea is quite simple. We assign jobs 

sequentially to machines, and divide a job into subjobs when necessary in order to make the total 

processing time of each machine equal to TE . A detailed description of the procedure is given as follows. 

Procedure 1P  for Problem AUX : 

Step 1: For mi ,,2,1 = , determine }|min{)(
1 T

u

j j iEeuiz ≥= ∑ =
, ∑ −

=
−=

1)(

11 )( iz

j jT eiEib , and 

T
iz

j j iEeib −=∑ =

)(

12 )( . (Note that 0)(1 >ib , 0)(2 ≥ib , and )(21 )()( izeibib =+ .) 

Step 2: Assign jobs )1(,,2,1 z  to machine 1. If 0)1(2 >b , then split job )1(z  into two subjobs with )1(1b  

units of processing time in the first subjob and )1(2b  units of processing time in the second subjob, and 

then remove the second subjob from machine 1 while retaining the first subjob on the machine. 

Step 3: For mi ,,3,2 = , assign the leftover subjob of job )1( −iz , along with jobs 

)(,,2)1(,1)1( iziziz +−+− , to machine i . If 0)(2 >ib , then consider the following cases: 

Case (i): If )1()( −> iziz , then split job )(iz  into two subjobs with )(1 ib  units of processing time in the 

first subjob and )(2 ib  units of processing time in the second subjob. Remove the second subjob 

from machine i  and retain the first subjob on the machine. 

Case (ii): If )1()( −= iziz , then further split the subjob of )(iz  that has been assigned to machine i  
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into two subjobs, with TE  units of processing time in the first subjob and )(2 ib  units of 

processing time in the second subjob. Remove the second subjob from machine i  and retain the 

first subjob on the machine. 

Step 4: For mi ,,2,1 = , schedule the jobs and subjobs assigned to machine i  in an arbitrary sequence 

without inserting any idle time between jobs. 

 In Step 2, at most one job is split into two subjobs. In each iteration of Step 3, at most one new job is 

split into subjobs. In the last iteration of Step 3 (i.e., when mi = ), no job is split into subjobs. Hence, at 

most 1−m  jobs are split into subjobs by this procedure. In Step 1, )(iz , )(1 ib , and )(2 ib  ( mi ,,2,1 = ) 

can be determined recursively in )( mtO +  time. It is easy to see that Steps 2 and 3 can be implemented in 

)( mtO +  time. Hence, procedure 1P  requires )( mtO +  time. 

 The following algorithm either identifies the infeasibility of problem )(CLP  or finds an optimal 

solution of the problem if it is feasible. In this algorithm, U  denotes the set of in-house jobs and subjobs, 

while 1N  and 2N  denote the sets of unsplit and split jobs, respectively, as defined in the proof of 

Lemma 1. 

Procedure 2P  for )(CLP : 

Step 1: Set NU ← , ∅←1N , and ∅←2N . 

Step 2: For each job Vj∈ , if 0js j jq q≤ , then assign job j  to subcontractor js , i.e., set 1=jy  and 

0=ijx  for Mi∈ , and set }{\ jUU ←  and }{11 jNN ∪← . Let VUW ∩= , which is the set of jobs 

that have not been subcontracted but can be subcontracted if needed. 

Step 3: If 1
0 jm j U

p C
∈

>∑  and W  is empty, then )(CLP  is infeasible and stop. Otherwise, if 

1
0 jm j U

p C
∈

≤∑ , then all the jobs in U  are assigned to the manufacturer’s own plant. Call procedure 

1P  to schedule these jobs onto the m  machines. This results in at most 1−m  jobs being split into 

subjobs. These jobs are added to set 2N . The other jobs are added to set 1N . For each job 1NUj ∩∈ , 

let 1=ijx , where i  is the machine to which job j  is assigned. For each job 2NUj ∩∈  and each 

machine Mi∈ , let jijij px 0/τ= , where ijτ  is the total processing time of the subjobs of job j  

assigned to machine i . Stop. 

Step 4: If 1
0 jm j U

p C
∈

>∑  and W  is not empty, then we may need to subcontract some jobs in W . 
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Compute mCp
Uj j −=∆ ∑ ∈ 0 , which is the total processing time of jobs in W  that needs to be 

subcontracted in an optimal solution of )(CLP . Suppose that there are w  jobs in W . Reindex the jobs 

in W  as ][,],2[],1[ w  such that 

],[0

],[0],[

]2,[0

]2,[0]2,[

]1,[0

]1,[0]1,[ ][]2[]1[

w

wwsss

p
qq

p
qq

p
qq

w
−

≤≤
−

≤
−

 . 

 Set 1←v , and consider the following two cases: 

(a) If 0=∆ , then call procedure 1P  to schedule all of the jobs in U  on the m  machines at the 

manufacturer’s plant. This results in at most 1−m  split jobs. These jobs are added to set 2N . The 

other jobs are added to set 1N . For each job 1NUj ∩∈ , set 1=ijx , where i  is the machine to 

which job j  is assigned. For each job 2NUj ∩∈  and each machine Mi∈ , let jijij px 0/τ= , 

where ijτ  is the total processing time of the subjobs of job j  assigned to machine i . Stop. 

(b) If 0>∆ , then consider the following two subcases: 

(i) If ],[0 vp<∆ , then split job ][v  into two subjobs ])([1 vg  and ])([2 vg  with the processing times 

being ∆−][,0 vp  and ∆ , respectively. Assign subjob ])([2 vg  to subcontractor ][vs  (and let 

][,0][ / vv py ∆= ). Set ])}([{]}){[\( 1 vgvUU ∪← . Call procedure 1P  to schedule all of the 

jobs in U  (including subjob ])([1 vg ) on the m  machines at the manufacturer’s plant. This 

results in at most m  split jobs (including job ][v ). These jobs are added to set 2N . All the 

other jobs are added to set 1N . For each job 1NUj ∩∈ , set 1=ijx , where i  is the machine 

to which job j  is assigned. For each job 2NUj ∩∈  and each machine Mi∈ , let 

jijij px 0/τ= , where ijτ  is the total processing time of the subjobs of job j  assigned to 

machine i . Stop. 

(ii) If ][,0 vp≥∆ , then assign job ][v  to subcontractor [ ]vs . Let 1][ =vy , and add job ][v  to 1N . 

Update ][,0 vp−∆←∆  and ]}{[\ vUU ← . If wv < , then set 1+← vv  and repeat Steps 4(a) 

and 4(b). If wv =  and 0=∆ , then repeat Step 4(a) and stop. If wv =  and 0∆ > , then )(CLP  

is infeasible and stop. 

Lemma 2: If )(CLP  is feasible, then procedure 2P  finds an optimal solution to )(CLP  with no more 

than m  split jobs in )log( mnnO +  time. 
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 In the following, we describe our heuristic for solving problem }|{ max CCGMin ≤ . The heuristic 

assigns each job either to an in-house machine or to a subcontractor for processing based on the solution of 

)(CLP  obtained by procedure 2P  (which generates a set of unsplit jobs 1N  and a set of split jobs 2N ). 

More specifically, the heuristic assigns each job 1Nj∈  with 1=ijx  for some Mi∈  to machine i  of the 

manufacturer, and each job VNj ∩∈ 1  with 1=jy  to subcontractor js . This forms a partial schedule 1σ . 

Next, each job in set 2N  is either assigned to a subcontractor or an in-house machine based on its cost 

parameters and the workload of each in-house machine in schedule 1σ . 

Heuristic 1H  for Problem }|{ max CCGMin ≤ : 

Step 1: Solve )(CLP  by procedure 2P . If )(CLP  is infeasible, then problem }|{ max CCGMin ≤  is 

infeasible and stop. Otherwise, based on the solution of )(CLP , define }1|{ 1 =∈= iji xNjJ  for 

Mi∈ . 

Step 2: For each Mi∈ , assign each job iJj∈  to machine i  at the manufacturer. Schedule the jobs on 

each machine in an arbitrary sequence. For each job 1j N V∈ ∩  with 1=jy , assign job j  to 

subcontractor js . Denote the resulting partial schedule (containing the jobs from 1N  only) by 1σ . 

Define the workload of each in-house machine under solution 1σ  as the total processing time of the 

jobs assigned to this machine by 1σ .  

Step 3: For each 2Nj∈ : If jS ≠ ∅  and jjs qq
j 0≤ , then assign job j  to subcontractor js . If jS ≠ ∅  and 

jjs qq
j 0> , or if jS =∅ , then assign job j  to an in-house machine with the minimum workload under 

solution 1σ  and update the workload of this machine accordingly. Denote the final schedule as σ . 

 Determining nSSS ,,, 21   and nsss ,,, 21   takes )(nkO  time. It is easy to see that once these values 

are known, Steps 2 and 3 of the heuristic take )(nO  time. Since the LP-relaxation problem in Step 1 of 

heuristic 1H  is solved by procedure 2P  in )log( mnnO +  time, the overall time complexity of heuristic 

1H  is ( log )O nk n n+ . 

 If problem )(CLP  is infeasible (which can be detected by Step 1 of heuristic 1H ), then problem 

}|{ max CCGMin ≤  is infeasible as well. If problem }|{ max CCGMin ≤  is feasible, then problem )(CLP  is 

feasible and heuristic 1H  generates schedule σ . However, schedule σ  generated by 1H  may not always 

be feasible for problem }|{ max CCGMin ≤  even if this problem is feasible. In fact, it is highly unlikely that 
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there exists a polynomial-time heuristic which can always generate a feasible schedule for every feasible 

instance of }|{ max CCGMin ≤ . The reason is as follows: If there is such a heuristic H , then this heuristic 

can always find a feasible schedule for the special case in which all in-house production costs are zero 

(i.e., 0=ijq  for all Mi∈  and Nj∈ ), all subcontracting costs are strictly positive (i.e., 00 >jq  for all 

Nj∈ ), and the threshold ∗=CC , where ∗C  is the minimum makespan of the jobs if all the jobs are 

processed in-house. It can be seen that finding a feasible schedule for this problem is equivalent to finding 

an optimal schedule for the classical m-parallel-machine makespan minimization problem, which is known 

to be NP-hard (Garey and Johnson 1978). Thus, heuristic H  can be used to solve this NP-hard problem 

optimally, which would mean that P must be equal to NP. 

 We show below that when the given threshold of the makespan C  satisfies a certain condition, then 

schedule σ  generated by 1H  is guaranteed to be feasible for problem }|{ max CCGMin ≤ . 

Theorem 2: If max,00
1 ppC

Nj jm +≥ ∑ ∈
, where }|max{ 0max,0 Njpp j ∈= , then the solution generated by 

1H  is guaranteed to be a feasible solution to problem }|{ max CCGMin ≤ . 

 We realize that it is not meaningful to discuss worst-case or asymptotic performance of a heuristic if 

the solution generated by the heuristic may not even be feasible. However, by Theorem 2, under the 

condition “ max,00
1 ppC

Nj jm +≥ ∑ ∈
,” our heuristic is guaranteed to generate feasible solutions. Hence, it 

is interesting to study worst-case or asymptotic performance of our heuristic under this condition.  

 Let ( )Z σ  denote the total cost of schedule σ  obtained by 1H , and ∗Z  denote the optimal total cost 

of problem }|{ max CCGMin ≤ . We have the following results. 

Theorem 3: ( ) 2Z Zσ ∗≤  for problem }|{ max CCGMin ≤  with max,00
1 ppC

Nj jm +≥ ∑ ∈
. 

Theorem 4: If the processing times and production costs of the jobs are distributed over the intervals 

],[ 21 XX  and ],[ 21 YY , respectively, where ∞<<< 210 XX  and ∞<<< 210 YY , and if m  and k  are fixed, 

then, as n  approaches infinity, the solution σ  generated by heuristic 1H  is asymptotically optimal to 

problem }|{ max CCGMin ≤  with max,00
1 ppC

Nj jm +≥ ∑ ∈
. 
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4. COMPUTATIONAL RESULTS AND RELATED INSIGHTS 

In this section, we conduct computational experiments to test the performance of heuristic 1H . We also 

evaluate the value of subcontracting based on the model }|{ max CCGMin ≤ . Heuristic 1H  is coded in C 

with running time always less than 1 CPU second on a 2-GHz processor for every problem tested. 

Therefore, we do not report CPU times of these heuristics. 

4.1  Performance of Heuristic 1H  

To test the performance of heuristic 1H , we generate test problems randomly as follows:  

a. Number of jobs }400,200,100,50{∈n , number of parallel machines at the manufacturer }8,4,2{∈m , 

and number of subcontractors available }9,3,1{∈k . We note that a small (large) m  relative to k  

means the relative small (large) in-house capacity compared to available subcontracting options. The 

nine possible combinations of m  and k  here represent a wide range of this relative relationship. 

b. Job processing times at the manufacturer jp0  are drawn from the discrete uniform distribution over 

the interval ]100,1[ , and job processing times at the subcontractors kjjj ppp ,,, 21   are drawn from 

the discrete uniform distribution over the interval ]100,1[ µ , where }4,2,1{∈µ . These values of µ  

represent a situation in which the delivery lead time of a job, when subcontracted, is about the same as, 

two times, or four times the processing time of the job if it is processed in-house. 

c. Production costs of jobs at the manufacturer jq0  are drawn from the discrete uniform distribution over 

the interval ]100,1[ , and production costs charged by the subcontractors kjjj qqq ,,, 21   follow the 

discrete uniform distribution over the interval ]100,1[ ν , where {0.5,1,4}ν ∈ . These values of ν  

represent a situation in which the production cost of a job charged by a subcontractor is about half, the 

same as, or four times the production cost of the job if it is processed in-house. 

d. The makespan threshold value 0 0,max( ) /jj N
C p m pα

∈
 = + ∑ , where }0.1,6.0,3.0{∈α . It can be 

estimated that with C  generated this way, roughly speaking, at least %100)1( ×−α  of the jobs have to 

be subcontracted in order to meet the given constraint on the makespan. 

 For each of the 972 ( 333334 ×××××= ) possible combinations of the values of parameters n , m , 

k , µ , ν , and α  involved in a problem, we generate 10 test problems randomly. The LP-relaxation 

problem )(CLP  is infeasible for some of the test problems. We note that even if )(CLP  is feasible for a 
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test problem, the test problem itself may not be feasible; and even if the test problem is feasible, the 

solution generated by the heuristic may not be feasible. We report in Table 1 the percentage of test 

instances for which 1H  generates a feasible solution among all the problems where )(CLP  is feasible. 

Since a problem may still be infeasible even if the corresponding )(CLP  is feasible, the percentage 

reported in Table 1 is a lower bound of the percentage of feasible problems for which the heuristic 

generates a feasible solution. Each entry in the table corresponds to a given combination of n , m , k , and 

α  based on 90 test problems (9 combinations of µ  and ν , and 10 test problems for each combination). 

By Theorem 2, when α = 1.0, the solution generated by the heuristic is always feasible. Hence, only the 

problems with α = 0.3 or 0.6 are reported in Table 1. From this table, we can conclude that the heuristic 

often (with an overall chance of more than 90%) generates a feasible solution when the given problem 

instance is feasible. We also observe that heuristic 1H  tends to be more successful in generating feasible 

solutions when 6.0=α  than when 3.0=α . This is because when α  is larger, the test instances generated 

are more likely to be feasible. 

 Among those test instances where heuristic 1H  generated feasible solutions, the heuristic solution 

values always equal the optimal objective values of the corresponding )(CLP  solutions. In other words, 

for all of our test problems, if the solution generated by the heuristic is feasible, then it is optimal. This 

indicates that heuristic 1H  is highly effective. 

4.2  Value of Subcontracting 

The value of subcontracting is well understood in a qualitative sense. In contrast, very few works have 

quantitatively evaluated the value of subcontracting. Alp and Tan (2008) have evaluated the value of 

contingent capacity (which can be viewed as subcontracting) in the context of an integrated capacity and 

inventory planning model. However, no quantitative study in subcontracting has appeared in the context of 

detailed operations scheduling. Here, we build on the results developed in Section 3 to evaluate the 

possible benefits that can be obtained by using the subcontracting option. The results we obtain in this 

section provide a tool for deriving various managerial insights and performing sensitivity analysis in 

practice (e.g., how the solution with or without the subcontracting option will change with various 

parameters of the problem). 
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 Let ω  and σ  denote the optimal solution to a problem without the subcontracting option and the 

optimal solution to the same problem with the subcontracting option, respectively. We investigate the 

relative reduction in the objective value that can be achieved when subcontracting is an available option. 

The relative reduction in the objective value is given as 

 ( ) ( ) ( )1
( ) ( )

Z Z G
Z G
ω σ σ

ω ω
−

= − ,        (8) 

where )(ρZ  denotes the objective value of a solution ρ  and ( )G ρ  denotes the total production and 

subcontracting cost of schedule ρ . Without the subcontracting option, all of the jobs are processed on the 

m  machines at the manufacturer. Hence, the total production cost is fixed and independent of how the jobs 

are scheduled. Therefore, ∑ ∈
=

Nj jqG 0)(ω . With the subcontracting option, we can apply heuristic 1H  to 

obtain a solution Hσ  whose objective value ( )HG σ  is an upper bound on the optimal objective value 

( )G σ . Then (8) implies that 

  ( ) ( ) ( )1
( ) ( )

HZ Z G
Z G
ω σ σ

ω ω
−

≥ − . (9) 

Hence, given a problem instance, the right-hand side of (9) provides a lower bound for the relative cost 

reduction that can be computed efficiently. 

 We use the same set of test instances with 0.1=α  generated in the experiments reported in Section 

4.1. The instances with 3.0=α  or 0.6 are not used here because the problem without the subcontracting 

option is likely to be infeasible with those values of α .  With 0.1=α , the problem without subcontracting 

option is always feasible, and heuristic 1H  is also guaranteed to generate a feasible solution. We report in 

Tables 2 and 3 both average relative cost reduction (shown in columns with “Avg Red”) and minimum 

relative cost reduction (shown in columns with “Min Red”) due to the subcontracting option for problem 

}|{ max CCGMin ≤ . We found that the relative cost reduction due to subcontracting remains almost the 

same as the number of machines m  or the average subcontractors’ processing time (represented by µ ) 

changes (for any fixed combination of the other parameters). Thus, we do not report the results in terms of 

m  or µ . The results in Table 2 are based on 90 test problems with 4=m  (10 for each of the 9 

combinations of the values of µ  and ν ). The results in Table 3 are based on 360 test problems with 2=µ  

(10 for each of the 36 combinations of the values of n , m , and k ).  

 The results in these tables demonstrate that there is a significant cost reduction by using the 
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subcontracting option for almost every problem tested. The relative cost reduction increases quickly with 

the number of subcontractors k  and decreases quickly with the average subcontracting costs (represented 

by ν ). However, the average relative cost reduction does not change much with the number of jobs n . 

This can be explained as follows. Since the threshold value is set as 0 0,max/jj N
C p m p

∈
 = + ∑ , the in-

house capacity of the manufacturer relative to the set of jobs to be processed remains the same as the 

number of jobs increases. Hence, on average the value of subcontracting does not change much with n .  

5. OTHER VARIANTS OF THE MODEL 

Note that in our model there is a pre-specified threshold value C  on the makespan of the schedule. As 

mentioned earlier, this model works for applications where there is an explicit service constraint and for 

applications where one needs to know the Pareto-optimal solutions with respect to G  and maxC . However, 

a slightly different model may be more appropriate for some other applications. In this section we discuss 

two such problem variations: (i) We consider the problem of minimizing a weighted sum of makespan and 

the total cost, i.e., GC )1(max λλ −+ , where 10 ≤≤ λ , and denote this problem as })1({ max GCMin λλ −+ . 

This problem represents the situation where the manufacturer has a known relative preference over the 

lead time performance maxC  and the total cost G . He can choose a weighting parameter ]1,0[∈λ , assign 

λ  as the preference weight to maxC , assign )1( λ−  as the preference weight to G , and consider the 

weighted sum of these two measures. (ii) We consider the problem of minimizing the total cost G , subject 

to the constraint that each job j  has to be completed no later than a given deadline jd . We denote this 

problem as }|{ jj dCGMin ≤ . Note that problem }|{ max CCGMin ≤  is a special case of this problem, 

where every job has a common deadline C . 

5.1  Problem })1({ max GCMin λλ −+  

Using reduction from the Subset Sum problem with a similar construction as in the proof to Theorem 1, it 

is not difficult to show that when 10 << λ , problem })1({ max GCMin λλ −+  is NP-hard even if there is 

only a single machine at the manufacturer, there is a single subcontractor, and the in-house production 

costs are proportional to the production times. To solve this problem with a general number of parallel 

machines at the manufacturer and multiple subcontractors, we propose the following heuristic method. The 

main idea of the heuristic is to divide the problem into a number of subproblems and then use a similar 
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idea as the heuristic developed in Section 3 to solve each subproblem. 

 Suppose that there are β  ( nk≤β ) distinct values among all delivery lead times 

},|{ KhNjphj ∈∈  specified by the subcontractors. Let βπππ ,,, 21   denote these β  values, where 

βπππ >>> 21 . Define 01 ≡+βπ . We consider 1+β  subproblems. For 1,,2,1 += β , subproblem 

  is defined to be the original problem with two additional requirements: 

Requirement (I): The maximum delivery time among all of the subcontracted jobs is no more than π . 

Requirement (II): The makespan maxC  is calculated as the maximum of π  and the completion time of the 

last job completed at the manufacturer’s own plant. 

For each job Nj∈  and each 1,,2,1 += β , define a subset of subcontractors }|{  π≤∈= hjj pKhS , 

which are the subcontractors that can process job j  with a delivery time no later than π . Define 

}|{ ∅≠∈= jSNjV  , which is the set of jobs that can be subcontracted in subproblem  . For each 

Vj∈ , define a subcontractor arg min { }
jj v S vjs q∈=
�� , which is the subcontractor that can process job j  at a 

minimum cost with a delivery time no later than π . Requirements (I) and (II) of subproblem   imply that 

if a job Vj∈  is to be subcontracted, it is optimal to assign it to subcontractor js� . In subproblem 1+β , 

since 01 =+βπ , no job can be subcontracted and, hence, ∅=+1βV . 

 It is easy to see that any feasible solution to the original problem is also a feasible solution to at least 

one of the subproblems with the same objective value. Thus, the minimum of the optimal objective values 

of the subproblems is the optimal objective value of the original problem. This means that we can solve the 

original problem by solving these 1+β  subproblems. 

 For 1,,1 += β , subproblem   can be formulated as the following mixed integer program which 

is similar to the formulation ( )IP C  given in Section 3: 

 IP : Minimize max 01 1
(1 ) (1 )

j

m n
j ij s j ji j j V

C q x q yλ λ λ
= = ∈

+ − + −∑ ∑ ∑ ��

 

  subject to 11 =+∑ = j
m
i ij yx , for Vj∈  

   11 =∑ =

m
i ijx , for VNj \∈  

   ∑ =
≥ n

j ijj xpC 1 0max , for Mi∈  

   π≥maxC  

   }1 ,0{∈ijx , for Mi∈  and Nj∈  

   }1 ,0{∈jy , for Vj∈ . 
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We focus on the LP-relaxation problem of IP , denoted as LP . By a similar proof to Lemma 1 for 

the LP-relaxation of ( )IP C , we can show that in an optimal basic solution of LP , if mn ≥  then among 

all ijx  and jy  variables, at least mn −  of them take the value of 1. Therefore, in an optimal basic solution 

of LP , there are at most m  jobs with some fractional values assigned to the corresponding ijx  or jy  

variables. It is not difficult design an efficient procedure similar to 2P  to determine an optimal solution to 

problem LP  with no more than m  split jobs. Based on this optimal solution, we can design a heuristic 

similar to 1H  to solve subproblem  . The heuristic for the overall problem })1({ max GCMin λλ −+  can 

then be summarized as follows. 

Heuristic 2H  for Problem })1({ max GCMin λλ −+ : 

Step 1: For 1,,2,1 += β , solve subproblem   by a heuristic similar to 1H  and get the solution σ . 

Step 2: Pick the solution with the minimum objective value among the 1+β  solutions 121 ,,, +βσσσ   

generated in Step 1. 

 Let σ  denote the solution generated by heuristic 2H . Let )(σZ  denote the objective value of 

solution σ . Let ∗Z  denote the optimal objective value of this problem. We have the following worst-case 

results. 

Theorem 5: 2)( ≤∗ZZ σ , and this bound is tight. 

Theorem 6: If the processing times and production costs of the jobs are distributed over the intervals 

],[ 21 XX  and ],[ 21 YY , respectively, with ∞<<< 210 XX  and ∞<<< 210 YY , and if m  and k  are 

fixed, then the solution σ  generated by heuristic 2H  is asymptotically optimal as n  approaches infinity. 

 The proofs of Theorems 5 and 6 follow the same arguments as in the proofs of Theorems 3 and 4, 

respectively, and are therefore omitted. Note that heuristic 2H  always generates a feasible solution to 

problem })1({ max GCMin λλ −+ . Thus, although both })1({ max GCMin λλ −+  and }|{ max CCGMin ≤  are 

NP-hard, it is easier to obtain feasible solutions with worst-case performance guarantee for problem 

})1({ max GCMin λλ −+  than obtaining feasible solutions for problem }|{ max CCGMin ≤ . 

 We tested the performance of heuristic 2H  using various test problems similar to the ones used in 

Section 4.1. The average relative error among all 9720 test instances equals 0.62%, indicating that 
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heuristic 2H  is overall highly effective. The computational results also show that the relative error of the 

heuristic decreases as n  increases, and it approaches 0 as n  tends to infinity. This is consistent with the 

fact that the heuristic is asymptotically optimal. 

5.2  Problem }|{ jj dCGMin ≤  

As mentioned before, problem }|{ jj dCGMin ≤  is a generalization of problem }|{ max CCGMin ≤ . Thus, 

it is an NP-hard problem. In fact, solving this generalized problem is substantially harder. The following 

theorem states a property of the optimal solution to this problem, which is essentially the “earliest due-date 

first” (EDD) rule commonly used in the scheduling literature (Pinedo 2002). 

Theorem 7: There exists an optimal solution to }|{ jj dCGMin ≤  in which the jobs on each in-house 

machine are arranged in nondecreasing order of jd . 

 The proof of Theorem 7 follows a straightforward pairwise job interchange argument and is thus 

omitted. We re-index the jobs such that nddd ≤≤≤ 21 . Thus, by Theorem 7, there exists an optimal 

schedule where lower-index jobs always precede higher-index jobs on every machine. 

 We define }|{ jhjj dpKhS ≤∈=  as the subset of subcontractors that can process job j  with a 

delivery time no later than its deadline. Define }|{ ∅≠∈= jSNjV , and let arg min { }
jj v S vjs q∈=  for 

Vj∈ . Similar to the IP formulation given in Section 3 for problem }|{ max CCGMin ≤ , the following 

mixed integer program formulates problem }|{ jj dCGMin ≤ , where ijx  and jy  are defined the same way 

as in Section 3: 

 IP : Minimize ∑∑ ∑ ∈= =
+

Vi jjs
m

i

n

j ijj yqxq
j1 1 0  (10) 

  subject to 1
1

=+∑ = j
m

i ij yx , for Vj ∈  (11) 

   1
1

=∑ =

m

i ijx , for VNj \∈  (12) 

   j
j

k ikk dxp ≤∑ =1 0 , for Mi∈  and Nj∈  (13) 

   }1 ,0{∈ijx , for Mi∈  and Nj∈  (14) 

   }1 ,0{∈jy , for Vj ∈ . (15) 

Objective function (10) and constraints (11)-(12) are identical to (2)-(3) in formulation )(CIP . Constraint 

set (13) ensures that all jobs complete no later than their deadlines. 
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 Note that formulation IP  has a different structure from formulation )(CIP , because constraint set 

(13) contains a total of nm  constraints. Due to this fact, the LP-relaxation of IP  does not have a similar 

property to the one stated in Lemma 1 for the LP-relaxation of )(CIP . In fact, the LP-relaxation solution 

of IP  is much more fractional than that of )(CIP . One can follow the idea of heuristic 1H  to design a 

similar heuristic for problem }|{ jj dCGMin ≤  by first solving the LP-relaxation of IP  to obtain a partial 

schedule of unsplit jobs and then heuristically assigning the split jobs to either a subcontractor or an in-

house machine. However, there are many more split jobs to consider than in the case of heuristic 1H . As a 

result, to guarantee a constant worst-case performance bound of the resulting heuristic for problem 

}|{ jj dCGMin ≤ , one may have to consider an exponential number of possibilities for assigning the split 

jobs to proper machines. It remains a challenging future research topic for developing a polynomial-time 

heuristic with some performance guarantee. 

 Note also that an alternative way of modeling delivery performance is to consider a due date jd  for 

each job j  and impose a threshold constraint on the job tardiness. Such a model has an objective of 

minimizing the total cost G  and a constraint of FdC jj ≤−  for every job j . Letting Fdd jj +=′ , the 

threshold constraint becomes jj dC ′≤ . Thus, this model is mathematically equivalent to problem 

}|{ jj dCGMin ′≤ . 

6. CONCLUSIONS 

In this paper we have proposed an analytical model that integrates job scheduling and subcontracting 

decisions where the objective is to minimize the total production and subcontracting cost with a constraint 

on the delivery performance. The problem is NP-hard even when there is a single machine at the 

manufacturer and there is a single subcontractor available. A heuristic solution approach has been 

developed for the problem. Both worst-case and asymptotic performances of the heuristic have been 

analyzed. Our computational experiments have demonstrated that the heuristic can often generate a 

feasible solution, and when it generates a feasible solution, the solution is always optimal for all the 

problem instances tested. We have also studied the value of the subcontracting option in the context of this 

model. Our computational results have shown that for most test instances, a significant reduction in the 

objective value occurs when the subcontracting option is used. 
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 We have also discussed two variants of our model. The first variant, where the objective is to 

minimize a weighted sum of the total cost and the makespan, can be solved by a similar heuristic. 

However, it is much more difficult to solve the second variant where the objective is to minimize the total 

cost subject to the constraint that each job is completed no later than a job specific deadline.  

 We note that in practice, it is likely that customer orders may come in dynamically over time, and 

hence not all the orders are known at the beginning of the planning horizon. Thus, our model may need to 

be implemented in a rolling-horizon basis, such that an updated schedule is determined periodically with 

all known customer orders. 

 Several related topics deserve future research. Problems under the same model but with job delivery 

performance measured by other criteria such as maximum or total tardiness of jobs can be considered. 

Those problems are generally NP-hard, and hence heuristics will need to be developed. We have assumed 

in this paper that the subcontractors have unlimited capacity. A different model with a limited capacity at 

each subcontractor can also be developed. In such a case, the delivery lead time of a job by a subcontractor 

will depend on how many jobs it receives from the manufacturer. The solution generated by such a model 

will tend to have more jobs processed by the in-house machines, and the subcontracted jobs are likely to be 

distributed more evenly among different subcontractors. A detailed analysis of such issues is an interesting 

future research topic. 
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APPENDIX 

Proof of Theorem 1. We show this by a reduction from the Subset Sum problem defined as follows: 

Given a set of items },,2,1{ rR = , a size +∈Zja  for each item Rj∈ , and a positive integer A , the 

problem asks if there is a subset RQ ⊆  such that Aa
Qj j =∑ ∈

. Subset Sum is known to be NP-complete 

(Garey and Johnson 1979). We define ∑ ∈
=

Rj jaB  and assume that AB ≠  (otherwise, the problem is 

trivial). 

 Given an instance of Subset Sum, we construct the following instance for our problem: 

 number of machines at the manufacturer, 1=m ; 

 number of subcontractors, 1=k ; 

 job set: }1{ +∪= rRN  (number of jobs, 1+= rn ); 

 processing time at the manufacturer: jj Lap =0  for Nj∈ , and LBp r =+1,0 ; 

 delivery lead time if subcontracted: jj Lap =1  for Nj∈ , and LAp r =+1,1 ; 

 production cost if processed in-house: jj aq =0  for Nj∈ , and Bq r =+1,0 ; 

 production cost if subcontracted: jj aq 21 =  for Nj∈ , and Aq r 21,1 =+ ; 

 threshold for the makespan: ;LAC =  

 threshold for the objective value: ;20 BAZ +=  

where L  is any positive integer. Since in the above instance Lpq jj 00 =  for all Nj∈ , in-house 

production cost of a job is proportional to its production time. We prove that there is a solution to the 

constructed instance of our problem with the objective value being no more than 0Z  if and only if there is 

a solution to Subset Sum. 

 (“If” part) Given a solution to Subset Sum, we construct a solution to our problem as follows: 

Subcontract all the jobs in QN \  to the only subcontractor available, and process the jobs in Q  in-house 

in an arbitrary sequence. Evidently, in this solution LAC =max  and 02 ZBAG =+= .  

 (“Only if” part) Given a solution to our problem with an objective value no more than 0Z , let the 

subset of the jobs processed in-house be H . Clearly, Hr ∉+1 , since otherwise )1(max +≥≥ ALLBC , 

implying that the objective value exceeds 0Z . Thus, CLApC r === +1,1max . Also, Aa
Hj j ≤∑ ∈

, since 

otherwise CALC >+≥ )1(max . Suppose that Aa
Hj j <∑ ∈

. Then, the total cost is 



 

 26 

0
\\

10 22222 ZBAaBAaAaqqG
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j
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j
Hj

j =+>−+=++=+= ∑∑∑∑∑
∈∈∈∈∈

, 

which is a contradiction. This concludes that Aa
Hj j =∑ ∈

.  

Proof of Lemma 1: Note that besides the nonnegativity constraints, there are 1++ mn  constraints in 

)(CLP . Hence, in an optimal basic solution (which can be obtained by the simplex method), no more than 

1++ mn  variables may take positive values. Since variable maxC  takes a positive value, among all ijx  

and jy  variables, at most mn +  of them have a positive value in the optimal basic solution. Given an 

optimal basic solution of )(CLP , let jΓ  denote the subset of variables among jmjjj yxxx ,,...,, 21  that take 

a nonzero value when Vj∈ , and let jΓ  denote the subset of variables among mjjj xxx ,...,, 21  that take a 

nonzero value when VNj \∈ . Define }1||{1 =Γ∈= jNjN  and }2||{2 ≥Γ∈= jNjN . If 1Nj ∈ , then 

there is only one nonzero variable among the variables jmjjj yxxx ,,...,, 21 . Constraints (2) and (3) imply 

that this nonzero variable must have a value of 1. Clearly, each jΓ  contains a distinct set of variables (i.e., 

there is no overlap between jΓ  and j′Γ  if jj ′≠ ). Thus, 

||2)||(2||||2|| 11121 NnNnNNNmn −=−+=+≥+ , 

which implies that mnN −≥|| 1 . This completes the proof of the lemma.  

Proof of Lemma 2: Clearly, in an optimal solution of )(CLP , for each job Vj∈ , if 0js j jq q≤  then job j  

should be assigned to subcontractor js . This shows the validity of Step 2 of the algorithm. After Step 2, if 

1
0 jm j U

p C
∈

>∑  and W  is empty, then the jobs in U  must be processed in-house, but the makespan of the 

in-house schedule for these jobs would be larger than C , and hence the problem is infeasible. If 

1
0 jm j U

p C
∈

≤∑ , then all of the jobs in U  should be scheduled at the manufacturer’s own plant. This is 

because the objective would increase if a job in W  is subcontracted. This shows the correctness of Step 3. 

In Step 4, if 1
0 jm j U

p C
∈

>∑  and W  is not empty, then to be optimal we need to subcontract exactly ∆  

units of the total processing time of the jobs in W . The jobs in W  are sorted so that job ]1[  can bring the 

largest reduction in cost if one unit of it is subcontracted. Hence, the jobs in W  are considered in the order 

][,],2[],1[ w  in Step 4. This minimizes the total cost of the subcontracted jobs. This shows the validity of 

Step 4. 

 In procedure 2P , Steps 1 and 2 take no more than )(nO  time. If Step 3 is executed, it calls 
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procedure 1P , which takes )( mnO +  time. If Step 4 is executed, since there are at most n  jobs in W , 

sorting these jobs takes )log( nnO  time, while procedure 1P  is called exactly once, which takes )( mnO +  

time. Therefore, the overall time complexity of procedure 2P  is bounded from above by )log( mnnO + .  

Proof of Theorem 2: We first show that if max,00
1 ppC

Nj jm +≥ ∑ ∈
, then problem }|{ max CCGMin ≤  is 

feasible. To this end, we construct a feasible solution to the problem as follows: We process all the jobs by 

the m  in-house machines using the following scheduling rule: For nj ,,2,1 = , schedule job j  to a 

machine with the minimum workload and update the workload of that machine accordingly. In the 

resulting schedule π , let )(max πC  denote the makespan and iC  denote the total processing time of the 

jobs assigned to machine i , for Mi∈ . According to this scheduling rule, it is evident that the start time of 

the last job on each machine must be no more than ∑ ∈Nj jm p0
1 . Thus, max,00

1 ppC
Nj jm

i +≤ ∑ ∈
 for 

every Mi∈ , which implies that CppMiCC
Nj jm

i ≤+≤∈= ∑ ∈ max,00
1

max }|max{ . Therefore, schedule 

π  is feasible. This means that problem }|{ max CCGMin ≤  is feasible and, hence, )(CLP  is feasible. It is 

evident that schedule 1σ  generated for the jobs set 1N  in Step 2 is feasible. Let )( 1σ
iC  denote the total 

processing time of the jobs assigned to machine i  (i.e., the total workload of machine i) under schedule 

1σ . Define )()( 11 σσ ii CC −=∆  to be the slack of machine i , for Mi∈ . By definition of slack, we can 

see that a schedule is feasible if the slack of every machine is nonnegative. The fact that 1σ  is feasible 

means that 0)( 1 ≥∆ σi , for all Mi∈ . Since some jobs of 1N  may be subcontracted under schedule 1σ , we 

have 

                                                     
1 2

1 0 0 0
1

( )
m

i
j j j

i j N j N j N
C p p pσ

= ∈ ∈ ∈

≤ = −∑ ∑ ∑ ∑ . (16) 

Since max,00
1 ppC

Nj jm +≥ ∑ ∈
, by (16), we have 

                                                 
2

1 1 0,max 0
1 1

( ) ( )
m m

i i
j

i i j N
mC C mp pσ σ

= = ∈

∆ = − ≥ +∑ ∑ ∑ . (17) 

Let 3N  be the subset of the jobs in 2N  that are assigned to an in-house machine by Step 3 of the heuristic. 

Define 3Nw =  as the number of jobs in 3N . Clearly, w ≤ m. Let ][h  denote the index of the h-th job of 

3N  added to an in-house machine in Step 3 of 3H , for wh ,,2,1 = . By the scheduling rule used in 

Step 3, whenever a job in 3N  is added to an in-house machine, it is added to a machine with the minimum 

workload (i.e., a machine with the maximum slack). Let hi  denote the in-house machine where job ][h  of 
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3N  is added ( wh ,,2,1 = ). Thus, immediately before job ]1[  is added, machine 1i  has the minimum total 

workload under schedule 1σ . By (17), this means that 1
1 0,max( )i pσ∆ ≥ . This implies that after job ]1[  is 

added, the updated total workload of machine i1 is no more than C, and hence the resulting schedule 

remains feasible. By (17), it is easy to see that after job ]1[  is added, the total updated slack of the m 

machines is 

                                                         ∑∑
∈=

+≥∆
]}1\{[

0max,0
1

1
2

)(
Nj

j

m

i

i pmpσ .  (18) 

Next, we consider job ]2[ . By a similar argument and using (18), we can prove that immediately after job 

]2[  is added to an in-house machine, the resulting schedule remains feasible, and the total updated slack of 

the m  machines is  

∑∑
∈=

+≥∆
]}2[],1\{[

0max,0
1

1
2

)(
Nj

j

m

i

i pmpσ . 

By repeatedly applying this argument, we conclude that the schedule remains feasible after all the jobs of 

3N  are added to the schedule.  

Proof of Theorem 3: Let )( 1σZ  denote the total cost of schedule 1σ  generated by heuristic 1H . Let 

)( 2NZ  denote the total cost of the jobs in 2N  under schedule σ . Let )(CLPZ  denote optimal total cost of 

problem )(CLP . Clearly, )(CLPZ  is a lower bound of ∗Z . Consider the partial schedule 1σ  generated by 

Step 2 of heuristic 1H . Since 1σ  only includes the jobs in 1N , we have )(1)( CLPZZ ≤σ . In Step 3 of 

heuristic 1H , each job in 2N  is assigned to a subcontractor or an in-house machine in a way that it incurs 

the minimum possible cost. Thus, ∗≤ ZNZ )( 2 . Therefore, * *
1 2 ( )( ) ( ) ( ) 2 .LP CZ Z Z N Z Z Zσ σ= + ≤ + ≤   

Proof of Theorem 4: Since m  is fixed, the contribution of the jobs in 2N  to the total cost of the problem 

under any schedule is always bounded from above. On the other hand, the optimal total cost of the problem 

under any schedule approaches infinity as n  tends to infinity. Therefore, 

 0)(lim *
2 =

∞→ Z
NZ

n
. (19) 

As we have shown in the proof of Theorem 3, *
1)( ZZ ≤σ . This implies that 

 *

*)(lim
Z

ZZ
n

−
∞→

σ  ≤  *

*
21 )()(lim

Z
ZNZZ

n

−+
∞→

σ  
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  = *

*
1)(lim
Z

ZZ
n

−
→∞

σ  (by (19)) 

  ≤  0. 

This completes the proof.  
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Table 1. Percentage of test instances of max{  | }Min G C C≤  for which heuristic 1H  
generates feasible/optimal solutions 

 k = 1 k = 3 k = 9 

 n         m α = 0.3 α = 0.6 α = 0.3 α = 0.6 α = 0.3 α = 0.6 

            2 90.0% 100% 100% 96.0% 95.7% 100% 
50        4 88.9% 95.0% 96.7% 100% 96.1% 100% 
            8 67.4% 73.8% 83.6% 92.8% 87.3% 100% 
            2 100% 100% 100% 91.7% 100% 100% 
100      4 90.0% 100% 90.0% 92.3% 91.7% 100% 
            8 73.3% 100% 95.0% 93.1% 82.9% 100% 
            2 83.3% 95.2% 85.7% 100% 100% 100% 
200      4 100% 100% 100% 87.5% 95.2% 100% 
            8 100% 90.9% 100% 91.7% 95.0% 100% 
            2 90.9% 100% 100% 100% 100% 100% 
400      4 90.9% 100% 100% 100% 100% 100% 
            8 90.9% 100% 95.2% 90.9% 100% 100% 

  

Table 2. Relative cost reduction due to the subcontracting option 
for }|{ max CCGMin ≤ : Results in terms of n and k 

 n         k Avg Red Min Red 

            1 34.7% 4.6% 
50        3 53.8% 12.4% 
            9 71.8% 37.8% 
            1 34.1% 4.4% 
100      3 53.0% 16.0% 
            9 72.2% 43.2% 
            1 33.1% 7.1% 
200      3 53.0% 17.1% 
            9 72.0% 43.6% 
            1 32.8% 7.3% 
400      3 52.6% 18.1% 
            9 72.6% 44.9% 
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Table 3. Relative cost reduction due to the subcontracting option  
for }|{ max CCGMin ≤ : Results in terms of ν 

ν Avg Red Min Red 

0.5 74.5% 52.1% 
1 57.9% 28.0% 
4 25.8% 4.4% 
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