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Abstract

We analyze a multiple-stage supply chain model of a seasonal product with pric-

ing decisions. We develop closed-form expressions for the optimal expected profits of

different stages. The results enable us to quantify the loss of supply chain profits if

uncoordinated pricing decisions are made by supply chain agents.
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1 Introduction

It is well known that when different parties in the supply chain make their ordering, pricing,

and inventory holding decisions independently, the overall supply chain profit suffers from

poor performance. In the supply chain management literature, numerous studies have been

reported to address this issue. Coordination mechanisms such as revenue-sharing contracts,

buyback contracts, volume discounts, etc. have been analyzed by many researchers for resolv-

ing the problem (see, for example, [3]). However, it is important to quantify the deficiency

of the uncoordinated decisions so that the potential benefits obtained from a coordinated

supply chain can be better understood.

In this paper we analyze a multiple-stage supply chain model of a seasonal product with

pricing decisions made independently by each party. The retailer is facing a price-sensitive

uncertain demand. Through extending the newsvendor model with pricing decisions, we

develop a closed-form expression for the optimal expected profit of the supply chain, and

we compare the total expected profit with that of an integrated system with centralized

decisions.

Whitin [13] was the first to develop and analyze a newsvendor model with price decisions.

Since then, numerous developments and applications of the newsvendor model with pricing

considerations have appeared in the literature (see [5, 11] for recent surveys on newsvendor

models with pricing decisions). Some of these works have extended the newsvendor model

with pricing to a two-stage supply chain setting and discussed various coordination issues.

These include the work on returns policies [6, 8, 10], the work on supply contracts and

manufacturer’s incentives [2, 4, 12], the work on supply chain pricing under risk aversion

[1], among others. However, unlike these papers, we consider a multiple-stage supply chain

and focus on the quantification of the ineffectiveness of decentralized supply-chain pricing
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decisions. For the case with two stages, our result is similar to some of the results in Wang

et al. [12]. However, Wang et al.’s model differs from ours in that they consider a two-stage

supply chain with a consignment sales arrangement.

Recently, Majumder and Srinivasan [9] have studied the impact of the position of the

contract leader on the performance of a multi-stage supply chain. Similar to our work,

they consider price-sensitive demand, derive the decentralized supply chain solution for their

model, and compare it with the centralized solution. Unlike our work, they assume a deter-

ministic linear demand function, and they focus on the implications of contract leadership.

For other published works that address coordination issues in multi-stage supply chains, see,

for example, [3, 7] and the references therein.

Our model is defined as follows: We consider an n-stage supply chain with a manufacturer,

a retailer, and n − 2 other parties such as distributer, wholesaler, etc. in between (n ≥ 2).

There is a single seasonal product facing an uncertain and price-sensitive demand. The

manufacturer produces each unit of the product at a cost of c. It has to determine the unit

price p1 of the product to offer to its immediate downstream customer, so as to maximize

its expected profit in anticipation of the reaction of the other supply chain parties after it

has announced the price p1. Once the price p1 is given, the next stage of the supply chain

has to determine the unit price p2 to offer to its downstream customer so as to maximize its

expected profit in anticipation of the reaction of the downstream supply chain parties. The

same logic applies to the other parties along the supply chain. The last stage of the supply

chain, i.e. the retailer, has to determine the unit price p to offer to the end customers as

well as the order quantity q. Thus, the retailer’s problem is a price-dependent newsvendor

problem. We refer this supply chain system to as the “decentralized” system. We denote

the manufacturer as M , the retailer as R, and the other parties as P2, P3, . . . , Pn−1 as shown
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in Figure 1. For notational convenience, we denote P1 ≡ M , Pn ≡ R, and p0 ≡ c. The

following assumptions are made:

• End customer’s demand is given as Db(p)ε, where ε is a nonnegative random variable

with a general probability distribution and Db(p) = ap−b (a > 0; b > 1).

• Unsold items bear no salvage value or disposal cost.

The above multiplicative demand model with iso-elastic demand has been widely adopted

in the literature (see, for example, [11]). Without loss of generality, we assume a = 1.

Parameter b represents the price-elasticity index of the expected demand. In this study, we

focus on price-elastic products with b > 1. We let f(x) and F (x) denote the probability

density function and cumulative distribution function, respectively, of ε.

In the next section, we consider the optimal decision of each supply chain party in the

decentralized system, and we develop a closed-form expression for the optimal expected profit

of the supply chain. In section 3, we analyze the situation where there exists a centralized

decision maker, and then we compare the expected total profit of the decentralized system

with that of the centralized system. Section 4 concludes the paper and provides a comparison

between our model and Wang et al.’s [12] model with consignment contracts.

2 Optimal Decisions of the Decentralized System

We first consider the retailer’s decision. Following Petruzzi and Dada [11], we denote z = q·pb

and Λ(z) =
∫ z

0
F (x)dx =

∫ z

0
(z − x)f(x)dx. The retailer’s expected profit is given as

ΠR(p, z) = p · E
[

min{q, D(p)ε}
]

− pn−1q
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= p−b
{

p · E
[

min{z, ε}
]

− pn−1z
}

= p−b
{

p
[

z − Λ(z)
]

− pn−1z
}

.

This implies that

∂ΠR(p, z)

∂p
= −(b− 1)p−b

[

z − Λ(z)
]

+ bp−b−1pn−1z

and

∂ΠR(p, z)

∂z
= p−b+1

[

1 − F (z)
]

− p−bpn−1.

Setting these partial derivatives to zero, we have

p∗ =
bpn−1z

∗

(b − 1)
[

z∗ − Λ(z∗)
] (1)

and

p∗ =
pn−1

1 − F (z∗)
, (2)

where p∗ and z∗ denote the optimal values of p and z, respectively. Note that the optimal

value of q is given as q∗ = z∗(p∗)−b. Combining (1) and (2), we obtain

bz∗

(b− 1)
[

z∗ − Λ(z∗)
] =

1

1 − F (z∗)
. (3)

Equation (3) implies that z∗ is independent of pn−1. Let Π∗

R denote the maximum expected

profit of the retailer. By (2) and (3), we have

Π∗

R = ΠR(p∗, z∗) =
1

b − 1

[

1 − F (z∗)
]b

z∗p−b+1
n−1 .

Next, we consider the decisions of P1, P2, . . . , Pn−1. The following theorem states the

optimal pricing decisions of these n − 1 parties and their corresponding optimal expected

profits.
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Theorem 1 For i = 1, 2, . . . , n−1, the expected profit of Pi is maximized when p∗i = b
b−1

pi−1,

and the maximum expected profit of Pi is given as

Π∗

Pi
=

1

b − 1

[

1 − F (z∗)
]b

z∗

( b

b − 1

)

−(n−1)b+i−1

c−b+1.

Proof We first prove that

p∗i =
b

b − 1
pi−1 (4)

for i = 1, 2, . . . , n − 1. For the case where i = n − 1, the expected profit of Pn−1 is given as

ΠPn−1
(pn−1) = (pn−1 − pn−2)q

∗

= (p∗)−b(pn−1 − pn−2)z
∗

=
[

1 − F (z∗)
]b

z∗p−b
n−1(pn−1 − pn−2) (by (2)).

Since z∗ is independent of pn−1, this function is maximized when pn−1 = bpn−2/(b − 1).

Thus, equation (4) holds when i = n − 1. Next, by induction, suppose equation (4) holds

for i = j+1, j+2, . . . , n−1, where 1 ≤ j ≤ n − 2. Then

p∗n−1 =
b

b− 1
· p∗n−2 =

( b

b − 1

)2

p∗n−3 = · · · =
( b

b− 1

)n−j−2

p∗j+1 =
( b

b − 1

)n−j−1

pj.

Hence,

ΠPj
(pj) = (pj − pj−1)q

∗

= (p∗)−b(pj − pj−1)z
∗

=
[

1 − F (z∗)
]b

z∗(p∗n−1)
−b(pj − pj−1) (by (2))

=
[

1 − F (z∗)
]b

z∗

( b

b − 1

)

−(n−j−1)b

p−b
j (pj − pj−1), (5)

which is maximized when pj = bpj−1/(b − 1). Thus, equation (4) also holds for i = j.

Therefore, equation (4) holds for i = 1, 2, . . . , n − 1.
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By (4) and (5), the maximum expected profit of Pi is

Π∗

Pi
=

[

1 − F (z∗)
]b

z∗

( b

b − 1

)

−(n−i−1)b

(p∗i )
−b(p∗i − p∗i−1)

=
1

b − 1

[

1 − F (z∗)
]b

z∗

( b

b − 1

)

−(n−i)b

(p∗i−1)
−b+1

=
1

b − 1

[

1 − F (z∗)
]b

z∗

( b

b − 1

)

−(n−i)b( b

b − 1

)

−(i−1)(b−1)

p−b+1
0

=
1

b − 1

[

1 − F (z∗)
]b

z∗

( b

b − 1

)

−(n−1)b+i−1

c−b+1.

This completes the proof of the theorem.

By Theorem 1, we can determine the maximum expected total profit of the decentralized

system:

Π∗ =
n

∑

i=1

Π∗

Pi

=
n

∑

i=1

1

b − 1

[

1 − F (z∗)
]b

z∗

( b

b − 1

)

−(n−1)b+i−1

c−b+1

=
[

1 − F (z∗)
]b

z∗

( b

b− 1

)

−(n−1)b[( b

b − 1

)n

− 1
]

c−b+1. (6)

3 Comparing the Centralized and Decentralized Sys-

tems

In this section, we first analyze the situation where there exists a centralized decision

maker for determining p and q so as to maximize the expected systemwide total profit.

We perform this analysis so that we can compare the total profits of the centralized and

decentralized systems. We let p̂, q̂, and ẑ denote the values of p, q, and z, respectively, in

the centralized system. The centralized system’s expected profit, which includes the profits
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of both the manufacturer and the retailer, is

Π̂(p̂, ẑ) = p̂ · E
[

min{q̂, D(p̂)ε}
]

− cq̂

= p̂−b
{

p̂ · E
[

min{ẑ, ε}
]

− cẑ
}

= p̂−b
{

p̂
[

ẑ − Λ(ẑ)
]

− cẑ
}

.

This implies that

∂Π̂(p̂, ẑ)

∂p̂
= −(b− 1)p̂−b

[

ẑ − Λ(ẑ)
]

+ bp̂−b−1cẑ

and

∂Π̂(p̂, ẑ)

∂ẑ
= p̂−b+1

[

1 − F (ẑ)
]

− p̂−bc.

Setting these partial derivatives to zero, we have

p̂∗ =
bcẑ∗

(b − 1)
[

ẑ∗ − Λ(ẑ∗)
] (7)

and

p̂∗ =
c

1 − F (ẑ∗)
, (8)

where p̂∗ and ẑ∗ denote the optimal values of p̂ and ẑ, respectively. Combining (7) and (8),

we obtain

bẑ∗

(b− 1)
[

ẑ∗ − Λ(ẑ∗)
] =

1

1 − F (ẑ∗)
. (9)

From (3) and (9), we have ẑ∗ = z∗. Hence, the maximum expected profit of the centralized

system is given as

Π̂∗ = Π̂(p̂∗, ẑ∗)

= (p̂∗)−b
{

p̂∗
[

ẑ∗ − Λ(ẑ∗)
]

− cẑ∗

}

=
1

b − 1

[

1 − F (ẑ∗)
]b

ẑ∗c−b+1 (by (8) and (9))

=
1

b − 1

[

1 − F (z∗)
]b

z∗c−b+1. (10)
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Next, we analyze the performance of the decentralized system by comparing its expected

total profit with that of the centralized counterpart. The percentage loss of channel profit

due to decentralization decisions is

∆n(b) =
Π̂∗ − Π∗

Π̂∗

.

Substituting (6) and (10) into this equation and simplifying, we have

∆n(b) =

{

1 − (b − 1)
( b

b − 1

)

−(n−1)b[( b

b − 1

)n

− 1
]

}

× 100%.

The following theorem provides some important properties of the function ∆n(b).

Theorem 2 For any integer n ≥ 2, (i) the function ∆n(b) is increasing in b for b > 1, and

(ii) limb→∞ ∆n(b) = 1 − ne−(n−1).

Proof Define

η(λ) =
2(1 − λ)

1 + λ
+ log λ

for 0 < λ ≤ 1. Note that

η′(λ) =
(1 − λ)2

λ(1 + λ)2
> 0

for 0 < λ < 1. Thus, η is strictly increasing on (0, 1). This, together with the fact that

η(1) = 0, implies that η(λ) < 0 for 0 < λ < 1. Hence, for any µ ∈ (0, 1) and x > 1
2
, we have

η(µ2x) < 0, that is,

2(1 − µ2x)

1 + µ2x
+ log µ2x < 0. (11)

Define

θµ(x) =
µ−x − µx

x

for x > 1
2
, where 0 < µ < 1. Then

θ′µ(x) = −
µ−x + µx

2x2

[2(1 − µ2x)

1 + µ2x
+ log µ2x

]

> 0 (by (11)).
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Thus, θµ(x) is strictly increasing when x > 1
2
. This implies that when b > 1, the function

γb(n) =
( b−1

b
)−n/2 − ( b−1

b
)n/2

n/2

is strictly increasing for n ≥ 1. This, together with the property that γb(n) > 0, implies that

γ2
b (1) < γ2

b (n) for n > 1. In other words,

( b−1
b

)−1 + ( b−1
b

) − 2

1/4
<

( b−1
b

)−n + ( b−1
b

)n − 2

n2/4
,

or equivalently,

(b − 1

b

)n−1

+
(b− 1

b

)n+1

− 2
(b − 1

b

)n

<
1

n2

[

1 +
(b − 1

b

)2n

− 2
(b − 1

b

)n]

.

After rearranging terms, we have

n
[

1 − ( b−1
b

)n−1
]

(n − 1)
[

1 − ( b−1
b

)n
] >

(n + 1)
[

1 − ( b−1
b

)n
]

n
[

1 − ( b−1
b

)n+1
] . (12)

Define

βb(n) =
n
[

1 − ( b−1
b

)n−1
]

(n − 1)
[

1 − ( b−1
b

)n
] .

Equation (12) implies that βb(n) is strictly decreasing in n, for any b > 1 and n = 2, 3, . . ..

Let α(b) = 1
b
·βb(2) + log

(

b−1
b

)

= 2
2b−1

+ log
(

b−1
b

)

. Then, limb→∞ α(b) = 0 and

α′(b) =
1

b(b − 1)(2b − 1)2
> 0

for b > 1. This implies that α(b) < 0 for b > 1, which in turn implies that

βb(2) < −b log
(b − 1

b

)

.

Hence,

βb(n) < −b log
(b − 1

b

)
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for n = 2, 3, . . .. Differentiating ∆n(b) with respect to b, we have

∆′(b) = −
(b − 1

b

)(n−1)(b−1)
{

[

1 −
(b − 1

b

)n−1]

n +
[

1 −
(b − 1

b

)n]

(n − 1)b log
(b − 1

b

)

}

= −
(b − 1

b

)(n−1)(b−1)[

1 −
(b − 1

b

)n]

(n − 1)
[

βb(n) + b log
(b− 1

b

)]

> 0.

Therefore, ∆n(b) is increasing when b > 1.

Note that

lim
b→∞

(b− 1)
[( b

b − 1

)n

− 1
]

= lim
b→∞

( b
b−1

)n − 1
b

b−1
− 1

= n

and

lim
b→∞

( b

b − 1

)

−(n−1)b

=
[

lim
b→∞

( b

b− 1

)

· lim
b→∞

(

1 +
1

b− 1

)b−1]−(n−1)

=
(

1 · e
)

−(n−1)
= e−(n−1).

Therefore, limb→∞ ∆n(b) = 1 − ne−(n−1).

Theorem 2 implies that the percentage loss of channel profit caused by decentralized

decisions increases as the price elasticity increases, but it is bounded from above by [1 −

ne−(n−1)]× 100%. Figure 2 depicts the function ∆n(b) for different values of n. As shown in

this figure, when the price-elasticity index b is large, the percentage loss of channel profit is

quite close to the upper bound. Furthermore, we observe that the loss in channel profit is

seriously affected by the number of stages in the supply chain.

4 Concluding Remarks

We have analyzed a multiple-stage supply chain model with pricing decisions made indepen-

dently by each party, while the retailer is facing a price-sensitive uncertain demand. Our
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model allows us to quantify the loss in channel profit caused by uncoordinated pricing deci-

sions. The percentage loss of channel profit depends critically on the number of stages in the

supply chain and the price elasticity. For a given number of supply chain parties, an upper

bound exists on the percentage profit loss of channel profit.

Note that for a two-stage supply chain, the upper bound on the percentage loss of channel

profit is 1−(2/e) ≈ 26.4%, which is identical to channel profit loss in Wang et al.’s [12] model.

In fact, for the special case of n = 2, our mathematical analysis becomes essentially the same

as that in [12]. However, our model addresses the problem where the retailer is responsible

for setting the unit selling price of the product and determining the order quantity, while in

Wang et al.’s model the manufacturer chooses the selling price and the production quantity

under a consignment sales arrangement.

Consider an extension of Wang et al.’s model to an n-stage supply chain (n ≥ 3), where

the manufacturer decides on the retail price and retains ownership of the goods until they

are sold at the retailer. Figure 3 depicts such a system. Here, intermediate party Pi (i =

2, 3, . . . , n−1) serves as a middleman who obtains the consignment contract from its upstream

party and transfers it to its downstream party while keeping a portion of the revenue as its

own profit. We assume that the operating costs of the intermediate parties and the retailer

are zero. The manufacturer’s expected profit is given as

ΠM(p, z) = (p − p2) · E
[

min{q, D(p)ε}
]

− cq = p−b
{

p(1 − ξ)
[

z − Λ(z)
]

− cz
}

,

where z = q · pb and ξ = p2/p. The profit of Pi (i = 2, 3, . . . , n) is given as

ΠPi
(pi) = (pi − pi+1)E

[

min{q∗, D(p∗)ε}
]

,

where pn+1 ≡ 0. Following the method presented in Section 2, we can show that the expected
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profit of Pi is maximized when

p∗i +
c

1 − F (z∗)
=

b

b − 1

[

pi+1 +
c

1 − F (z∗)

]

and that the optimal expected profit of Pi is

Π∗

Pi
=

1

b − 1

[

1 − F (z∗)
]b

z∗

( b

b − 1

)

−(n−1)b+n−i+1

c−b+1,

for i = 2, 3, . . . , n. The optimal expected profit of the manufacturer is

Π∗

P1
= Π∗

M =
1

b − 1

[

1 − F (z∗)
]b

z∗

( b

b − 1

)

−(n−1)b

c−b+1.

Hence, the optimal expected total profit of this decentralized supply chain,
∑n

i=1 Π∗

Pi
, is

identical to that presented in equation (6). This implies that the percentage loss of channel

profit shown in Figure 2 also applies to such a decentralized n-stage consignment model.

However, unlike the multiple-stage supply chain shown in Figure 1, it is less likely that such

an n-stage consignment model (n ≥ 3) exists in reality, since a manufacturer usually signs a

consignment contract directly with the retailer without going through intermediate parties.
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Figure 1. The n-stage supply chain 
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Figure 2. Percentage loss of channel profit versus price-elasticity index 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. The n-stage supply chain with consignment contracts 
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