
Coordinated Scheduling of Customer Orders with

Decentralized Machine Locations

Chung-Lun Li

Jinwen Ou

Department of Logistics

The Hong Kong Polytechnic University

Hung Hom, Kowloon, Hong Kong

Email: lgtclli@polyu.edu.hk

March 2006
Revised June 2006

This is the Pre-Published Version.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PolyU Institutional Repository

https://core.ac.uk/display/61010835?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

We consider a scheduling model with two machines at different locations. Each job is composed

of two tasks where each task must be processed by a specific machine. The finished tasks are

shipped to a distribution center in batches before they are bundled together and delivered to

customers. The objective is to minimize the sum of the delivery cost and customers’ waiting costs.

This model attempts to coordinate the production and delivery schedules on the decentralized

machines while taking into consideration the shipping cost as well as the waiting time of the

customers. We develop polynomial-time heuristic algorithms for this problem and analyze their

worst-case performance. Computational experiments are conducted to test the effectiveness of

the heuristics and to evaluate the benefits obtained by coordinating the production and delivery

of the two decentralized machines.

Key words: Scheduling; deliveries; coordination; heuristics; worst-case analysis

1 Introduction

In many production and transportation planning environments, the delivery of finished goods is

constrained by the processing of different component parts of the product. It is also quite common

that different components of a product have to be processed by their own dedicated machines or work

centers. For example, in the production of personal computer systems, the computers and monitors

are usually produced by different facilities at different locations. However, both the computers and

monitors of the finished product must be bundled together before they can be delivered to customers.

In order to obtain a systemwide optimal production and delivery plan, it is essential to consider the

sequencing and scheduling of the tasks at each machine and the delivery arrangements of the finished

tasks to their final destinations at the same time. When such an integrated plan is developed, the

scheduler faces a tradeoff between providing quick deliveries and minimizing shipping costs. Quick

deliveries minimize customers’ waiting time while low shipping costs directly benefit the company’s

bottom line.

In this paper, we consider a scheduling model which reflects the abovementioned production and

delivery arrangements. In this scheduling model, each job is composed of two tasks where each task

must be processed by a specific machine. The two machines are located at different locations, and

different tasks of the same job can be processed by those machines simultaneously. The finished

tasks are shipped to a distribution center (or consolidation center) before they are bundled together

and delivered to customers. The objective is to minimize the sum of the delivery cost and customers’

waiting costs. For simplicity, the delivery and waiting costs incurred after the finished jobs’ arrival

at the distribution center are not included in this model.

A number of researchers have considered parallel machine scheduling problems where each job

order consists of products of different types and each machine is capable of producing only one specific

product type. A job order is completed only after all of its tasks have finished their processing. This

type of scheduling problems is usually referred to as “customer order scheduling” problems with

1

dedicated machines. Various studies have been conducted on different variants of the problem (see

Wagneur and Sriskandarajah 1993, Sung and Yoon 1998, Cai and Zhou 2004, Ahmadi et al. 2005,

Leung et al. 2005a, 2005b, 2005c, 2006b, Li and Vairaktarakis 2006, and Yang 2005). However,

in these “customer order scheduling” models, the machines are assumed to be located at the same

location. More importantly, apart from Li and Vairaktarakis (2006), none of these works has taken

the transportation of the finished tasks into account. Our model is an extension of the “customer

order scheduling” framework, where machine locations, delivery batch capacities, delivery time, and

delivery cost have been taken into consideration. Our work is more related to Li and Vairaktarakis

(2006), since both papers consider job delivery decisions in a “customer order scheduling” setting.

However, Li and Vairaktarakis have assumed that the two machines are located at the same location.

They have considered the delivery of the completed orders to end customers, and have developed

polynomial-time heuristics and approximation schemes for the case with only direct shipments as

well as the general case with milk-run deliveries. On the other hand, we assume that the machines

are located at different locations, and we consider the transportation of the finished tasks from the

machines to a distribution center.

Another line of customer order scheduling research focuses on identical parallel machines (i.e.,

non-dedicated machines). In such models, the scheduler is allowed to assign jobs to any machine. A

number of studies have examined the different variants of this problem such as the work of Blocher and

Chhajed (1996), Leung et al. (2005d, 2006a), Yang (2003, 2005), and Yang and Posner (2005), among

others. A few researchers have also developed customer order scheduling models with other machine

structure. For example, Julien and Magazine (1990) have studied a customer order scheduling

problem on a single machine, and Blocher et al. (1998) have considered a model with a job-shop

setting. Unlike our model, none of these works has paid attention to decentralized machines or job

delivery.

Our model is a machine-scheduling model with delivery considerations. In fact, integrated pro-

duction and distribution models have received increasing attention. Recently, Chen and Pundoor

2

(2006) have analyzed a scheduling problem with multiple non-dedicated machines where each ma-

chine is located at a different location and has different production costs. Finished tasks are shipped

to a distribution center, and each delivery shipment has a capacity limit. The decision is to assign

jobs to machines, to determine the processing sequences, and to obtain a delivery schedule for the

finished jobs. Thus, the setting of Chen and Pundoor’s model is similar to ours. However, our model

has taken jobs with multiple tasks into consideration where each task of a job must be processed

by a specific machine. For a recent survey on integrated production and distribution operations, see

Chen (2004).

The rest of the paper is organized as follows. In the next section, our problem is defined mathe-

matically and several important properties of the optimal solution are developed. These properties

will enable us to limit our search space for the optimal solution. In Section 3, an efficient heuristic

is developed for our problem and worst-case analysis is performed. In Section 4, several variants of

our model are analyzed. These variants are important stepping stones to the later development of

our analysis. In Section 5, a polynomial-time heuristic with a stronger worst-case performance is

presented. Computational results are reported in Section 6, followed by some concluding remarks in

Section 7.

2 The Model and Its Properties

Our model is mathematically defined as follows. There are two machines M1, M2 and a distribution

center located at different locations (see Figure 1). There is a given set of n jobs J = {J1, J2, . . . , Jn},

where each job Jj is made up of a pair of tasks T1j and T2j. Task T1j must be processed by M1

and requires an uninterrupted processing time of p1j ≥ 0, while task T2j must be processed by M2

and requires an uninterrupted processing time of p2j ≥ 0. Let Cij denote the completion time of

processing of Tij on machine Mi (i = 1, 2; j = 1, 2, . . . , n). A batch of tasks {Tij1, Tij2, . . . , Tijh
} can be

transported from Mi to the distribution center at a fixed delivery cost of λi ≥ 0 after the completion

3

of these tasks, provided that h ≤ K, where K ≥ 1 is the capacity of the delivery batch (i.e., K is

the maximum number of tasks that a delivery vehicle can carry). Note that a variable delivery cost

of µij ≥ 0 for each task Tij can be added to the model without affecting the analysis since the total

variable delivery cost
∑2

i=1

∑n
j=1 µij is a constant. For simplicity, we ignore the variable delivery

costs. Let τi ≥ 0 denote the travel time from Mi to the distribution center, and let Dij denote the

arrival time of Tij at the distribution center. Thus, for the delivery batch {Tij1, Tij2, . . . , Tijh
},

Dij1 = Dij2 = · · · = Dijh
= max{Cij1 , Cij2 , . . . , Cijh

}+ τi.

Denote Dj = max{D1j, D2j}, which is the time when both tasks of job Jj have arrived at the

distribution center (i.e., the time where Jj is ready for delivery to the final customer). The customer’s

waiting cost of job Jj is given as γDj, where γ is the unit cost of waiting. The objective is to schedule

the tasks on each machine and to determine the delivery batches so as to minimize the sum of the

total delivery cost and total customer waiting cost, i.e.,
∑2

i=1 λiNi + γ
∑n

j=1 Dj, where Ni is the

number of batches of jobs transported from Mi to the distribution center. We denote this problem

as P.

For example, a feasible solution to a problem instance of P with n = 4, K = 3, λ1 = λ2 = 5,

γ = 1, τ1 = 8, τ2 = 6, (p11, p21) = (4, 2), (p12, p22) = (2, 5), (p13, p23) = (10, 12), and (p14, p24) =

(10, 2) is depicted in Figure 2. In this solution, the first, second, and third delivery batches of

M1 contain {T12, T11}, {T14}, and {T13}, respectively. The first and second delivery batches of M2

contain {T22, T21, T24} and {T23}, respectively. We have D1 = max{D11, D21} = max{14, 15} = 15,

D2 = max{D12, D22} = max{14, 15} = 15, D3 = max{D13, D23} = max{34, 27} = 34, and D4 =

max{D14, D24} = max{24, 15} = 24. The total customer waiting cost is γ
∑4

j=1 Dj = 88, and the

total delivery cost is λ1N1+λ2N2 = (5)(3)+(5)(2) = 25. Thus, the total cost of this feasible solution

is 113.

When λ1 = λ2 = τ1 = τ2 = 0, it is optimal to deliver one finished task at a time, and prob-

lem P reduces to the simple two-dedicated-machine order scheduling problem with an objective of

4

minimizing the sum of job completion times, which is known to be NP-hard in the strong sense (see

Ahmadi et al. 2005 and Yang 2005). Thus, problem P is strongly NP-hard as well.

The following lemma provides some important properties of the optimal solution.

Lemma 1 There exists an optimal solution to problem P in which:

(i) There is no idle time on either machine.

(ii) A delivery batch leaves the machine location as soon as all of its tasks have completed processing.

(iii) If two tasks of the same machine are assigned to the same delivery batch, then all the tasks

processed in between these two tasks are also assigned to the same batch.

Proof: If a machine has idle time, then we can eliminate the idle time by shifting the start time of

tasks to the left without increasing the waiting time and delivery costs of the jobs. This implies the

validity of property (i). Property (ii) can be proven by a similar argument. Property (iii) can be

proven easily by a task interchange argument.

In the following sections, we will only consider schedules that satisfy properties (i)–(iii) of this

lemma.

3 A Simple Heuristic Algorithm

In this section, we present a simple heuristic for problem P. This heuristic is efficient, and the

relative error of its solution is guaranteed to be no more than 100%.

We construct a modified problem P′ which has the same definition as problem P, except that

the objective is to minimize
∑2

i=1 λiNi + γ
∑n

j=1 D′

j, where D′

j = (D1j + D2j)/2. Note that problem

P′ is decomposed into two independent subproblems. Subproblem i (i = 1, 2) is a single-machine

problem with task processing times pi1, pi2, . . . , pin, delivery time τi, delivery cost λi, unit waiting

cost γ/2, and batch capacity K. It is easy to see that there exists an optimal solution to subproblem

5

i in which the tasks are processed in nondecreasing order of task processing time. Thus, we first

arrange the jobs in nondecreasing order of task processing time and reindex the tasks such that

pi1 ≤ pi2 ≤ · · · ≤ pin. Then, we determine the delivery batches by the following dynamic program:

(1) Define fi(j) as the minimum total cost of the partial schedule which consists of tasks Ti1, Ti2,

. . . , Tij (j = 1, 2, . . . , n).

(2) Recurrence relation:

fi(j) = min
k=0,1,...,j−1
s.t. k≥j−K

{

fi(k) +
γ

2
· (j − k)(Pij + τi) + λi

}

,

where Pij =
∑j

`=1 pi`.

(3) Boundary condition: fi(0) = 0.

(4) Optimal solution value: fi(n).

In the above recurrence relation, the quantity (γ/2)(j − k)(Pij + τi) + λi is the total waiting

and delivery cost of the jobs in the last delivery batch of the partial schedule. This delivery batch

contains j − k tasks.

After solving these two subproblems, an optimal schedule for problem P′ is obtained. We use

this schedule as a heuristic solution to the original problem P and denote this heuristic as H1. In

the above dynamic program, the values of Pij (i = 1, 2; j = 1, 2, . . . , n) can be predetermined in

O(n) time. The number of possible states is O(n), and each state requires a computational time

of O(n). Hence, the running time of this dynamic program is O(n2). Therefore, the computational

complexity of heuristic H1 is O(n2).

Let ZH1(P) denote the total cost of the solution generated by heuristic H1. Let Z∗(P) and

Z∗(P′) denote the total costs of the optimal solutions to P and P′, respectively.

Theorem 1
[

ZH1(P)− Z∗(P)
]

/Z∗(P) ≤ 1.

6

Proof: Because D′

j ≤ Dj for j = 1, 2, . . . , n, the optimal solution to P′ must have a total cost no

greater than that of P. In other words,

Z∗(P′) ≤ Z∗(P). (1)

Next, consider the solution generated by heuristic H1. Because Dj ≤ 2D′

j for j = 1, 2, . . . , n, we

have
∑2

i=1 λiNi + γ
∑n

j=1 Dj ≤ 2
[
∑2

i=1 λiNi + γ
∑n

j=1 D′

j

]

, which implies that ZH1(P) ≤ 2Z∗(P′).

This, together with (1), implies that ZH1(P) ≤ 2Z∗(P).

Theorem 1 states that the relative error of the heuristic solution is guaranteed to be no more

than 100%. It remains an interesting open question of whether this error bound is tight, that is,

whether there exists a constant α < 1 such that [ZH1(P)− Z∗(P)]/Z∗(P) ≤ α.

4 Variants of Problem P

We now analyze three variants of problem P. The development of effective solution methods for

these variants is an important stepping stone to our later development of an improved error bound

for the general problem.

4.1 When the Number of Delivery Batches Is Limited

We first consider the problem in which N1 and N2 are given parameters. This corresponds to

the situation where the number of delivery batches from each machine location is reserved by the

company in advance. We denote this problem as P(N1, N2).

To solve problem P(N1, N2), we propose the following heuristic method: Similar to heuristic H1,

we construct a modified problem P′(N1, N2) which has the same definition as problem P(N1, N2),

except that the objective is to minimize
∑2

i=1 λiNi +γ
∑n

j=1 D′

j. Problem P′(N1, N2) is decomposed

into two independent subproblems. Subproblem i (i = 1, 2) is a single-machine problem with task

processing times pi1, pi2, . . . , pin, delivery time τi, delivery cost λi, unit waiting cost γ/2, batch

7

capacity K, and a given number of delivery batches Ni. We arrange the tasks in nondecreasing order

of task processing time, reindex the tasks such that pi1 ≤ pi2 ≤ · · · ≤ pin, determine the values of

Pij =
∑j

`=1 pi` for ` = 1, 2, . . . , n, and then determine the delivery batches by the following dynamic

program:

(1) Define fi(j, N) as the minimum total cost of the partial schedule which consists of tasks Ti1, Ti2,

. . . , Tij, given that there are N deliveries available (j = 1, 2, . . . , n; N = 1, 2, . . . , Ni).

(2) Recurrence relation:

fi(j, N) = min
k=0,1,...,j−1
s.t. k≥j−K

{

fi(k, N − 1) +
γ

2
· (j − k)(Pij + τi) + λi

}

.

(3) Boundary conditions: fi(0, 0) = 0; fi(j, 0) = +∞ for j ≥ 1; and fi(0, N) = +∞ for N ≥ 1.

(4) Optimal solution value: fi(n, Ni).

After solving these two subproblems, an optimal schedule for problem P′(N1, N2) is obtained.

We use this schedule as a heuristic solution to problem P(N1, N2) and denote this heuristic as

H2(N1, N2). The running time of H2(N1, N2) is O(n3). Note that the above dynamic program can

be used to determine the values of all fi(n, Ni) for i = 1, 2 and N1, N2 = dn/Ke, dn/Ke+1, . . . , n in

O(n3) time. Hence, the heuristic solutions to P(N1, N2) for all N1 and N2 values can be determined

in O(n3) time.

Let ZH2(P(N1, N2)) denote the total cost of the solution generated by heuristic H2(N1, N2). Let

σ∗(P(N1, N2)) denote the optimal solution to problem P(N1, N2) and Z∗(P(N1, N2)) be its total

cost. Using the same arguments as in the proof of Theorem 1, we have

ZH2(P(N1, N2)) ≤

2
∑

i=1

λiNi + 2γ

n
∑

j=1

D∗

j , (2)

where D∗

j is the value of Dj in σ∗(P(N1, N2)). Thus, ZH2(P(N1, N2)) ≤ 2Z∗(P(N1, N2)). This

implies the following result, which provides a performance guarantee on heuristic H2(N1, N2).

Theorem 2
[

ZH2(P(N1, N2)) − Z∗(P(N1, N2))
]

/Z∗(P(N1, N2)) ≤ 1.

8

4.2 When the Delivery Batch has Unit Capacity

Next, we consider a special case of problem P in which the capacity of the delivery batch is equal

to one (i.e., K = 1). We denote this special case as P1. In this special case, N1 = N2 = n in any

feasible solution. Hence, throughout the analysis of this special case, we only consider solutions in

which a delivery always takes place at the completion of a task. Li and Vairaktarakis (2006) have

developed a polynomial-time approximation scheme (PTAS) for the problem with identical machine

locations but no delivery considerations. We now extend Li and Vairaktarakis’ PTAS to solve P1.

Lemma 2 There exists an optimal solution to problem P1 in which:

(i) The task processing sequences on both machines are identical.

(ii) If “p1j < p1k and p2j ≤ p2k” or “p1j ≤ p1k and p2j < p2k,” then Jj precedes Jk in the processing

sequence.

Proof: To prove property (i), suppose that in an optimal solution, there exists ` ∈ {1, 2, . . . , n} such

that the `th position of M1 and the `th position of M2 are occupied by tasks of different jobs. Then

let

r = max
{

`
∣

∣

∣
the `th position of M1 and the `th position

of M2 are occupied by tasks of different jobs
}

.

Let T1j be the task which occupies the rth position of M1 and T2k be the task which occupies the rth

position of M2 (see Figure 3). Note that j 6= k. If D1j ≤ D2k, then we can rearrange the processing

of the tasks on M1 by moving T1k immediately behind T1j, and this will not increase the arrival

time of any job at the distribution center. Similarly, if D1j > D2k, then rearranging the tasks on

M2 by moving T2j immediately behind T2k will not increase the total cost of the schedule. Thus, by

repeatedly applying this rearrangement of jobs, we can obtain an alternative optimal schedule which

satisfies property (i). Property (ii) can be proven by a straightforward job interchange argument.

9

In the rest of this subsection, we will only consider schedules that satisfy properties (i) and (ii)

of this lemma. Given a positive integer β, we define the following job subsets:

S ′

r =
{

Jj ∈ J
∣

∣

r−1
β ·p1j ≤ p2j < r

β ·p1j

}

(r = 1, 2, . . . , β);

S ′′

r =
{

Jj ∈ J
∣

∣

r−1
β ·p2j ≤ p1j < r

β ·p2j

}

(r = 1, 2, . . . , β−1);

S ′′

β =
{

Jj ∈ J
∣

∣

β−1
β

·p2j ≤ p1j ≤ p2j

}

.

Clearly, {S ′

1, S
′

2, . . . , S
′

β, S ′′

1 , S ′′

2 , . . . , S ′′

β} is a partition of J. Using this job partition, we construct a

modified problem P̄1 with the following task processing times:

(p̄1j, p̄2j) =











(

p1j,
r−1
β

·p1j

)

, if Jj ∈ S ′

r (r = 1, 2, . . . , β);

(

r−1
β

·p2j, p2j

)

, if Jj ∈ S ′′

r (r = 1, 2, . . . , β);

for j = 1, 2, . . . , n. The idea of this construction is to modify some of the original task processing

times so that we can make use of property (ii) of Lemma 2 to obtain an optimal schedule in polynomial

time. The construction is made in such a way that the changes in flow time of the tasks are under

control.

By property (ii) of Lemma 2, there exists an optimal solution to P̄1 in which the jobs in S ′

r are

processed in nondecreasing order of p1j and the jobs in S ′′

r are processed in nondecreasing order of

p2j, for r = 1, 2, . . . , β. Let Jπr(1), Jπr(2), . . . , Jπr(nr) denote the jobs in set S ′

r, sorted in nondecreasing

order of p1j (r = 1, 2, . . . , β), where nr = |S ′

r|. Let Jπβ+r(1), Jπβ+r(2), . . . , Jπβ+r(nβ+r) denote the jobs

in set S ′′

r , sorted in nondecreasing order of p2j (r = 1, 2, . . . , β), where nβ+r = |S ′′

r |. Hence, an

optimal solution to P̄1 can be obtained by optimally merging these 2β job sequences. This can be

achieved by the following dynamic program.

Denote

J(x1, x2, . . . , x2β) =

2β
⋃

r=1

{

Jπr(1), Jπr(2), . . . , Jπr(xr)

}

.

Define f(x1, x2, . . . , x2β) as the minimum total customer waiting cost of the partial schedule which

consists of the jobs in J(x1, x2, . . . , x2β), where xr = 0, 1, . . . , nr for r = 1, 2, . . . , 2β. We have the

10

following recurrence relation:

f(x1, x2, . . . , x2β)

= min
`=1,2,...,2β
s.t. x` 6=0

{

f(x1, . . . , x`−1, x` − 1, x`+1, . . . , x2β) + γ max

{ 2β
∑

r=1

xr
∑

j=1

p̄1j + τ1,

2β
∑

r=1

xr
∑

j=1

p̄2j + τ2

}

}

.

The boundary condition is f(0, 0, . . . , 0) = 0, and the optimal solution value of problem P̄1 is

f(n1, n2, . . . , n2β) + (λ1 + λ2)n. Let σ∗(P̄1) denote the optimal schedule to problem P̄1 obtained by

this dynamic program. We take the job sequence of this schedule and use it as a heuristic solution

to problem P1.

The values of
∑2β

r=1

∑xr

j=1 p̄1j and
∑2β

r=1

∑xr

j=1 p̄2j (xr = 0, 1, . . . , nr; r = 1, 2, . . . , 2β) can be

predetermined in O(n2β) time. Thus, the above dynamic program solves the problem in O(βn2β)

time. If β is a constant, then the running time of this heuristic is O(n2β). We denote this heuristic

as H3(β). Let σH3(β)(P1) denote the schedule generated by H3(β), and let ΓH3(β)(P1) denote the

total customer waiting cost of this solution. Let Γ∗(P̄1) denote the total customer waiting cost of

σ∗(P̄1), and Γ∗(P1) denote the optimal total customer waiting cost of problem P1.

Lemma 3
[

ΓH3(β)(P1) − Γ∗(P1)
]

/Γ∗(P1) ≤ 1/β.

Proof: Let Jπ(j) denote the jth job in schedule σ∗(P̄1) and ∆j denote the difference in arrival time

of Jπ(j) at the distribution center between schedules σH3(β)(P1) and σ∗(P̄1). Let ∆′

j and ∆′′

j denote

the difference in completion time of processing of T1,π(j) and T2,π(j), respectively, between these two

schedules. We have

∆′

j =

j
∑

k=1

(p1,π(k) − p̄1,π(k)) ≤
∑

k=1,2,...,j s.t.

Jπ(k)∈S′′
1 ∪···∪S′′

β

1

β
· p2,π(k) =

1

β

∑

k=1,2,...,j s.t.

Jπ(k)∈S′′
1 ∪···∪S′′

β

p̄2,π(k) ≤
1

β

j
∑

k=1

p̄2,π(k)

and

∆′′

j =

j
∑

k=1

(p2,π(k) − p̄2,π(k)) ≤
∑

k=1,2,...,j s.t.
Jπ(k)∈S′

1
∪···∪S′

β

1

β
· p1,π(k) =

1

β

∑

k=1,2,...,j s.t.
Jπ(k)∈S′

1
∪···∪S′

β

p̄1,π(k) ≤
1

β

j
∑

k=1

p̄1,π(k).

11

Thus, for j = 1, 2, . . . , n,

∆j ≤ max{∆′

j, ∆
′′

j} ≤
1

β
·max

{ j
∑

k=1

p̄1,π(k),

j
∑

k=1

p̄2,π(k)

}

≤
1

β
·max

{ j
∑

k=1

p̄1,π(k) + τ1,

j
∑

k=1

p̄2,π(k) + τ2

}

.

Hence,

ΓH3(β)(P1)− Γ∗(P̄1) = γ

n
∑

j=1

∆j ≤
γ

β

n
∑

j=1

max

{ j
∑

k=1

p̄1,π(k) + τ1,

j
∑

k=1

p̄2,π(k) + τ2

}

=
1

β
·Γ∗(P̄1).

Note that Γ∗(P̄1) ≤ Γ∗(P1). Therefore, ΓH3(β)(P1) − Γ∗(P1) ≤ (1/β)·Γ∗(P1).

Let ZH3(β)(P1) and Z∗(P1) denote the total cost of schedules σH3(β)(P1) and σ∗(P1), respec-

tively. Note that ZH3(β)(P1) = n(λ1 + λ2) + ΓH3(β)(P1) and Z∗(P1) = n(λ1 + λ2) + Γ∗(P1). Hence,

Lemma 3 implies the following result.

Theorem 3
[

ZH3(β)(P1) − Z∗(P1)
]

/Z∗(P1) ≤ 1/β.

Because the running time of H3(β) is O(n2β), Theorem 3 implies that H3(β), β = 1, 2, . . ., is a

PTAS for problem P1.

4.3 When the Job Processing Sequence Is Predetermined

Next, we consider the case in which the task processing sequences on both machines are given

and identical. In this case, our focus is on determining the delivery schedule of the finished tasks.

We will present an efficient algorithm for obtaining the optimal schedule. For the convenience of

presentation, we reindex the jobs in such a way that the job processing sequence is J1, J2, . . . , Jn.

Thus, the task processing sequence on Mi is Ti1, Ti2, . . . , Tin (i = 1, 2), and the completion time of

task Tij is Pij =
∑j

`=1 pi` (i = 1, 2; j = 1, 2, . . . , n).

Define f(j; k1, k2) as the minimum total cost of the partial schedule which consists of jobs

J1, J2, . . . , Jj, given that tasks Ti,j+1, Ti,j+2, . . . , Tiki
have been scheduled to depart from Mi in one

batch at time Piki
(i = 1, 2), where k1, k2 = j+1, j+2, . . . , n and j = 0, 1, . . . , n−1. Note that in the

12

definition of f(j; k1, k2), tasks T1,j+1, T1,j+2, . . . , T1k1 form a delivery batch. This batch has unused

capacity if k1 < j + K. In such a case, we may choose to include task T1j in this batch without

incurring an additional delivery cost. Similarly, tasks T2,j+1, T2,j+2, . . . , T2k2 form a delivery batch.

If this batch has unused capacity, we may choose to include task T2j in this batch at no additional

delivery cost. Hence, we have the following recurrence relation:

f(j; k1, k2) = min
{

f(j − 1; k1, k2) + γ max{P1k1 + τ1, P2k2 + τ2},

f(j − 1; j, k2) + γ max{P1j + τ1, P2k2 + τ2} + λ1,

f(j − 1; k1, j) + γ max{P1k1 + τ1, P2j + τ2} + λ2,

f(j − 1; j, j)+ γ max{P1j + τ1, P2j + τ2} + λ1 + λ2

}

if k1 ≤ j + K and k2 ≤ j + K. In the right hand side of this equation, there are four choices. The

first choice is to let T1j depart from M1 (together with T1,j+1, T1,j+2, . . . , T1k1) at time P1k1 and let

T2j depart from M2 (together with T2,j+1, T2,j+2, . . . , T2k2) at time P2k2. This does not incur any

additional delivery cost. The second choice differs from the first choice in that T1j is assigned to a

different delivery batch which departs M1 at time P1j (i.e., immediately after the processing of T1j).

If this choice is made, a delivery cost of λ1 is incurred. The third choice differs from the first choice

in that T2j is assigned to a different delivery batch which departs M2 at time P2j (i.e., immediately

after the processing of T2j). The fourth choice is to assign both T1j and T2j to new delivery batches.

The boundary conditions are

f(j; k1, k2) = +∞ if k1 > j + K or k2 > j + K;

f(0; k1, k2) = 0 if k1 ≤ K and k2 ≤ K.

The optimal solution value is f(n−1; n, n) + γ max{P1n + τ1, P2n + τ2}+ λ1 + λ2, where f(n−1; n, n)

is the total cost of J1, J2, . . . , Jn−1, while γ max{P1n + τ1, P2n + τ2} and λ1 + λ2 are the customer

waiting cost and delivery cost, respectively, of Jn. We denote this dynamic programming algorithm

as A1. The running time of algorithm A1 is O(n3).

13

5 An Improved Heuristic for Problem P

We now present a more effective heuristic for the general problem P. Denote Nmin = dn/Ke, and let

β be a given positive integer parameter. The idea is to try both heuristics H2(N1, N2) and H3(β)

on the given problem instance and select the better of the two results. Because heuristic H3(β) is

designed for the case with K = 1, we expect that it is only effective when the value of K is small.

Therefore, we apply algorithm A1 (see subsection 4.3) to improve the result generated by H3(β).

Heuristic H4(β):

Step 1: For N1, N2 = Nmin, Nmin+1, . . . , n, apply heuristic H2(N1, N2) to obtain a solution to prob-

lem P(N1, N2) and denote the solution as σH2(P(N1, N2)).

Step 2: Apply heuristic H3(β) to obtain a solution to problem P1, and denote the solution as

σH3(β)(P1).

Step 3: Take the job processing sequence of σH3(β)(P1) and apply algorithm A1 to obtain an optimal

delivery schedule. Denote this solution as σA1.

Step 4: Select the best one among
{

σH2(P(N1, N2)) | N1, N2 = Nmin, Nmin + 1, . . . , n
}

∪
{

σA1
}

as

the solution to problem P.

As explained in subsection 4.1, Step 1 of heuristic H4(β) takes O(n3) time. Step 2 takes O(n2β)

time if β is a constant, and Step 3 takes O(n3) time. Hence, the overall running time of this heuristic

is O(n2β) when β ≥ 2. If K = 1, then by Theorem 3, the relative error of the solution generated

by this heuristic is guaranteed to be no more than 1
β
× 100%. Let ZH4(β)(P) denote the total cost

of the solution generated by H4(β), and Z∗(P) denote the total cost of the optimal solution. The

following theorem provides a performance guarantee on this heuristic when K ≥ 2.

Theorem 4 If K ≥ 2, then
[

ZH4(β)(P) − Z∗(P)
]

/Z∗(P) ≤ (K − 1)/(K − 1
β).

14

Proof: Consider an optimal solution σ∗(P) to problem P. Let Λ∗ = λ1N
∗

1 + λ2N
∗

2 denote the

total delivery cost of σ∗(P), where N ∗

1 and N ∗

2 are the values of N1 and N2, respectively, in this

optimal solution. Let Γ∗ = γ
∑n

j=1 D∗

j denote the total customer waiting cost of σ∗(P), where D∗

j

is the value of Dj in this optimal solution. Recall that ZH2(P(N1, N2)) is the total cost of solution

σH2(P(N1, N2)) and ZH3(β)(P1) is the total cost of solution σH3(β)(P1). We divide the analysis into

two cases.

Case 1: (K − 1)Λ∗ ≥ (1 − 1
β
)Γ∗. In this case,

Λ∗ + Γ∗

Γ∗
≥

K − (1/β)

K − 1
. (3)

Because one of the candidate solutions obtained in Step 1 of H4(β) is σH2(P(N ∗

1 , N ∗

2)), we have

ZH4(β)(P) ≤ ZH2(P(N ∗

1 , N ∗

2)) ≤ Λ∗ + 2Γ∗, where the second inequality follows from (2). This

implies that

ZH4(β)(P)− Z∗(P)

Z∗(P)
≤

Γ∗

Λ∗ + Γ∗

≤
K − 1

K − (1/β)
(by (3)).

Case 2: (K − 1)Λ∗ < (1 − 1
β)Γ∗. In this case,

Λ∗ + Γ∗

Λ∗
>

K − (1/β)

1 − (1/β)
. (4)

Note that N ∗

1 ≥ n/K and N ∗

2 ≥ n/K, which implies that (λ1 + λ2)n ≤ KΛ∗. Consider the solution

obtained in Step 2 of H4(β), we have

ZH4(β)(P) ≤ ZH3(β)(P1)

≤ (λ1 + λ2)n +
(

1 +
1

β

)

Γ∗(P1) (by Lemma 3)

≤ KΛ∗ +
(

1 +
1

β

)

Γ∗(P1)

≤ KΛ∗ +
(

1 +
1

β

)

Γ∗.

15

Therefore,

ZH4(β)(P)− Z∗(P)

Z∗(P)
≤

(K − 1)Λ∗ + (1/β)Γ∗

Λ∗ + Γ∗

=
1

β
+

(

K − 1 −
1

β

)

·
Λ∗

Λ∗ + Γ∗

<
1

β
+

(K − 1 − 1
β
)(1 − 1

β
)

K − 1
β

(by (4))

=
K − 1

K − (1/β)
.

Combining Cases 1 and 2 yields the desired result.

Theorems 3 and 4 imply that there exists a polynomial-time heuristic for problem P with a

worst-case error bound arbitrarily close to (K −1)/K for any fixed integer K ≥ 1. This error bound

is larger as K gets larger, and it approaches 1 as K approaches infinity. This implies that the

performance of heuristic H4(β) has a better guarantee when the batch capacity is small.

6 Computational Experiments

To test the performance of our heuristics, a set of computational experiments has been conducted.

In these experiments, we use randomly generated problems and then compare their heuristic solution

values with the lower bounds of the optimal solution values. We test heuristic H1, as well as heuristic

H4(β) with β = 2 and 3.

Let Σ denote the set of all feasible solutions of problem P. Define

LB1(α) = min
σ∈Σ

{ 2
∑

i=1

λiNi + γ

n
∑

j=1

[

αD1j + (1− α)D2j

]

}

,

where 0 ≤ α ≤ 1. For any given value of α, the value of LB1(α) can be obtained via a dynamic

program similar to that presented in Section 3. Because αD1j + (1 − α)D2j ≤ max{D1j, D2j}, we

have LB1(α) ≤ Z∗(P) for all α ∈ [0, 1]. Thus, a lower bound on Z∗(P) is given as

LB1 = max
α∈I

{

LB1(α)
}

,

16

where I is any finite subset of [0, 1]. In our computational experiments, we have selected I =

{0.00, 0.01, 0.02, . . . , 1.00}.

Note that the total delivery cost of a given problem is at least (λ1 + λ2) ·dn/Ke and the total

waiting cost of a given problem is at least Γ∗(P̄1). Thus, another lower bound on Z∗(P) is given as

LB2 = (λ1 + λ2)·
⌈ n

K

⌉

+ Γ∗(P̄1).

We now develop some alternative lower bounds as follows. We reindex the jobs such that p11 ≤

p12 ≤ · · · ≤ p1n. Define

p′1j = p1j

and

p′2j = min{p2j, p2,j+1, . . . , p2n}.

Let P̃ denote the problem after replacing all pij with p′ij. Note that p′21 ≤ p′22 ≤ · · · ≤ p′2n. Thus, there

exists an optimal solution to P̃ in which the processing sequence on machine Mi is Ti1, Ti2, . . . , Tin for

i = 1, 2. Hence, problem P̃ can be solved efficiently by using the method developed in subsection 4.3.

Let LB3 denote the optimal solution value of P̃. Clearly, LB3 is a lower bound on Z∗(P).

Similarly, we can reindex the jobs such that p21 ≤ p22 ≤ · · · ≤ p2n and define

p′′1j = min{p1j, p1,j+1, . . . , p1n}

and

p′′2j = p2j.

Let LB4 denote the optimal solution value of the problem after replacing all pij by p′′ij. Then LB4

is also a lower bound on Z∗(P). We let

LB = max{LB1, LB2, LB3, LB4},

which is the lower bound that we use in our computational study.

17

To obtain a random problem instance, we generate the task processing times p1j and p2j (j =

1, 2, . . . , n) that are independent and uniformly distributed in the interval (0, 1]. We generate the

delivery times τ1 and τ2 that are independent and uniformly distributed in the interval (0, τmax],

where τmax is a given parameter. We assume that the unit cost of waiting, γ, is equal to 1 (in

practice, if γ is not equal to 1 then we may rescale the monetary unit so that γ = 1). We generate

the delivery costs λ1 and λ2 that are independent and uniformly distributed in the interval (0, λmax],

where λmax is a given parameter.

In the computational study, the following parameters are used: n is set to 10, 20, 40, and 80; K

is set to 1, 2, 4, and 8; τmax is set to 1 and 4; and λmax is set to 1, 2, 4, and 8. Hence, there are

128 combinations of values of n, K, τmax, and λmax. For each of these combinations, we generate

10 random problem instances. For each instance, we compute the heuristic solution values and the

value of LB.

Denote

eH1 =
ZH1(P)− LB

LB
× 100%

and

eH4(β) =
ZH4(β)(P) − LB

LB
× 100% (β = 2, 3).

For each combination of n, K, τmax, and λmax, we calculate the average values of eH1, eH4(2), and

eH4(3) (denoted as ēH1, ēH4(2), and ēH4(3), respectively) from the 10 test instances. The quantities

ēH1, ēH4(2), and ēH4(3) are used as estimates of the relative errors of heuristics H1, H4(2), and

H4(3), respectively.

Tables 1–4 summarize the computational results. From these results, we observe that heuristics

H4(2) and H4(3) outperform heuristic H1 substantially while in most cases the performance of

H4(3) is slightly better than that of H4(2). The performance of heuristics H4(2) and H4(3) tends

to drop as K increases. This is consistent with the worst-case analysis result presented in Theorem 4.

We also observe that the values of ēH1, ēH4(2), and ēH4(3) increase as n increases. However, as stated

in Theorems 1 and 4, there exist upper limits on these relative errors. The performance of these

18

heuristics is better when τmax = 4 as compared to τmax = 1. This is because both the heuristic and

optimal schedules of a given problem instance will remain unchanged if τ1 and τ2 are increased by the

same amount ∆. The only difference is that the total cost of both the heuristic and optimal solutions

will increase by γn∆. Hence, an increase in τ1 and τ2 simultaneously will result in a smaller relative

error of the heuristic solution. Therefore, the relative errors of the heuristics tend to decrease as

τmax increases. In our experiments, when λmax = 8, over 80% of the delivery batches in the heuristic

solutions are full. On the other hand, when λmax = 1, except for the case where K = 1, most delivery

batches in the heuristic solutions are not full. In most combinations of n, K, and τmax, the values

of ēH1, ēH4(2), and ēH4(3) reach a maximum at λmax = 1 or λmax = 2. The average value of ēH4(3)

among all 1280 test instances is 6.4%, indicating that the overall effectiveness of heuristic H4(3) is

quite high.

Another set of computational experiments are then conducted to test the benefits of coordinating

the schedules of the two decentralized machines through the use of our model. To achieve that, we

compare the solutions obtained by heuristic H4(3) with the solutions obtained by scheduling the

production and delivery of each machine independently. We use the above randomly generated

problem instances. For each problem instance, we determine

r =
Zind(P)− ZH4(3)(P)

Zind(P)
× 100%,

where Zind(P) is the total cost of the solution to problem P obtained by solving two independent

single-machine production and delivery problems Pind
1 and Pind

2 . The objective of problem Pind
1 is to

minimize λ1N1 +γ
∑n

j=1 D1j, while the objective to problem Pind
2 is to minimize λ2N2 +γ

∑n
j=1 D2j.

Problems Pind
1 and Pind

2 can be solved optimally using the dynamic program presented in Section 3,

except that the unit waiting cost is now γ instead of γ/2. For each combination of values of n, K,

τmax, and λmax, we calculate the average values of r (denoted as r̄) from the 10 test instances. The

quantity r̄ is the percentage reduction in total cost if the coordinated schedule is used compared to

the use of an uncoordinated schedule.

19

Table 5 summarizes the computational results. From these results, we observe that the saving

obtained from coordinating the machine schedules increases as n increases. This implies that as

the problem size increases, there are more saving opportunities available through coordinating the

operations of the two decentralized machines. We also observe that such saving tends to increase

as K increases. When K is large, it provides more flexibility to better coordinate the two machine

schedules, and therefore, the benefit of coordination is more significant. The percentage saving

obtained from coordination is smaller when τmax = 4 as compared to τmax = 1. Again, this is because

an increase in τ1 and τ2 simultaneously will lead to an increase in both ZH4(3)(P) and Zind(P) by

the same amount. This results in a drop in r. Therefore, the percentage savings obtained from

coordination tend to decrease as τmax increases.

7 Conclusions

In this paper, we studied a machine-scheduling model with two machines processing tasks at different

locations where the completed tasks are delivered to a distribution center in batches. The problem

is NP-hard in the strong sense. We first developed a simple heuristic and showed that the relative

error of the heuristic solution must not exceed 100%. We further developed a more sophisticated

polynomial-time heuristic with a better worst-case error bound which depends on the capacity of the

delivery batches. Our computational study not only shows that the improved heuristic is effective

in practice but also shows that the coordination of the production and delivery schedules of the two

decentralized machines can provide a substantial saving in delivery and customer waiting costs.

There are several possible extensions to this research. One extension is to generalize our model

and analysis to include more than two decentralized machines, tasks that occupy different amount

of space in a delivery batch, and jobs with different waiting cost per time unit. Another extension

is to consider the integration of production schedules of decentralized machines, deliveries from the

decentralized machines to the distribution center, and the deliveries from the distribution center to

20

end customers.

Acknowledgment

This research was supported in part by the Research Grants Council of Hong Kong under Grant

No. PolyU5222/06E.

References

Ahmadi, R., U. Bagchi and T.A. Roemer (2005). Coordinated scheduling of customer orders for

quick response. Naval Research Logistics, 52, 493–512.

Blocher, J.D. and D. Chhajed (1996). The customer order lead time problem on parallel machines.

Naval Research Logistics, 43, 629–654.

Blocher, J.D., D. Chhajed and M. Leung (1998). Customer order scheduling in a general job shop

environment. Decision Sciences, 29, 951–981.

Cai, X. and X. Zhou (2004). Deterministic and stochastic scheduling with teamwork tasks. Naval

Research Logistics, 51, 818–840.

Chen, Z.-L. (2004). Integrated production and distribution operations: Taxonomy, models, and

review. D. Simchi-Levi, D. Wu and Z.-J. Shen (eds.), Handbook of Quantitative Supply Chain

Analysis: Modeling in the E-Business Era. Kluwer Academic Publishers, Boston, MA.

Chen, Z.-L. and G. Pundoor (2006). Order assignment and scheduling in a supply chain. Operations

Research, 3, 555–572.

Chen, Z.-L. and G.L. Vairaktarakis (2005). Integrated scheduling of production and distribution

operations. Management Science, 51, 614–628.

21

Julien, F.M. and M.J. Magazine (1990). Scheduling customer orders: An alternative production

scheduling approach. Journal of Manufacturing and Operations Management, 3, 177–199.

Leung, J.Y.-T., H. Li and M. Pinedo (2005a). Order scheduling in an environment with dedicated

resources in parallel. Journal of Scheduling, 8, 355–386.

Leung, J.Y.-T., H. Li and M. Pinedo (2005b). Scheduling orders for multiple product types to

minimize total weighted completion time. Working paper.

Leung, J.Y.-T., H. Li, M. Pinedo and C. Sriskandarajah (2005c). Open shops with jobs overlap—

revisited. European Journal of Operational Research, 163, 569–571.

Leung, J.Y.-T., H. Li, M. Pinedo and J. Zhang (2005d). Minimizing total weighted completion time

when scheduling orders in a flexible environment with uniform machines. Working paper.

Leung, J.Y.-T., H. Li and M. Pinedo (2006a). Approximation algorithms for minimizing total

weighted completion time of orders on identical machines in parallel. Naval Research Logistics,

53, 243–260.

Leung, J.Y.-T., H. Li and M. Pinedo (2006b). Scheduling orders for multiple product types with

due date related objectives. European Journal of Operational Research, 168, 370–389.

Li, C.-L. and G. Vairaktarakis (2006). Coordinating production and distribution of jobs with

bundling operations. IIE Transactions, forthcoming.

Sung, C.S. and S.H. Yoon (1998). Minimizing total weighted completion time at a pre-assembly

stage composed of two feeding machines. International Journal of Production Economics, 54,

247–255.

Wagneur, E. and C. Sriskandarajah (1993). Open shops with jobs overlap. European Journal of

Operational Research, 71, 366–378.

22

Yang, J. (2003). Scheduling parallel machines for the customer order problem with fixed batch

sequence. Journal of the Korean Institute of Industrial Engineers, 29, 304–311.

Yang, J. (2005). The complexity of customer order scheduling problems on parallel machines.

Computers and Operations Research, 32, 1921–1939.

Yang, J. and M.E. Posner (2005). Scheduling parallel machines for the customer order problem.

Journal of Scheduling, 8, 49–74.

23

Table 1. Computational results for K = 1

 n = 10 n = 20 n = 40 n = 80
K = 1 τmax = 1 λmax = 1 1He = 19.6%

)2(4He = 5.4%
)3(4He = 4.6%

1He = 25.7%
)2(4He = 7.1%
)3(4He = 6.0%

1He = 33.6%
)2(4He = 10.8%
)3(4He = 9.5%

1He = 39.6%
)2(4He = 12.2%
)3(4He = 10.2%

 λmax = 2 1He = 16.0%
)2(4He = 4.6%
)3(4He = 3.6%

1He = 19.1%
)2(4He = 5.6%
)3(4He = 4.5%

1He = 29.9%
)2(4He = 8.8%
)3(4He = 7.7%

1He = 34.5%
)2(4He = 10.0%
)3(4He = 8.9%

 λmax = 4 1He = 13.0%
)2(4He = 3.6%
)3(4He = 3.3%

1He = 17.2%
)2(4He = 5.5%
)3(4He = 4.9%

1He = 22.8%
)2(4He = 5.9%
)3(4He = 5.4%

1He = 33.0%
)2(4He = 10.0%
)3(4He = 8.7%

 λmax = 8 1He = 6.0%
)2(4He = 1.6%
)3(4He = 1.2%

1He = 17.3%
)2(4He = 4.5%
)3(4He = 4.0%

1He = 20.7%
)2(4He = 6.2%
)3(4He = 5.1%

1He = 28.1%
)2(4He = 7.4%
)3(4He = 7.0%

 τmax = 4 λmax = 1 1He = 7.9%
)2(4He = 2.5%
)3(4He = 2.0%

1He = 14.3%
)2(4He = 3.0%
)3(4He = 2.8%

1He = 25.4%
)2(4He = 7.0%
)3(4He = 6.3%

1He = 32.3%
)2(4He = 9.2%
)3(4He = 8.3%

 λmax = 2 1He = 6.4%
)2(4He = 1.9%
)3(4He = 1.3%

1He = 14.0%
)2(4He = 3.6%
)3(4He = 2.8%

1He = 21.8%
)2(4He = 5.8%
)3(4He = 4.9%

1He = 29.6%
)2(4He = 8.1%
)3(4He = 6.8%

 λmax = 4 1He = 3.8%
)2(4He = 1.3%
)3(4He = 0.8%

1He = 14.7%
)2(4He = 4.3%
)3(4He = 3.4%

1He = 17.1%
)2(4He = 4.0%
)3(4He = 3.4%

1He = 30.1%
)2(4He = 9.5%
)3(4He = 8.4%

 λmax = 8 1He = 3.1%
)2(4He = 0.7%
)3(4He = 0.6%

1He = 8.8%
)2(4He = 2.4%
)3(4He = 1.9%

1He = 15.1%
)2(4He = 3.9%
)3(4He = 3.3%

1He = 24.8%
)2(4He = 6.8%
)3(4He = 6.2%

Table 2. Computational results for K = 2

 n = 10 n = 20 n = 40 n = 80
K = 2 τmax = 1 λmax = 1 1He = 20.7%

)2(4He = 6.7%
)3(4He = 6.2%

1He = 27.8%
)2(4He = 7.8%
)3(4He = 7.1%

1He = 37.0%
)2(4He = 11.7%
)3(4He = 11.0%

1He = 42.4%
)2(4He = 14.5%
)3(4He = 12.5%

 λmax = 2 1He = 14.3%
)2(4He = 4.2%
)3(4He = 3.6%

1He = 22.8%
)2(4He = 6.6%
)3(4He = 6.3%

1He = 33.2%
)2(4He = 9.6%
)3(4He = 8.8%

1He = 38.7%
)2(4He = 11.9%
)3(4He = 10.7%

 λmax = 4 1He = 12.1%
)2(4He = 2.6%
)3(4He = 2.3%

1He = 20.7%
)2(4He = 5.0%
)3(4He = 5.1%

1He = 30.4%
)2(4He = 9.0%
)3(4He = 8.1%

1He = 37.0%
)2(4He = 11.5%
)3(4He = 10.0%

 λmax = 8 1He = 7.4%
)2(4He = 1.4%
)3(4He = 1.3%

1He = 17.7%
)2(4He = 5.8%
)3(4He = 5.3%

1He = 23.0%
)2(4He = 6.2%
)3(4He = 5.7%

1He = 31.7%
)2(4He = 9.2%
)3(4He = 8.1%

 τmax = 4 λmax = 1 1He = 7.8%
)2(4He = 2.6%
)3(4He = 2.2%

1He = 19.8%
)2(4He = 5.3%
)3(4He = 4.6%

1He = 26.1%
)2(4He = 7.1%
)3(4He = 5.7%

1He = 34.7%
)2(4He = 10.8%
)3(4He = 9.3%

 λmax = 2 1He = 9.7%
)2(4He = 2.1%
)3(4He = 1.8%

1He = 18.3%
)2(4He = 5.1%
)3(4He = 4.5%

1He = 25.6%
)2(4He = 7.4%
)3(4He = 6.3%

1He = 32.9%
)2(4He = 9.1%
)3(4He = 8.0%

 λmax = 4 1He = 11.8%
)2(4He = 3.5%
)3(4He = 3.3%

1He = 13.4%
)2(4He = 3.4%
)3(4He = 2.9%

1He = 20.9%
)2(4He = 5.0%
)3(4He = 4.3%

1He = 31.6%
)2(4He = 9.0%
)3(4He = 8.2%

 λmax = 8 1He = 2.8%
)2(4He = 0.5%
)3(4He = 0.3%

1He = 10.8%
)2(4He = 2.7%
)3(4He = 2.3%

1He = 21.6%
)2(4He = 6.6%
)3(4He = 5.9%

1He = 30.3%
)2(4He = 9.0%
)3(4He = 8.3%

Table 3. Computational results for K = 4

 n = 10 n = 20 n = 40 n = 80
K = 4 τmax = 1 λmax = 1 1He = 24.3%

)2(4He = 7.9%
)3(4He = 7.6%

1He = 31.8%
)2(4He = 9.9%
)3(4He = 9.6%

1He = 35.2%
)2(4He = 11.3%
)3(4He = 9.8%

1He = 37.5%
)2(4He = 11.3%
)3(4He = 10.6%

 λmax = 2 1He = 20.5%
)2(4He = 7.2%
)3(4He = 7.0%

1He = 24.2%
)2(4He = 7.8%
)3(4He = 7.4%

1He = 35.4%
)2(4He = 11.9%
)3(4He = 11.3%

1He = 38.5%
)2(4He = 12.1%
)3(4He = 11.3%

 λmax = 4 1He = 12.7%
)2(4He = 3.2%
)3(4He = 2.9%

1He = 21.9%
)2(4He = 7.4%
)3(4He = 6.7%

1He = 32.8%
)2(4He = 9.3%
)3(4He = 8.7%

1He = 37.1%
)2(4He = 10.9%
)3(4He = 10.3%

 λmax = 8 1He = 13.3%
)2(4He = 4.3%
)3(4He = 3.9%

1He = 21.5%
)2(4He = 6.0%
)3(4He = 5.2%

1He = 29.5%
)2(4He = 9.0%
)3(4He = 8.5%

1He = 32.8%
)2(4He = 10.1%
)3(4He = 9.3%

 τmax = 4 λmax = 1 1He = 13.7%
)2(4He = 4.8%
)3(4He = 4.2%

1He = 22.9%
)2(4He = 7.5%
)3(4He = 6.7%

1He = 28.6%
)2(4He = 8.6%
)3(4He = 7.8%

1He = 30.1%
)2(4He = 8.4%
)3(4He = 7.1%

 λmax = 2 1He = 12.8%
)2(4He = 3.9%
)3(4He = 3.6%

1He = 19.3%
)2(4He = 5.0%
)3(4He = 4.4%

1He = 27.8%
)2(4He = 7.9%
)3(4He = 7.1%

1He = 32.8%
)2(4He = 9.2%
)3(4He = 8.5%

 λmax = 4 1He = 8.9%
)2(4He = 2.3%
)3(4He = 2.0%

1He = 18.7%
)2(4He = 5.5%
)3(4He = 4.7%

1He = 25.2%
)2(4He = 7.3%
)3(4He = 7.0%

1He = 32.1%
)2(4He = 8.7%
)3(4He = 8.3%

 λmax = 8 1He = 6.3%
)2(4He = 1.5%
)3(4He = 1.4%

1He = 12.7%
)2(4He = 3.4%
)3(4He = 3.1%

1He = 21.7%
)2(4He = 5.5%
)3(4He = 4.9%

1He = 28.9%
)2(4He = 8.3%
)3(4He = 7.3%

Table 4. Computational results for K = 8

 n = 10 n = 20 n = 40 n = 80
K = 8 τmax = 1 λmax = 1 1He = 21.5%

)2(4He = 8.5%
)3(4He = 8.3%

1He = 29.8%
)2(4He = 10.7%
)3(4He = 10.0%

1He = 32.6%
)2(4He = 9.8%
)3(4He = 9.3%

1He = 37.2%
)2(4He = 10.4%
)3(4He = 9.2%

 λmax = 2 1He = 19.9%
)2(4He = 7.6%
)3(4He = 7.4%

1He = 27.8%
)2(4He = 8.9%
)3(4He = 8.7%

1He = 33.7%
)2(4He = 10.9%
)3(4He = 10.3%

1He = 40.7%
)2(4He = 12.8%
)3(4He = 12.0%

 λmax = 4 1He = 18.7%
)2(4He = 8.2%
)3(4He = 7.8%

1He = 29.7%
)2(4He = 10.7%
)3(4He = 10.6%

1He = 33.4%
)2(4He = 10.3%
)3(4He = 9.9%

1He = 41.5%
)2(4He = 14.1%
)3(4He = 13.3%

 λmax = 8 1He = 13.4%
)2(4He = 4.6%
)3(4He = 4.5%

1He = 23.6%
)2(4He = 8.9%
)3(4He = 8.4%

1He = 27.4%
)2(4He = 8.2%
)3(4He = 7.6%

1He = 37.6%
)2(4He = 11.7%
)3(4He = 11.1%

 τmax = 4 λmax = 1 1He = 11.5%
)2(4He = 4.5%
)3(4He = 4.3%

1He = 20.5%
)2(4He = 6.9%
)3(4He = 6.7%

1He = 29.4%
)2(4He = 9.0%
)3(4He = 8.2%

1He = 31.9%
)2(4He = 8.9%
)3(4He = 8.2%

 λmax = 2 1He = 11.0%
)2(4He = 3.5%
)3(4He = 3.5%

1He = 17.3%
)2(4He = 4.8%
)3(4He = 4.5%

1He = 30.6%
)2(4He = 10.0%
)3(4He = 9.7%

1He = 31.4%
)2(4He = 9.1%
)3(4He = 8.5%

 λmax = 4 1He = 8.8%
)2(4He = 3.2%
)3(4He = 3.0%

1He = 17.7%
)2(4He = 5.4%
)3(4He = 5.0%

1He = 28.2%
)2(4He = 9.9%
)3(4He = 9.3%

1He = 34.1%
)2(4He = 10.2%
)3(4He = 9.6%

 λmax = 8 1He = 7.7%
)2(4He = 1.5%
)3(4He = 1.4%

1He = 16.9%
)2(4He = 5.3%
)3(4He = 4.9%

1He = 23.6%
)2(4He = 7.1%
)3(4He = 6.7%

1He = 34.2%
)2(4He = 10.8%
)3(4He = 10.2%

Table 5. Percentage savings (r) obtained from coordinating the two decentralized machines

 n = 10 n = 20 n = 40 n = 80
K = 1 τmax = 1 λmax = 1 11.6% 14.7% 17.4% 20.3%

 λmax = 2 9.3% 11.4% 16.6% 18.7%

 λmax = 4 8.3% 9.8% 14.1% 17.8%

 λmax = 8 4.1% 10.8% 12.2% 16.4%

 τmax = 4 λmax = 1 5.0% 9.9% 15.1% 17.7%

 λmax = 2 4.5% 8.8% 13.3% 17.3%

 λmax = 4 2.7% 9.2% 11.3% 16.8%

 λmax = 8 2.3% 6.4% 10.0% 14.8%

K = 2 τmax = 1 λmax = 1 12.4% 16.0% 18.3% 20.2%

 λmax = 2 9.1% 13.5% 18.1% 19.8%

 λmax = 4 8.6% 13.0% 16.9% 19.0%

 λmax = 8 5.6% 10.2% 14.0% 17.6%

 τmax = 4 λmax = 1 5.5% 12.8% 15.7% 18.3%

 λmax = 2 6.9% 11.5% 15.1% 18.5%

 λmax = 4 7.8% 9.1% 13.7% 17.5%

 λmax = 8 2.4% 7.4% 12.8% 16.9%

K = 4 τmax = 1 λmax = 1 13.7% 17.1% 18.2% 19.6%

 λmax = 2 11.6% 13.8% 18.0% 19.7%

 λmax = 4 9.2% 12.7% 18.0% 19.6%

 λmax = 8 8.6% 13.2% 16.2% 17.6%

 τmax = 4 λmax = 1 8.9% 13.0% 15.7% 17.2%

 λmax = 2 8.0% 12.9% 16.4% 17.1%

 λmax = 4 6.3% 11.9% 14.5% 17.9%

 λmax = 8 4.8% 8.9% 13.8% 16.7%

K = 8 τmax = 1 λmax = 1 11.8% 15.2% 17.7% 20.1%

 λmax = 2 9.8% 15.4% 17.6% 20.4%

 λmax = 4 10.0% 15.2% 18.1% 20.1%

 λmax = 8 10.3% 12.6% 15.9% 19.4%

 τmax = 4 λmax = 1 7.3% 11.7% 16.5% 18.0%

 λmax = 2 6.9% 11.3% 16.2% 17.6%

 λmax = 4 6.2% 10.8% 15.0% 18.4%

 λmax = 8 7.1% 10.4% 14.1% 18.0%

Figure 1. Machines and distribution center

Figure 2. A numerical example

Figure 3. The schedule in the proof of property (i) of Lemma 2

Distribution
center

Machine M1

Machine M2

customers

Travel time: τ1
Delivery cost: λ1

Travel time: τ2
Delivery cost: λ2

…

…

…

…

M1

M2

T1k T1j

T2j T2k

r tasks

r tasks

same job sequence

T12 T11 T14 T13

T22 T21 T24 T23

time 34 27 24 15 14 0

M1

M2

2 6 16 26

5 7 9 21

