
An Efficient Algorithm for Minimizing Earliness,

Tardiness, and Due-Date Costs for Equal-Sized Jobs

Chung-Lun Li1 Gur Mosheiov2 Uri Yovel3

1Department of Logistics, The Hong Kong Polytechnic University,

Hung Hom, Kowloon, Hong Kong, China

lgtclli@polyu.edu.hk

2School of Business Administration and Department of Statistics,

The Hebrew University, Jerusalem 91905, Israel

msomer@mscc.huji.ac.il

3Graduate School of Business,

Columbia University, New York, NY 10027, U.S.A.

uy2102@columbia.edu

TECHNICAL NOTE

October 2006

Revised January 2007

Revised March 2007

This is the Pre-Published Version.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PolyU Institutional Repository

https://core.ac.uk/display/61010842?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

We consider a single-machine scheduling problem with equal-sized jobs. The objective is to

minimize the maximum weighted earliness-tardiness and due-date costs. We present an algorithm

to solve this problem. Our algorithm makes use of bottleneck jobs and priority queues, and has

a computational complexity of O(n4 log n). This complexity is a significant improvement of the

existing algorithm in the literature.

Keywords: Analysis of algorithms; due-date assignment; earliness-tardiness; scheduling

1 Introduction

We consider a scheduling problem with n jobs, denoted J1, J2, . . . , Jn, to be processed by a single

machine. Each job Jj is characterized by its processing time pj > 0, an earliness penalty αj ≥ 0,

and a tardiness penalty βj ≥ 0 (j = 1, 2, . . . , n). All the jobs share a common due-date d ≥ 0,

which is to be determined. For a given job sequence, let Cj denote the completion time of Jj. Let

Ej = max{0, d− Cj} and Tj = max{0, Cj − d} denote the job earliness and tardiness, respectively.

There is a unit cost γ ≥ 0 associated with (delaying) the due-date. We would like to obtain the

schedule and the due-date that minimize the maximum cost incurred by any of the jobs. In other

words, our objective is to minimize maxj=1,...,n{αjEj + βjTj + γd}. A job Jj is said to be early if

Ej > 0; tardy if Tj > 0; and on-time if Ej = Tj = 0. Throughout this note, we assume that n ≥ 2.

When αj = βj and γ = 0, the objective becomes a minimization of the Maximal Weighted

Absolute Lateness and the problem is denoted as MWAL (see Gordon et al. [3]). Li and Cheng [4]

have shown that the MWAL problem is NP-hard. Solving the general problem with arbitrary values

of αj , βj, and γ is even more challenging. Such a generalized version of MWAL is denoted as

GMWAL. Mosheiov and Yovel [5] have studied a special case of the GMWAL problem in which

all jobs have identical processing times (i.e., p1 = p2 = · · · = pn), and they have developed an

O(n6.5(logn)0.5) algorithm for it. In this note, we develop a new algorithm for this special case, which

is denoted as GMWAL(UJ). This algorithm makes use of bottleneck jobs and priority queues, and

has an improved running time of O(n4 logn). For simplicity, we assume, without loss of generality,

that p1 = p2 = · · · = pn = 1.

Due-date assignment problems reflect many real-life situations where the due-date is determined

during sales negotiations. Firms clearly benefit from delaying due-dates, because it increases their

production flexibility. The later the due-date, the higher is the probability that a given job can be

completed on time. However, a late due-date decreases the firm’s competitiveness, making other

producers/suppliers more attractive. As a result, in many cases firms offer price reductions when

the actual due-date is much later than the expected one. This setting was first introduced in the

early 80’s. Later, numerous extensions and special cases were studied, as reflected in many of the

130 references mentioned in the survey paper of Gordon et al. [3]. Our work, as mentioned earlier,

focuses on the special case of identical jobs, which is applicable to situations where the scheduler has

to arrange the processing of a batch of equal-sized jobs on a single machine and to quote a common

due-date for these jobs to their customers. We consider a min-max objective, which applies to the

1

case in which each job Jj has an earliness tolerance of Aj and a tardiness tolerance Bj , where Aj

and Bj are inversely proportional to αj and βj, respectively. The scheduler attempts to fit each

job completion time Cj into the time window [d − Aj, d + Bj]. Different jobs belong to different

customers with different expectation of service, and therefore, αj and βj are customer-dependent.

In a scheduling environment like this, it is not uncommon to have hundreds of jobs in the given

batch. Thus, having an efficient method for solving such a problem is necessary to ensure smooth

operations.

2 A New Algorithm for GMWAL(UJ)

We first discuss some properties of the optimal solution to GMWAL(UJ). It is easy to see that there

exists an optimal solution with no machine idle time. In that optimal solution, the start time of

every job must be an integer. (Note: The optimal due-date may not be integer valued.) Hence, in

our algorithm we only consider solutions in which all jobs have integer start times. However, we

allow machine idle time in the solution. The following lemma states another property of the optimal

solution. This new property is critical to the development of our algorithm.

Lemma 1 There exists an optimal solution to GMWAL(UJ) in which one of the following conditions

holds: (i) There is no tardy job; (ii) d = 0; (iii) there exist an early (or on-time) job Je and a tardy

job Jt such that

αe(d − Ce) = βt(Ct − d) = R; (1)

(iv) there exist tardy jobs Jt1 and Jt2 such that

βt1(Ct1 − d) = βt2(Ct2 − d) = R; (2)

where R = maxj=1,...,n{αjEj + βjTj}.

Proof Suppose, to the contrary, that all four conditions are violated in any optimal solution to the

problem. Then, consider one such optimal solution with the smallest possible due-date d. Clearly,

in this optimal solution, R > 0 (otherwise either (i), (iii), or (iv) holds) and d > 0 (otherwise (ii)

holds). Also, R must be either equal to αeEe for some early job Je or equal to βtTt for some tardy

job Jt.

2

Case 1: R = αeEe for some early job Je. In this case, R > βjTj for j = 1, 2, . . . , n (because

condition (iii) is violated). Thus, keeping the existing job schedule but reducing the due-date slightly

will form a new solution with a lower total cost. This is a contradiction.

Case 2: R = βtTt for some tardy job Jt. In this case, R > αjEj for j = 1, 2, . . . , n (because

condition (iii) is violated) and R > βjTj for all j ∈ {1, 2, . . . , n} \ {t} (because condition (iv) is

violated). If γ < βt, then keeping the existing job schedule but increasing the due-date slightly will

form a new solution with a lower total cost, which is a contradiction. If γ > βt, then keeping the

existing job schedule but decreasing the due-date slightly will form a new solution with a lower total

cost, which is a contradiction. If γ = βt, then keeping the existing job schedule but decreasing the

due-date slightly will form a different solution with the same cost. Such a solution is also optimal

but with a smaller due-date, which is again a contradiction.

Based on Lemma 1, we propose the following algorithm: We first solve GMWAL(UJ) under

condition (i), then solve it under condition (ii), and so on. We select the best one among the four

solutions.

Condition (i) of Lemma 1 is satisfied only if αj = 0 for at least n − 1 jobs. (If αj = 0 for less

than n − 1 jobs, then the earliness cost of the “no tardy job solution” must be positive. In such a

case, decreasing the due-date slightly will form an alternate solution with a lower total cost, which

contradicts the optimality of the solution.) Under condition (i), there exists an optimal schedule in

which: (a) there is no machine idle time; (b) the job with αj > 0, if exists, is scheduled as the last

job; and (c) the due-date is at Cmax = n. Thus, in this case, the problem can be solved in O(n) time.

If condition (ii) of Lemma 1 is satisfied, then there exists an optimal schedule in which: (a) d = 0;

(b) there is no machine idle time; and (c) all jobs are sequenced in nonincreasing order of βj. Thus,

in this case, the problem can be solved in O(n logn) time.

If the optimal schedule satisfies condition (iii), then there exist a “bottleneck early job” Je and

a “bottleneck tardy job” Jt such that both the earliness cost of Je and the tardiness cost of Jt are

equal to R. Now, we present a solution method for the GMWAL(UJ) problem under condition (iii).

We select: (a) a bottleneck early job Je; (b) a bottleneck tardy job Jt; and (c) the difference between

the completion times of Je and Jt, denoted as Y . We determine if this combination of Je, Jt, and Y

yields a “feasible” solution, that is, a solution with Je and Jt being the bottleneck early and tardy

jobs, respectively. If it yields a feasible solution, then we determine the smallest start time for Je

such that a feasible solution exists. We repeat this procedure with all possible combinations of Je,

3

Jt, and Y . As mentioned earlier, there exists an optimal solution to GMWAL(UJ) with no machine

idle time. Thus, it suffices to consider Y = 1, 2, . . . , n − 1. Among all feasible solutions generated,

we select the one with the lowest total cost. This method can generate an optimal solution to the

GMWAL(UJ) problem because for any given Je, Jt, and Y , the best possible feasible solution is the

one with the smallest due-date cost, which is the one with the smallest start time for job Je. For

any given Je, Jt, and Y , we let P (Je, Jt, Y) denote the problem of determining a feasible solution (if

any) with the smallest start time for Je.

We define P ′(Je, Jt, Y) as the problem of determining a feasible schedule (if any), such that Je is

the bottleneck early job, Jt is the bottleneck tardy job, the start time of Je is n − 2, the start time

of Jt is n + Y − 2, and that the start time of the first job in the schedule is maximized. Note that

an optimal solution to problem P ′(Je, Jt, Y) can be easily transformed into an optimal solution to

problem P (Je, Jt, Y) by eliminating the idle time in front of the first job in the schedule (i.e., shifting

all the jobs and the due-date to the left). Hence, we will focus on the development of an algorithm

for problem P ′(Je, Jt, Y).

To obtain an optimal solution to P ′(Je, Jt, Y), we first use equation (1) to obtain the value of d.

That is, αe(d−n+1) = βt(n+Y −1−d), which implies that d = [(n−1)αe+(n+Y −1)βt]/(αe+βt).

Next, we create 2n + Y − 3 positions on the machine, where the ith position occupies the time slot

[i−1, i]. Jobs Je and Jt occupy the (n− 1)st and (n + Y − 1)st positions, respectively (see Figure 1).

Let R = αe(d − n + 1), which is equal to the earliness cost of Je as well as the tardiness cost of Jt.

We would like to assign the jobs in {J1, J2, . . . , Jn} \ {Je, Jt} to the remaining positions, such that

the start time of the first job in the schedule is maximized, where Jj is permitted to occupy the kth

position if and only if max{αj(d−k), βj(k−d)} ≤ R. This can be formulated as an (n−2)×(2n+Y −5)

bipartite weighted matching problem and can be solved by some classical matching algorithms (see

[2]). However, we propose a more efficient algorithm for this job assignment problem, which makes

use of the special cost structure of the problem.

Lemma 2 There exists an optimal solution to P ′(Je, Jt, Y) in which all early or on-time jobs are

sequenced in nondecreasing order of αj .

The proof of Lemma 2 follows a straightforward job interchange argument and is omitted. In

what follows, we only consider solutions that satisfy the property stated in Lemma 2 (unless oth-

erwise mentioned). Now, consider a subproblem of P ′(Je, Jt, Y) with only jobs {J1, J2, . . . , Jk} ∪

{Je, Jt} and the first ` positions, where k = 1, 2, . . . , n and ` ∈
{

bdc+1, bdc+2, . . . , 2n+Y −3
}

\

4

{n+Y −1}, and bdc denotes the largest integer less than or equal to d. We denote this subproblem

as P ′
k,`(Je, Jt, Y). If minj∈{1,...,k}\{e,t}{βj}·(`− d) ≤ R, then at least one job is permitted to occupy

the last position (i.e., the `th position) of the schedule. In such a case, we define

j0 = arg max
j∈{1,...,k}\{e,t}

{

αj

∣

∣ βj(` − d) ≤ R
}

,

with ties broken arbitrarily. That is, Jj0 is the job with the largest α value which is permitted to

occupy the `th position.

Lemma 3 If P ′
k,`(Je, Jt, Y) is feasible, then there exists an optimal solution to P ′

k,`(Je, Jt, Y) in

which: (a) Jj0 is assigned to the `th position if minj∈{1,...,k}\{e,t}{βj}·(`− d) ≤ R; and (b) no job is

assigned to the `th position otherwise.

Proof Clearly, if minj∈{1,...,k}\{e,t}{βj}·(`− d) > R, then no job can be assigned to the `th position.

Now, consider the case in which minj∈{1,...,k}\{e,t}{βj}· (` − d) ≤ R. Suppose that in an optimal

solution, job Jj0 is assigned to the hth position, where h < `. Let Jj1 be the job assigned to the `th

position. We consider a new solution obtained by interchanging Jj0 and Jj1 . We show that this new

solution remains feasible.

Case 1: h > d. In this case, both Jj0 and Jj1 are tardy jobs in the original solution. They remain

tardy jobs in the new solution. Clearly, the tardiness cost of Jj1 has decreased. By definition of j0,

the tardiness cost of Jj0 in the new solution is no greater than R. Hence, the new solution is feasible.

Case 2: h ≤ d. In this case, Jj0 is an early (or on-time) job in the original solution. Thus, Jj1

becomes an early (or on-time) job in the new solution. By definition of j0, we have αj1 ≤ αj0. Hence,

the earliness cost of Jj1 in the new solution is no greater than the earliness cost of Jj0 in the original

solution. In addition, the tardiness cost of Jj0 in the new solution is no greater than R. Hence, the

new solution is feasible.

Because the interchange of Jj0 and Jj1 does not affect the start time of the first job in the

schedule, the new solution remains optimal. Note that this new solution does not necessarily satisfy

the property stated in Lemma 2. However, we can further modify the new solution by resequencing

the early jobs in nondecreasing order of αj and having them occupy those positions that were

originally occupied by early jobs. The modified solution must be feasible.

Lemmas 2 and 3 suggest the following algorithm for problem P ′(Je, Jt, Y). For ` =

2n+Y −3, 2n+Y −2, . . . , bdc+1 (except for ` = n+Y −1), check whether the unassigned job

5

with the highest α value is permitted to occupy position `, i.e., whether βj(` − d) ≤ R. If it is

permitted, then assign that job to position `; otherwise leave position ` unassigned. Next, we assign

the remaining jobs to the early (or on-time) positions according to the property stated in Lemma 2

and make those early (or on-time) jobs start their processing as late as possible. If any of these early

jobs has an earliness cost greater than R, then problem P ′(Je, Jt, Y) is infeasible.

A straightforward implementation of the above algorithm requires O(n2) time. However, we

provide a more efficient implementation, which enables us to solve problem P ′(Je, Jt, Y) in O(n logn)

time. As described above, we first assign jobs to the tardy positions. To simplify the notation, we

denote the available tardy positions by

T ≡
{

bdc+1, bdc+2, . . . , 2n+Y −3
}

\ {n+Y −1},

and denote |T | as the cardinality of set T . For a given job Jj , where j ∈ {1, 2, . . . , n} \ {e, t}, we

identify the maximal tardy position (if one exists), say position `j, such that Jj can be assigned to,

that is, `j = max{k ∈ T | βj(k − d) ≤ R}. Therefore, the position for Jj is

`j =































⌊

d + R
βj

⌋

, if
⌊

d + R
βj

⌋

∈ T ;

2n + Y − 3, if
⌊

d + R
βj

⌋

> 2n + Y − 3;

n + Y − 2, if
⌊

d + R
βj

⌋

= n + Y − 1 and n + Y − 2 ≥ bdc + 1;

undefined, otherwise.

(3)

(Note: If `j is undefined, then Jj cannot be assigned to any tardy position.) We keep the list of

positions in a (job-indexed) array. In the next step, for each position ` ∈ T , we identify all the

jobs with ` being their maximal tardy position. This results in |T | “reversed” (position-indexed)

arrays, some of which may be empty. This step can be done simultaneously with the previous step

using doubly-directed pointers. From each “reversed” array of position `, we build a priority queue,

denoted Q`, which holds the job indices in nonincreasing α value. Recall that a priority queue with

n elements is a data structure that can be constructed in O(n logn) time, and it enables extraction

of the maximal element (the deQueue operation) in O(logn) time (see, for example, [1]). Next, we

assign jobs to the tardy positions in T as follows: Iterate ` from 2n+Y −3 down to bdc+1 (except for

` = n + Y − 1). If Q` is empty, then no job can be assigned to position `. In such a case, decrement

` (i.e., move to the next candidate tardy position). Otherwise, let j0 = deQueue(Q`) (i.e., extract

the job with the maximum α value that can be assigned to position `), assign Jj0 to position `, and

remove it from the set of unassigned jobs. For the next iteration, add the elements of Q` to Q`−1.

We do this because Q` may contain a job with a larger α value than the jobs in Q`−1, and the jobs

6

in Q` can be assigned to any of the tardy positions `, `−1, . . . , bdc+1. Decrement ` and repeat the

above procedure. This procedure is repeated until all the tardy positions have been considered.

The next phase is to assign the remaining jobs to the early or on-time positions {1, 2, . . . , bdc} \

{n − 1}. This is done by assigning them sequentially to positions bdc, bdc−1, . . . , n, n−2, . . . , 2, 1 in

nonincreasing α value. If any of these early jobs has an earliness cost greater than R, then problem

P ′(Je, Jt, Y) is infeasible. Algorithm Φ in Figure 2 is a straightforward implementation of the above

idea.

We now argue that algorithm Φ can be implemented in O(n logn) time. Let n` denote the number

of elements in Q` when Q` is first created, and let nbdc = 0. In Figure 2, steps I4 and I5 take O(n)

time. For step I6, it takes O(n) time to build the reversed arrays, and it takes O(n` logn`) time to

build each priority queue Q`. Thus, the total running time of step I6 is

O(n) +
∑

`∈T

O(n` logn`) ≤ O(n) + O
(

∑

`∈T

n` · logn
)

= O(n logn).

Next, we consider the complexity of Phase A. The loop consists of O(n) iterations. Step A3 takes

O(logn) time, while steps A4 and A5 take constant time. As for step A6, we perform the union

operation by inserting each element of Q`−1 into Q` one by one. Each insertion operation takes

O(logn) time. There are at most n`−1 insertion operations for each ` ∈ T . Thus, the contribution

of step A6 to the total algorithm running time is

O
(

∑

`∈T

n`−1 · logn
)

≤ O(n logn).

Clearly, Phase B takes O(n logn) time. Hence, the total running time of algorithm Φ is O(n logn).

Note that the number of combinations of Je, Jt, and Y is O(n3). Thus, under condition (iii) of

Lemma 1, GMWAL(UJ) can be solved in O(n3) · O(n logn) = O(n4 logn) time.

Example. Consider an example with n = 9, Y = 4, αe = βt = 6, and γ = 0. The other jobs,

denoted J1, J2, . . . , J7, have the following earliness and tardiness costs:

j 1 2 3 4 5 6 7

αj 7 10 2 2 12 15 3

βj 3 10 2 3 5 6 8

In this example, Je and Jt are scheduled to positions 8 and 12, respectively. Note that d = 10,

R = 12, and 2n + Y − 3 = 19. Hence, the tardy positions are {11, 12, . . . , 19}, where position 12

7

has been assigned to Jt. Set S equals {1, 2, 3, 4, 5, 6, 7} initially (see step I3 of algorithm Φ). The

maximal tardy positions of jobs are given as:

MaxTardyPosition[1, 2, . . . , 7] = (`1, `2, `3, `4, `5, `6, `7) = (14, 11, 16, 14, 11, 11, 11).

Hence, we construct the following priority queues: Q19 = ∅, Q18 = ∅, Q17 = ∅, Q16 = (3), Q15 = ∅,

Q14 = (1, 4), Q13 = ∅, and Q11 = (6, 5, 2, 7).

We proceed to Phase A. Because Q19 = Q18 = Q17 = ∅, positions 19, 18, and 17 are left

unoccupied. Next, we extract j0 = deQueue(Q16) = 3 and assign J3 to position 16. After that,

Q16 = ∅. Because Q15 = ∅, position 15 is left unoccupied. Next, we extract j0 = deQueue(Q14) = 1

and assign J1 to position 14. After that, Q14 = (4), and we update Q13 := Q13 ∪ Q14 = (4). Next,

we extract j0 = deQueue(Q13) = 4 and assign J4 to position 13. After that, Q13 = ∅. Next, we

extract j0 = deQueue(Q11) = 6 and assign J6 to position 11. At the end of Phase A, the index set

of unassigned jobs is S = {2, 5, 7}.

We now proceed to Phase B. We assign J5, J2, and J7 to positions 10, 9, and 7, respectively. The

resulting schedule is depicted in Figure 3(a), which is a feasible job assignment with the start time

of the first job maximized. This is an optimal schedule for problem P ′(Je, Jt, Y). The corresponding

optimal schedule for problem P (Je, Jt, Y) is depicted in Figure 3(b). Note that an alternative optimal

schedule can be obtained by changing the start time of J3 from 9 to 8 (i.e., by eliminating the idle

time between J1 and J3).

Finally, we consider condition (iv) of Lemma 1. If the optimal schedule satisfies condition (iv),

then there exists a pair of “bottleneck tardy jobs” Jt1 and Jt2 with the same tardiness cost. Now, we

present a solution method for the GMWAL(UJ) problem under condition (iv). We select (a) bottle-

neck tardy jobs Jt1 and Jt2 with βt1 > βt2; and (b) the difference between the completion times of Jt1

and Jt2, denoted as Y . Note that Jt2 must be processed after Jt1. We determine if this combination

of Jt1, Jt2, and Y yields a “feasible” solution, that is, a solution with Jt1 and Jt2 being the bottleneck

tardy jobs. If it yields a feasible solution, then we determine the smallest start time for Jt1 such that

a feasible solution exists. We repeat this procedure with all possible combinations of Jt1, Jt2, and

Y . (Again, it suffices to consider Y = 1, 2, . . . , n − 1.) Among all feasible solutions generated, we

select the one with the lowest total cost. For any given Jt1, Jt2, and Y , we let P̄ (Jt1, Jt2, Y) denote

the problem of determining a feasible solution (if any) with the smallest start time for Jt1.

8

We define P̄ ′(Jt1, Jt2, Y) as the problem of determining a feasible schedule (if any), such that

Jt1 and Jt2 are the bottleneck tardy jobs, the start time of Jt1 is n − 2, the start time of Jt2 is

n + Y − 2, and that the start time of the first job in the schedule is maximized. As in the case of

problem P (Je, Jt, Y), an optimal solution to problem P̄ ′(Jt1, Jt2, Y) can be easily transformed into

an optimal solution to problem P̄ (Jt1, Jt2, Y) by eliminating the idle time in front of the first job in

the schedule. Hence, we will focus on the development of an algorithm for problem P̄ ′(Jt1, Jt2, Y).

To obtain an optimal solution to P̄ ′(Jt1, Jt2, Y), we first use equation (2) to obtain the value of d.

That is, βt1(n−1−d) = βt2(n+Y −1−d), which implies that d = [(n−1)βt1−(n+Y −1)βt2]/(βt1−βt2).

If d < 0, then P̄ ′(Jt1, Jt2, Y) is infeasible, which implies that the current combination of Jt1, Jt2, and

Y cannot yield an optimal solution to GMWAL(UJ). If d ≥ 0, then we create 2n + Y − 3 positions

on the machine as shown in Figure 4. Let R = βt1(n − 1 − d). We would like to assign the jobs

in {J1, J2, . . . , Jn} \ {Jt1, Jt2} to the remaining positions, where Jj is permitted to occupy the kth

position if and only if max{αj(d− k), βj(k− d)} ≤ R. It is easy to check that Lemma 2 is also valid

for problem P̄ ′(Jt1, Jt2, Y).

Define P̄ ′
k,`(Jt1, Jt2, Y) as a subproblem of P̄ ′(Jt1, Jt2, Y) with only jobs {J1, J2, . . . , Jk}∪{Jt1, Jt2}

and the first ` positions. It is easy to check that Lemma 3 is also valid for problem P̄ ′
k,`(Jt1, Jt2, Y).

Thus, starting with S = {1, 2, . . . , n} \ {t1, t2}, we can use Phases A and B of algorithm Φ (see

Figure 2) to solve problem P̄ ′(Jt1, Jt2, Y). Thus, under condition (iv) of Lemma 1, GMWAL(UJ)

can be solved in O(n4 logn) time.

3 Conclusion

We have shown that the problem of minimizing maximum weighted earliness-tardiness and due-date

costs on a single machine can be solved in O(n4 logn) time when all jobs have identical processing

times. Our algorithm is based on the enumeration of a pair of bottleneck jobs (either a bottleneck

early job and a bottleneck tardy job, or a pair of bottleneck tardy jobs) as well as the difference

of their completion times. Based on the optimal properties presented in Lemmas 2 and 3, as well

as the use of priority queues, we have developed an efficient method to assign the non-bottleneck

jobs. It remains a challenging question of whether a complete enumeration of the bottleneck jobs

and the difference of their start times can be avoided so that a further reduction in complexity of

9

the algorithm can be achieved.

Acknowledgements

The authors would like to thank two anonymous referees for their helpful comments and suggestions.

This research was supported in part by the Recanati Fund of The School of Business Administra-

tion, The Hebrew University, Jerusalem, Israel and by Grant PolyU 5222/06E from the Hong Kong

Research Grants Council.

References

[1] Aho, A.V., J.E. Hopcroft and J.D. Ullman, 1974. The Design and Analysis of Computer Algo-

rithms. Addison-Wesley, Reading, MA.

[2] Ahuja, R.K., T.L. Magnanti and J.B. Orlin, 1993. Network Flows: Theory, Algorithms, and

Applications. Prentice Hall, Englewood Cliffs, NJ.

[3] Gordon, V., J.M. Proth and C. Chu, 2002. A survey of the state-of-the-art of common due date

assignment and scheduling research. European Journal of Operational Research 139, 1-25.

[4] Li, C.-L. and T.C.E. Cheng, 1994. The parallel machine min-max weighted absolute lateness

scheduling problem. Naval Research Logistics 41, 33-46.

[5] Mosheiov, G. and U. Yovel, 2006. Minimizing weighted earliness-tardiness and due-date costs

with unit processing-time jobs. European Journal of Operational Research, 172, 528-544.

10

Figure 1. The positions for job assignment in problem),,(YJJP te′

Je Jt … … …

d n – 1 n + Y – 1

n – 2 positions Y – 1 positions n – 2 positions

0 2n + Y – 3

ALGORITHM Φ

Input: n, α1, . . . , αn, β1, . . . , βn, Je, Jt, Y .

Output: A feasible job assignment (if one exists) with Je in position n − 1, Jt in position n + Y − 1,

and the start time of the first job maximized.

BEGIN

INITIALIZATION PHASE

I1. d := [(n − 1)αe + (n + Y − 1)βt]/(αe + βt);

I2. R := αe(d− n + 1);

I3. S := {1, 2, . . . , n} \ {e, t} = set of indices of unassigned jobs.

I4. for j = 1 to n (except for j = e, t):

I5. MaxTardyPosition[j] := `j , where `j is defined in equation (3);

I6. build reversed arrays and priority queues:

for each ` ∈ T , build an array of job indices j such that MaxTardyPosition[j] = `; from

each such a (possibly empty) array, build a priority queue Q` of the indices sorted by

nonincreasing α value.

PHASE A: (Assign jobs to tardy positions)

A1. for ` = 2n + Y − 3 down to bdc + 1:

A2. if position ` is unoccupied and Q` 6= ∅ then

A3. j0 := deQueue(Q`);

A4. assign Jj0 to position `;

A5. S := S \ {j0};

A6. Q`−1 := Q`−1 ∪ Q` (performed by inserting each element of Q`−1 into Q` one by one).

PHASE B: (Assign remaining jobs to early or on-time positions)

B1. sort and re-index the remaining jobs as J1, J2, . . . , Ju, where α1 ≥ α2 ≥ · · · ≥ αu;

B2. pos := bdc;

B3. for j = 1 to u:

B4. if position pos is unoccupied then

B5. if αj(d− pos) ≤ R then assign Jj to position pos;

B6. otherwise stop; the problem is infeasible;

B7. pos := pos − 1.

END

Figure 2. Algorithm Φ for problem P ′(Je, Jt, Y)

(a) Optimal schedule for problem),,(YJJP te′

(b) Optimal schedule for problem),,(YJJP te

Figure 3. Schedule for the example

Figure 4. The positions for job assignment in problem),,(
21

YJJP tt′

1tJ
2tJ … … …

d n – 1

n – 2 positions Y – 1 positions n – 2 positions

0 n + Y – 1 2n + Y – 3

d = 10 0 19 6 8 12 16

7J eJ 2J 5J 6J tJ 3J 4J 1J

d = 4 0 10

7J eJ 2J 5J 6J tJ 3J 4J 1J

