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Abstract 

 
We consider uniform parallel machine scheduling problems with unit-length jobs where 
every job is only allowed to be processed on a specified subset of machines. We develop 
efficient methods to solve problems with various objectives, including minimizing a total 
tardiness function, a maximum tardiness function, total completion time, the number of tardy 
jobs, the makespan, etc. 
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1. Introduction 

 In this paper, we consider the scheduling of unit-length jobs onto parallel machines of 

different speeds as well as different capabilities (or eligibility restrictions). The different 

capabilities of the machines cause them to be incompatible with some jobs. We consider two 

classes of performance measures for schedules: the min-sum objective and the min-max 

objective. 

 Let },,,{ 21 nJJJ   be a given set of jobs and },,,{ 21 mMMM   be a given set of 

machines, where nm ≤ . For each nj ,,2,1 = , let },,,{ 21 mj MMM ⊆M  be the set of 

machines that is capable of processing job jJ . Let +∈ Zvi  be the speed of machine iM  

( mi ,,2,1 = ). Each job has a unit “length,” meaning that its processing time is iv1  if it is 

processed by iM . Corresponding to each job jJ  is a due date jd . We would like to schedule 

the jobs onto the machines so as to minimize some objective function, where job preemption 

is not allowed. Let jC  be the completion time of jJ , let }0,max{ jjj dCT −=  be the 

tardiness of jJ , let 
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and let jf  be a nondecreasing function ( nj ,,2,1 = ). We consider the objective of 

minimizing ∑ =

n

j jj Tf
1

)(  as well as the objective of minimizing { })(max ,...,1 jjnj Tf= . Note that 

these two objectives cover many commonly used performance measures in machine 

scheduling, including the minimization of makespan ( maxC ), total completion time (∑ jC ), 

total weighted completion time (∑ jjCw ), total tardiness (∑ jT ), total weighted tardiness 

(∑ jjTw ), maximum tardiness ( maxT ), maximum weighted tardiness ( }max{ iiTw ), number 

of tardy jobs (∑ jU ), and weighted number of tardy jobs (∑ jjUw ). Using the well-known 

three-field representation of scheduling problems [5], our models are denoted by 

)(|,,1| jjjjj TfdpQm Σ= M  and )}(max{|,,1| jjjjj TfdpQm M= . 

 Lin and Li [3] recently considered problems max|,1| CpPm jj M=  and 

max|,1| CpQm jj M= , and have developed polynomial time algorithms to solve them. Our 

work can be viewed as an extension of their work. We improve the computational 

complexities of their algorithms and extend their models to cover various other scheduling 

objectives. 

 

 

2. Algorithms and Complexity 

 In this section, we develop efficient algorithms for a number of variants of our model. 
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Recall that function jf  is nondecreasing for nj ,,2,1 = . Thus, for both problems 

)(|,,1| jjjjj TfdpQm Σ= M  and )}(max{|,,1| jjjjj TfdpQm M= , an optimal solution 

must exist with no idle time between jobs or before the processing of the first job on each 

machine. Hence, it is sufficient to consider such an optimal solution. This implies that on 

each machine, there are n  possible time slots to which the jobs may be assigned, where the 

starting time of the kth time slot on machine iM  is ivk )1( − . Therefore, our objective is to 

assign n  jobs to mn  possible time slots in such a way that all machine eligibility constraints 

are satisfied and that the objective value is minimized. 

 

2.1 Problem )(|,,1| jjjjj TfdpQm Σ= M  

 We first consider problem )(|,,1| jjjjj TfdpQm Σ= M . In this problem, the cost of 

assigning job jJ  to the kth time slot of machine iM  is given by 





∉∞+
∈−

=
, if,
, if,0,)/(max }){(

ji

jijij
jki M

Mdvkf
c

M

M
 

where nj ,,2,1 = , nk ,,2,1 = , and mi ,,2,1 = . Let nn =1  and mnn =2 . This 21 nn ×  

bipartite weighted matching problem can be solved in )),,(( 21211 CnnnnSnO +  time using the 

well-known Successive Shortest Path Algorithm, where ),,( 2121 CnnnnS +  is the time 

needed to solve a shortest path problem with 21 nn +  nodes, 21nn  arcs, and maximum 

coefficient C  (see [1] and [2] for details of this time-bound and the Successive Shortest Path 

Algorithm). Currently, the best-known strongly polynomial time-bound for ),,( CauS  is 

)log( uuaO + . Hence, the 21 nn ×  bipartite weighted matching problem can be solved in 

))log(( 22211 nnnnnO +  time. Therefore, problem )(|,,1| jjjjj TfdpQm Σ= M  can be solved 

in ))log(( 2 nmnmmnnO +  = )( 3mnO  time. 

 Note that this result implies that a number of special cases of problem 

)(|,,1| jjjjj TfdpQm Σ= M  can be solved in )( 3mnO  time as well. This includes problems 

jjjjj TwdpQm Σ= |,,1| M , jjjj CwpQm Σ= |,1| M , and jjjjj UwdpQm Σ= |,1| M, , as 

well as their unweighted versions and identical-machine versions. Some of these special 

cases can actually be solved by algorithms with a lower computational complexity. 

 Consider the special case of jjj CpPm Σ= |,1| M . After the problem is formulated as 

an 21 nn ×  bipartite weighted matching problem, it can be solved in ))log(( 2211 CnnnnO ⋅  

time using the Cost Scaling Algorithm, where C  is the largest cost coefficient (see [1] and 

[4]). For this special case, kc jki =  if jiM M∈ . Thus, all of the cost parameters of the 
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bipartite weighted matching problem are integers and are no greater than n , i.e., nC ≤ . 

Therefore, this special case is solvable in ))log(( 22 mnmnnO ⋅  = )log( 5.2 nmnO  time. 

 The special case of jjjj UdpQm Σ= |,,1| M  can also be solved more efficiently using 

the same approach. Here, jkic  equals either 0 or 1 if jiM M∈ . Thus, all of the cost 

parameters of the bipartite weighted matching problem are integers and are no greater than 1, 

i.e., 1≤C . Therefore, this special case is also solvable in )log( 5.2 nmnO  time. 

 

2.2 Problem )}(max{|,,1| jjjjj TfdpQm M=  

 Next, we consider problem )}(max{|,,1| jjjjj TfdpQm M= . To solve this scheduling 

problem with a min-max objective, we consider the decision problem of whether there exists 

a feasible schedule with λ≤)}(max{ jj Tf , where λ  is a given nonnegative value. Using the 

same argument as in subsection 2.1, the objective of this decision problem is to assign n  jobs 

to mn  possible time slots in such a way that all machine eligibility constraints are satisfied 

and that the cost of each assigned job in no more than λ . Thus, this is an mnn×  bipartite 

cardinality matching problem in which a job jJ  is allowed to be assigned to the kth time slot 

of machine iM  if and only if jiM M∈  and λ≤− )( jv
k

j df
i

. To solve problem 

)}(max{|,,1| jjjjj TfdpQm M= , we need to search for the smallest possible value of λ  so 

that the outcome of the decision problem is positive. This can be done via binary search. 

 Since there are mn2  possible ways of assigning n  jobs to mn  time slots, there are at 

most mn2  possible values of )}(max{ jj Tf . Thus, the binary search requires ))(log( 2mnO  = 

)(log nO  iterations. An mnn×  bipartite cardinality matching problem can be solved in 

)( 2mnnO ⋅  = )( 5.2 mnO  time (see [1]). Therefore, the overall running time of the algorithm 

is )log( 5.2 nmnO . 

 Note that this result implies that a number of special cases of problem 

)}(max{|,,1| jjjjj TfdpQm M=  can be solved in )log( 5.2 nmnO  time as well. This includes 

problems max|,,1| TdpQm jjj M= , }max{|,1| jjjj CwpQm M= , and max|,1| CpQm jj M= . 

In fact, as will be shown in the next subsection, problem max|,1| CpQm jj M=  can be solved 

more efficiently by using a different method. 

 

2.3 Problems max|,1| CpQm jj M=  and max|,1| CpPm jj M=  

 In this subsection, we discuss a polynomial time algorithm for solving problem 

max|,1| CpQm jj M= . The algorithm was proposed by Lin and Li [3], and it requires solving 

a maximum flow problem in every iteration. The underlying network, denoted as )(cN , is 

depicted in Figure 1. In this network, an arc ji yx →  with unit capacity exists if and only if 
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jiM M∈  ( mi ,,2,1 = ; nj ,,2,1 = ). A binary search is employed to search for the 

smallest value of c  that will give us a flow value of n . Such a flow in network )(cN  

corresponds to a feasible schedule of problem max|,1| CpQm jj M= . 

 In fact, Lin and Li’s algorithm can also generate an optimal solution to problem 

max|,1| CpQm jj M=  if the arc capacities cvcvcv m,,, 21   in network )(cN  are replaced by 

     cvcvcv m,,, 21  , respectively. This is because if the makespan of the schedule is c , then 

there are at most  cvi  jobs assigned to machine iM . Thus, we modify Lin and Li’s 

algorithm by adjusting the capacity of ixs →  to  cvi  for mi ,,2,1 = . Note that since there 

is no idle time in the schedule, the optimal makespan of problem max|,1| CpQm jj M=  must 

be equal to ivk /  for some mi ,,2,1 =  and nk ,,2,1 = . Hence, there are only mn  possible 

optimal makespan values. Thus, a binary search of c  requires )(log)(log nOnmO =  

iterations. In each iteration, solving the maximum flow problem requires 

)log( 2 UnnmnO +⋅  time if the Excess Scaling Algorithm is used, where U  denotes the 

largest arc capacity [1]. In our case, nvcvU maxmax ≤≤ , where },,,max{ 21max mvvvv = . 

Thus, the running time of each iteration is ))log(()log( max
22 nvmnOUnnmnO +≤+⋅ . The 

overall complexity of the algorithm is )log)log(( max
2 nnvmnO + , which is an improvement 

on Lin and Li’s complexity of )log( 3
lcmnvnO , where lcmv  is the least common multiple of 

mvvv ,,, 21  . 

 For the case where all machines are identical (i.e., max|,1| CpPm jj M= ), Lin and Li 

[3] proposed a maximum flow algorithm and reported a running time of )log( 3 nnO . Their 

algorithm can be implemented by converting network )(cN  into a simple network. The 

resulting complexity becomes )log( 5.15.2 nmnO . In this special case, 1max =v , and our 

computational complexity becomes )log)log(( 2 nnmnO + , which again is an improvement 

on Lin and Li’s complexity. 

 

 

3. Conclusion 

 We have developed and analyzed several algorithms for solving a number of variants of 

the uniform machine scheduling problem with unit-length jobs and machine eligibility 

restrictions. The results are summarized in Table 1. These algorithms make use of the 

bipartite weighted matching, bipartite cardinality matching, and maximum flow models as 

well as binary searches to achieve low computational complexity. 
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 Table 1. Summary of results. 

Problem Computational complexity 

)(|,,1| jjjjj TfdpQm Σ= M  )( 3mnO  

jjj CpPm Σ= |,1| M  )log( 5.2 nmnO  

jjjj UdpQm Σ= |,,1| M  )log( 5.2 nmnO  

)}(max{|,,1| jjjjj TfdpQm M=  )log( 5.2 nmnO  

max|,1| CpQm jj M=  )log)log(( max
2 nnvmnO +  

max|,1| CpPm jj M=  )log)log(( 2 nnmnO +  
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Figure 1. Network )(cN . 
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