

Scheduling Unit-Length Jobs with Machine Eligibility Restrictions

Chung-Lun Li
Department of Logistics, The Hong Kong Polytechnic University,

Hung Hom, Kowloon, Hong Kong, China
Phone: +852-2766-7410; Fax: +852-2334-1765

Email: lgtclli@polyu.edu.hk

SHORT COMMUNICATION

Abstract

We consider uniform parallel machine scheduling problems with unit-length jobs where
every job is only allowed to be processed on a specified subset of machines. We develop
efficient methods to solve problems with various objectives, including minimizing a total
tardiness function, a maximum tardiness function, total completion time, the number of tardy
jobs, the makespan, etc.

Keywords: Scheduling; Machine eligibility restrictions; Unit-length jobs; Uniform machines

April 2004
Revised: February 2005

This is the Pre-Published Version.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PolyU Institutional Repository

https://core.ac.uk/display/61010826?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2

1. Introduction

 In this paper, we consider the scheduling of unit-length jobs onto parallel machines of

different speeds as well as different capabilities (or eligibility restrictions). The different

capabilities of the machines cause them to be incompatible with some jobs. We consider two

classes of performance measures for schedules: the min-sum objective and the min-max

objective.

 Let },,,{ 21 nJJJ  be a given set of jobs and },,,{ 21 mMMM  be a given set of

machines, where nm ≤ . For each nj ,,2,1 = , let },,,{ 21 mj MMM ⊆M be the set of

machines that is capable of processing job jJ . Let +∈ Zvi be the speed of machine iM

(mi ,,2,1 =). Each job has a unit “length,” meaning that its processing time is iv1 if it is

processed by iM . Corresponding to each job jJ is a due date jd . We would like to schedule

the jobs onto the machines so as to minimize some objective function, where job preemption

is not allowed. Let jC be the completion time of jJ , let }0,max{ jjj dCT −= be the

tardiness of jJ , let





≤
>

=
, if,0
, if,1

jj

jj
j dC

dC
U

and let jf be a nondecreasing function (nj ,,2,1 =). We consider the objective of

minimizing ∑ =

n

j jj Tf
1

)(as well as the objective of minimizing { })(max ,...,1 jjnj Tf= . Note that

these two objectives cover many commonly used performance measures in machine

scheduling, including the minimization of makespan (maxC), total completion time (∑ jC),

total weighted completion time (∑ jjCw), total tardiness (∑ jT), total weighted tardiness

(∑ jjTw), maximum tardiness (maxT), maximum weighted tardiness (}max{ iiTw), number

of tardy jobs (∑ jU), and weighted number of tardy jobs (∑ jjUw). Using the well-known

three-field representation of scheduling problems [5], our models are denoted by

)(|,,1| jjjjj TfdpQm Σ= M and)}(max{|,,1| jjjjj TfdpQm M= .

 Lin and Li [3] recently considered problems max|,1| CpPm jj M= and

max|,1| CpQm jj M= , and have developed polynomial time algorithms to solve them. Our

work can be viewed as an extension of their work. We improve the computational

complexities of their algorithms and extend their models to cover various other scheduling

objectives.

2. Algorithms and Complexity

 In this section, we develop efficient algorithms for a number of variants of our model.

 3

Recall that function jf is nondecreasing for nj ,,2,1 = . Thus, for both problems

)(|,,1| jjjjj TfdpQm Σ= M and)}(max{|,,1| jjjjj TfdpQm M= , an optimal solution

must exist with no idle time between jobs or before the processing of the first job on each

machine. Hence, it is sufficient to consider such an optimal solution. This implies that on

each machine, there are n possible time slots to which the jobs may be assigned, where the

starting time of the kth time slot on machine iM is ivk)1(− . Therefore, our objective is to

assign n jobs to mn possible time slots in such a way that all machine eligibility constraints

are satisfied and that the objective value is minimized.

2.1 Problem)(|,,1| jjjjj TfdpQm Σ= M

 We first consider problem)(|,,1| jjjjj TfdpQm Σ= M . In this problem, the cost of

assigning job jJ to the kth time slot of machine iM is given by





∉∞+
∈−

=
, if,
, if,0,)/(max }){(

ji

jijij
jki M

Mdvkf
c

M

M

where nj ,,2,1 = , nk ,,2,1 = , and mi ,,2,1 = . Let nn =1 and mnn =2 . This 21 nn ×

bipartite weighted matching problem can be solved in)),,((21211 CnnnnSnO + time using the

well-known Successive Shortest Path Algorithm, where),,(2121 CnnnnS + is the time

needed to solve a shortest path problem with 21 nn + nodes, 21nn arcs, and maximum

coefficient C (see [1] and [2] for details of this time-bound and the Successive Shortest Path

Algorithm). Currently, the best-known strongly polynomial time-bound for),,(CauS is

)log(uuaO + . Hence, the 21 nn × bipartite weighted matching problem can be solved in

))log((22211 nnnnnO + time. Therefore, problem)(|,,1| jjjjj TfdpQm Σ= M can be solved

in))log((2 nmnmmnnO + =)(3mnO time.

 Note that this result implies that a number of special cases of problem

)(|,,1| jjjjj TfdpQm Σ= M can be solved in)(3mnO time as well. This includes problems

jjjjj TwdpQm Σ= |,,1| M , jjjj CwpQm Σ= |,1| M , and jjjjj UwdpQm Σ= |,1| M, , as

well as their unweighted versions and identical-machine versions. Some of these special

cases can actually be solved by algorithms with a lower computational complexity.

 Consider the special case of jjj CpPm Σ= |,1| M . After the problem is formulated as

an 21 nn × bipartite weighted matching problem, it can be solved in))log((2211 CnnnnO ⋅

time using the Cost Scaling Algorithm, where C is the largest cost coefficient (see [1] and

[4]). For this special case, kc jki = if jiM M∈ . Thus, all of the cost parameters of the

 4

bipartite weighted matching problem are integers and are no greater than n , i.e., nC ≤ .

Therefore, this special case is solvable in))log((22 mnmnnO ⋅ =)log(5.2 nmnO time.

 The special case of jjjj UdpQm Σ= |,,1| M can also be solved more efficiently using

the same approach. Here, jkic equals either 0 or 1 if jiM M∈ . Thus, all of the cost

parameters of the bipartite weighted matching problem are integers and are no greater than 1,

i.e., 1≤C . Therefore, this special case is also solvable in)log(5.2 nmnO time.

2.2 Problem)}(max{|,,1| jjjjj TfdpQm M=

 Next, we consider problem)}(max{|,,1| jjjjj TfdpQm M= . To solve this scheduling

problem with a min-max objective, we consider the decision problem of whether there exists

a feasible schedule with λ≤)}(max{ jj Tf , where λ is a given nonnegative value. Using the

same argument as in subsection 2.1, the objective of this decision problem is to assign n jobs

to mn possible time slots in such a way that all machine eligibility constraints are satisfied

and that the cost of each assigned job in no more than λ . Thus, this is an mnn× bipartite

cardinality matching problem in which a job jJ is allowed to be assigned to the kth time slot

of machine iM if and only if jiM M∈ and λ≤−)(jv
k

j df
i

. To solve problem

)}(max{|,,1| jjjjj TfdpQm M= , we need to search for the smallest possible value of λ so

that the outcome of the decision problem is positive. This can be done via binary search.

 Since there are mn2 possible ways of assigning n jobs to mn time slots, there are at

most mn2 possible values of)}(max{ jj Tf . Thus, the binary search requires))(log(2mnO =

)(log nO iterations. An mnn× bipartite cardinality matching problem can be solved in

)(2mnnO ⋅ =)(5.2 mnO time (see [1]). Therefore, the overall running time of the algorithm

is)log(5.2 nmnO .

 Note that this result implies that a number of special cases of problem

)}(max{|,,1| jjjjj TfdpQm M= can be solved in)log(5.2 nmnO time as well. This includes

problems max|,,1| TdpQm jjj M= , }max{|,1| jjjj CwpQm M= , and max|,1| CpQm jj M= .

In fact, as will be shown in the next subsection, problem max|,1| CpQm jj M= can be solved

more efficiently by using a different method.

2.3 Problems max|,1| CpQm jj M= and max|,1| CpPm jj M=

 In this subsection, we discuss a polynomial time algorithm for solving problem

max|,1| CpQm jj M= . The algorithm was proposed by Lin and Li [3], and it requires solving

a maximum flow problem in every iteration. The underlying network, denoted as)(cN , is

depicted in Figure 1. In this network, an arc ji yx → with unit capacity exists if and only if

 5

jiM M∈ (mi ,,2,1 = ; nj ,,2,1 =). A binary search is employed to search for the

smallest value of c that will give us a flow value of n . Such a flow in network)(cN

corresponds to a feasible schedule of problem max|,1| CpQm jj M= .

 In fact, Lin and Li’s algorithm can also generate an optimal solution to problem

max|,1| CpQm jj M= if the arc capacities cvcvcv m,,, 21  in network)(cN are replaced by

     cvcvcv m,,, 21  , respectively. This is because if the makespan of the schedule is c , then

there are at most  cvi jobs assigned to machine iM . Thus, we modify Lin and Li’s

algorithm by adjusting the capacity of ixs → to  cvi for mi ,,2,1 = . Note that since there

is no idle time in the schedule, the optimal makespan of problem max|,1| CpQm jj M= must

be equal to ivk / for some mi ,,2,1 = and nk ,,2,1 = . Hence, there are only mn possible

optimal makespan values. Thus, a binary search of c requires)(log)(log nOnmO =

iterations. In each iteration, solving the maximum flow problem requires

)log(2 UnnmnO +⋅ time if the Excess Scaling Algorithm is used, where U denotes the

largest arc capacity [1]. In our case, nvcvU maxmax ≤≤ , where },,,max{ 21max mvvvv = .

Thus, the running time of each iteration is))log(()log(max
22 nvmnOUnnmnO +≤+⋅ . The

overall complexity of the algorithm is)log)log((max
2 nnvmnO + , which is an improvement

on Lin and Li’s complexity of)log(3
lcmnvnO , where lcmv is the least common multiple of

mvvv ,,, 21  .

 For the case where all machines are identical (i.e., max|,1| CpPm jj M=), Lin and Li

[3] proposed a maximum flow algorithm and reported a running time of)log(3 nnO . Their

algorithm can be implemented by converting network)(cN into a simple network. The

resulting complexity becomes)log(5.15.2 nmnO . In this special case, 1max =v , and our

computational complexity becomes)log)log((2 nnmnO + , which again is an improvement

on Lin and Li’s complexity.

3. Conclusion

 We have developed and analyzed several algorithms for solving a number of variants of

the uniform machine scheduling problem with unit-length jobs and machine eligibility

restrictions. The results are summarized in Table 1. These algorithms make use of the

bipartite weighted matching, bipartite cardinality matching, and maximum flow models as

well as binary searches to achieve low computational complexity.

 6

 Table 1. Summary of results.

Problem Computational complexity

)(|,,1| jjjjj TfdpQm Σ= M)(3mnO

jjj CpPm Σ= |,1| M)log(5.2 nmnO

jjjj UdpQm Σ= |,,1| M)log(5.2 nmnO

)}(max{|,,1| jjjjj TfdpQm M=)log(5.2 nmnO

max|,1| CpQm jj M=)log)log((max
2 nnvmnO +

max|,1| CpPm jj M=)log)log((2 nnmnO +

Acknowledgment:

 The author thanks Mr. Jinwen Ou for his assistance in verifying some technical details

in this paper. This research was supported in part by the Areas of Strategic Development

Fund of The Hong Kong Polytechnic University.

References:

[1] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin, Network Flows: Theory, Algorithms, and

Applications. Prentice Hall, Englewood Cliffs, NJ, 1993.

[2] T.C.E. Cheng, Z.L. Chen, and C.-L. Li, Parallel-machine scheduling with controllable

processing times. IIE Transactions, 28 (1996) 177-180.

[3] Y. Lin and W. Li, Parallel machine scheduling of machine-dependent jobs with unit-

length. European Journal of Operational Research, 156 (2004) 261-266.

[4] J.B. Orlin and R.K. Ahuja, New scaling algorithms for the assignment and minimum

mean cycle problems. Mathematical Programming, 54 (1992) 41-56.

[5] M. Pinedo, Scheduling: Theory, Algorithms, and Systems, 2nd Edition, Prentice Hall,

Upper Saddle River, NJ, 2002.

 7

Figure 1. Network)(cN .


 s t

cv1

cv2

cvm

1

1
1

1

1

1

1

1

1

1

1x

2x

mx

1y

2y

1−ny

ny

	Abstract

