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Abstract

In this paper, we consider a spare parts inventory problem faced by a manufacturer of elec-

tronic machines with expensive parts that are located at various customer locations. The parts

fail infrequently according to a Poisson process. To serve customers when a failure occurs, the

manufacturer operates a central warehouse and many field depots that stock spare parts. The

central warehouse acts as a repair facility and replenishes stock at the field depots. There is a

centralized decision maker who manages the inventory in both the central warehouse and the field

depots.

We develop a continuous review, base stock policy for this two-echelon, multi-item spare parts

inventory system. We formulate a model to minimize the system-wide inventory cost subject to

a response time constraint at each field depot. We present an efficient heuristic algorithm and

study its computational effectiveness.
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1 Introduction

We consider a spare parts inventory problem faced by a manufacturer of an expensive electronic

machine such as mainframe computer. The manufacturer produces and sells the machine and pro-

vides service contracts to geographically dispersed customers. To support the service process, the

manufacturer operates a central warehouse and many field depots that are in close proximity to the

customers. Both types of facilities stock spare parts, which are highly reliable and very expensive.

Furthermore, the warehouse acts as a repair facility and replenishes stock at the field depots. When

a machine fails, the customer reports the failure and the part that failed to the field depot serving

the customer. If the field depot has the spare part on hand and a technician is available, the tech-

nician travels to the customer site to fix the machine. Otherwise, the repair is delayed until either a

technician is available to fix the machine or the spare part becomes available at the field depot. In

either case, the delay is very costly to the customer.

A measure of the service quality used by the manufacturer is the response time, defined as the

time it takes for a technician to arrive at the customer site with a spare part to fix the machine after

the customer reports a failure. To provide high-quality service, the manufacturer prefers to keep

the response time to each customer short. However, the spare parts are expensive and electronic

components have high depreciation and obsolescence costs. Therefore, it is imperative that the

manufacturer maintains the inventory level as low as possible at the central warehouse and the field

depots.

Since the cost of providing a technician to each field depot is dominated by the inventory cost of

holding the expensive parts and the failure rates of the parts are quite low, a technician is usually

available for service whenever a repair is required. Also, since the field depots are typically close to

the customer sites, the technician’s travel time is negligible. Thus, the ability to meet the response

time constraint depends mainly on the inventory policy at the field depots and the central warehouse.

If the required spare part is in stock at the field depot, the customer is served immediately and the

response time is negligible. On the other hand, if the depot is out of stock of the specific part

requested, the response time includes the time until the field depot receives the part from the central

warehouse and the time it takes for the technician to bring it to the customer, which includes the

repair time as well as the travel time to and from the central warehouse.
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The problem described and analyzed in this paper was motivated by a project conducted by the

authors for a large electronics manufacturing company. The model constructed and analyzed for

our client was characterized by hundreds of parts and customers, very low part failure rates, tight

response times, many field depots around the U.S., and a base stock policy for each part at each

field depot. To control the quality of service, the company prefers to keep the average response

time to each customer below a threshold level, say 4 hours. Our model, therefore, has an objective

of determining an inventory policy to minimize system-wide inventory holding costs such that the

average response time is no greater than the threshold.

Multi-echelon spare parts inventory systems have been analyzed quite extensively in the liter-

ature. One of the earliest works in this area was Sherbrooke’s METRIC model. In his classical

paper, Sherbrooke [18] considered a two-echelon spare parts inventory system for repairable items.

All the facilities in the system had ample repair capacity and operated according to a continuous

review (S−1, S) policy. Unlike in our model, Sherbrooke considered the minimization of the total

expected backorders at the depots subject to a budget constraint. Muckstadt [13] presented the

MOD-METRIC, which generalized Sherbrooke’s METRIC model to include multi-indentures, i.e.,

hierarchical parts structures. Other related works that study multi-echelon resupply systems with

budget considerations include Hausman and Erkip [7] and Muckstadt and Thomas [14].

Some studies have focused on analyzing multi-echelon inventory systems with a single product.

This includes the work of Moinzadeh and Lee [12], who considered a single-product model and

developed a search routine for the stocking levels. They also derived a decision rule to select an

(S−1, S) versus an (r, Q) policy. Axsäter [1] considered a single-product, two-echelon, one-for-one

replenishment model. He developed a recursive procedure to determine average holding and shortage

costs and discussed the determination of optimal inventory base stock levels.

Another line of research has focused on characterizing the service performance of a multi-echelon

system for given stocking values, rather than developing solution methods. Graves [6] analyzed a

two-echelon spare parts inventory system similar to ours. In his model, the warehouse acted as a

centralized repair facility, while the depots faced Poisson demand and followed a continuous review

(S−1, S) policy. He presented exact and approximation methods to determine steady-state inventory

level distributions at the depots and warehouse. Sherbrooke [19] used Graves’ approximation to
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improve Muckstadt’s MOD-METRIC model. Simon [20] derived exact expressions for the stationary

distributions of backorders at each facility for a system very similar to that of Sherbrooke’s. Simon’s

model was more general than Sherbrooke’s as Simon considered items that are either completely

recoverable, completely consumable, or recoverable with some rate of condemnation. Shanker [17]

extended Simon’s analysis to allow compound Poisson demand at the depots. Lee and Moinzadeh [11]

developed a two-parameter approximation to the distribution of backorders when the depots follow an

(r, Q) ordering policy. Svoronos and Zipkin [21] considered a multi-echelon system with exogenously

generated stochastic transportation times. They approximated the steady-state behavior of the

system and showed that transit-time variances significantly affect the system performance. Wang

et al. [22] considered a two-echelon, multi-item, stochastic demand spare parts system with stocking-

center-dependent replenishment lead-times, and they characterized the system performance of the

stocking policies.

There are a few researchers who have considered multi-echelon spare parts inventory systems with

service constraints. Cohen et al. [4] developed and implemented Optimizer to determine inventory

policies for IBM’s periodic review, multi-item, multi-echelon spare parts inventory system. They

solved the problem by using level-by-level decomposition of facilities and by assuming infinite supply

at the replenishment sources. Cohen et al. [5] reported a successful implementation of two basic

inventory models to improve a complex spare parts system.

In a more recent paper, Hopp et al. [9] considered a system very similar to the one that we are

analyzing. In their case, field depots followed a continuous review (S−1, S) policy and faced Poisson

customer demand for consumable parts. The depots were replenished by a central warehouse that

followed an (r, Q) inventory policy. Their focus was on devising effective and easily implementable

heuristics to minimize system-wide inventory holding costs while keeping the average total delay at

each facility below a threshold level. They approximated the lead-time demand distribution with a

negative binomial distribution. Their heuristic decomposed the problem hierarchically. First, they

solved the warehouse level problem to minimize inventory holding costs at the warehouse subject to

a service level constraint using the heuristics they had previously developed in [8]. Once the values of

the parameters r and Q were set for each part at the warehouse, the problem was decomposed for each

depot. The depot-level problem was to minimize the inventory holding costs at the depot subject
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to the average total delay constraint. They used some simplifying approximations for steady state

inventory and backorder expressions. They solved each depot problem by using these approximations

and a Lagrangian relaxation of the depot problem. They also performed computational analysis to

study the performance of their heuristic on small-size problems, and their results showed that their

heuristic was very effective.

In this paper, our focus is on developing a near-optimal heuristic to minimize system-wide in-

ventory holding costs subject to a response time constraint. Our approach is different from most

previous researchers’ due to the explicit consideration of a response time constraint and our focus

on the development of heuristics. Also, our system considers repairable items, and consequently, we

use a base stock level at every facility. However, as mentioned by Richards [16], if we set the order

quantity Q to one, set the reorder point r equal to the base stock level less one,

and interpret recoverable failures as demands with repair times corresponding to resupply times,

then the model with consumable parts is equivalent to the model with repairable parts. Thus, besides

some of the minor differences in the modeling assumptions, our model is indeed a special case of

Hopp et al.’s. However, our work focuses on the development of an efficient and effective solution

method customized for the case with repairable parts. We first derive the expressions for the expected

inventory levels and backorder levels and then develop a heuristic algorithm for the problem. We

show via computational experiments that our solution approach is significantly more effective than

that of Hopp et al.’s when it is applied to large-size repairable parts systems.

The rest of our paper is organized as follows. In the next section, we describe the system that we

are analyzing, state our assumptions, and set up a model representing the system. In Section 3, we

discuss the special case with a single depot. Section 4 presents a heuristic to solve the general problem

and develops a lower bound on the optimal value of the inventory holding cost. The performance of

the heuristic is tested against the lower bound. Finally, in Section 5, we state our conclusions and

discuss possible extensions of the model.
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2 The Model

2.1 Model Description

Consider a two-echelon spare parts inventory system consisting of a central warehouse and M field

depots as illustrated in Figure 1. The field depots serve customers, each of whom owns exactly one

machine, e.g., a mainframe computer, which is very expensive and highly reliable. The machine

consists of a set I of n parts that fail infrequently and independently. When a part at a customer

site fails, it is replaced by a spare part from the depot serving the customer, if the depot has the

part on hand. Otherwise, the part is backordered and the customer has to wait until a part becomes

available at the depot. The failed part is shipped to the central warehouse, where all the failed parts

are repaired. At the same time, the warehouse ships a spare part to the field depot from its inventory,

if it has an available part. Otherwise, the replacement order is backordered at the warehouse until

a part is repaired and becomes available.

Our goal is to determine inventory policies at the warehouse and the field depots to minimize

system-wide inventory holding costs while maintaining an average response time below a given thresh-

old. For this reason, we develop a model based on the following assumptions:

• The spare parts supply network consists of the warehouse, M field depots, and the customers.

• The shipment time between the warehouse and a field depot j is stochastic with mean Tj. The

travel time from a field depot to a customer served by that depot is negligible, and we assume

that it is zero.

• Since the parts are very expensive with low failure rates and the ordering cost is negligible, the

field depots employ a continuous review, base stock policy with the base stock level for part i

at depot j set at Sij, which cannot exceed a limit Ŝij specified by management.

• All inventory is kept at the warehouse and the field depots; customers keep no inventory.

• Every part is crucial for operating the machine at the customer site, that is, the mainframe

computer is down if one of its parts fails.

• The “time to failure” of a part i is exponentially distributed with mean 1/li, independent of the
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machine it is in. This assumption is justified for electronic components of electronic machines

(see, for example, [10]).

• When a machine fails, the customer knows which part failed and places an order for that part

to the field depot from which it is served. Furthermore, there is always an available technician

at the field depot. As mentioned later in Section 5, an interesting future extension of this work

is to incorporate the capacity decision, i.e., the availability of the technician, into the model.

• The technician’s travel time from the field depot to the customer site is negligible and is

assumed to be zero.

• We assume that Kj, the number of customers served by depot j, is sufficiently large and we

model the demand for part i at depot j as a Poisson arrival process with rate λij = Kjli.

Although this assumption is typically violated whenever there are failed machines in the field,

it is common in the literature (see, for example, Sherbrooke [18] and Graves [6]). As pointed

out by Graves [6], this assumption is reasonable when the expected number of failed machines

is small relative to the total number of machines.

• We assume ample repair capacity at the warehouse, that is, no queuing occurs and successive

repair times for part i are i.i.d. random variables with mean Ri.

• There are no emergency lateral shipments among the field depots; the depots are resupplied

only from the warehouse. As mentioned later in Section 5, relaxing this assumption is a future

direction of this work.

We use the following notation in our model:

I = {1, 2, . . . , n} = set of spare parts;

J = {1, 2, . . . , M} = set of field depots; the index 0 is reserved for the central warehouse;

li = failure rate of part i;

λij = Kjli = demand rate faced by part i at depot j;

Sij = base stock level for part i at facility j (decision variable);

Ŝij = upper limit on Sij ;
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Ri = mean repair time of part i at the warehouse;

Tj = mean transportation time between the warehouse and depot j;

Lij = lead-time to replenish part i at facility j (random variable); the lead-time at a depot is the

transportation time from the warehouse plus any delay due to stockouts; the lead-time at the

warehouse is the transportation time plus the repair time;

θij = demand rate of part i at facility j during lead-time (note: θi0 is a constant, while θij (j 6= 0)

depends on Si0);

B̄ij(Sij, Si0) = expected backorder level at depot j when the base stock level of part i is set at Sij

at depot j and at Si0 at the warehouse;

Īij(Sij, Si0) = expected inventory on hand at depot j when the base stock level of part i is set at

Sij at depot j and at Si0 at the warehouse;

B̄i(Si0) = expected backorder level at the warehouse when the base stock level of part i is set at

Si0 at the warehouse;

Īi(Si0) = expected inventory on hand at the warehouse when the base stock level of part i is set at

Si0 at the warehouse;

hi = inventory holding cost rate for part i;

τj = response time threshold specified by the manufacturer for depot j;

Wij = average time a customer waits to receive an order of part i at depot j;

Wj = average response time to a customer at depot j.

Using the notation described above, we can derive a formulation for the problem of minimizing

total inventory investment subject to a response time constraint at each depot:

Minimize
∑

i∈I

hiĪi(Si0) +
∑

i∈I

∑

j∈J

hiĪij(Sij, Si0)

subject to Wj ≤ τj (j ∈ J)

0 ≤ Sij ≤ Ŝij, Sij integer (i ∈ I ; j ∈ J)

0 ≤ Si0 ≤ Ŝi0, Si0 integer (i ∈ I).

First, we will focus on the constraint that the average response time to a customer must be within

the specified response time threshold. The response time to a customer will be a function of the part
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that fails and the stocking policies of that part at the field depot serving the customer and at the

central warehouse. Recall that we assume there is always a technician available and the lead-time

from a field depot to a customer is zero. Together, these imply that the response time to a customer

is exactly the time that the customer waits to receive an order. The expected waiting time Wij for

part i at depot j can easily be found by an application of Little’s law:

Wij =
B̄ij(Sij, Si0)

λij

.

Thus, the expected waiting time for a customer is

Wj =
∑

i∈I

Wij · Prob(Part i fails) =
∑

i∈I

B̄ij(Sij, Si0)

λij

·
λij

∑

`∈I λ`j

=
∑

i∈I

B̄ij(Sij, Si0)
∑

`∈I λ`j

.

Hence, the response time constraint becomes

∑

i∈I

B̄ij(Sij, Si0)
∑

`∈I λ`j

≤ τj,

or equivalently,
∑

i∈I

B̄ij(Sij, Si0) ≤ τj

∑

i∈I

λij.

For simplicity, we will refer to τj

∑

i∈I λij as αj . Hence, the response time constraint becomes:

∑

i∈I

B̄ij(Sij, Si0) ≤ αj (j ∈ J).

Our next important task is to identify the expected backorder quantity B̄ij(Sij, Si0) for a part i at

a depot j given the stocking quantities of Sij and Si0.

2.2 Finding Backorder Levels at the Depots

Graves [6] described an exact method to determine backorder quantities at depots. However, he

pointed out that the computational requirements of this exact method are not trivial and this method-

ology would be impractical for optimizing an inventory system that consists of many parts. To ease

the computational burden, researchers have suggested approximations to backorder quantities, such

as the METRIC approximation by Sherbrooke [18] and the negative binomial approximation by

Graves [6].

The METRIC model provides an approximate distribution for inventory on hand and backo-

rders at each depot for a two-echelon system with compound Poisson failure processes and ample
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repair capacity at the warehouse. METRIC allows general replenishment times for depots that are

stochastic random variables, although this model ends up replacing the stochastic lead-time by its

mean. The approximation uses Palm’s theorem [15] to find the outstanding orders at each depot;

outstanding orders at a depot can be interpreted as the occupancy level in an M/G/∞ queuing

system. According to Palm’s theorem, the occupancy level in an M/G/∞ queuing system is Poisson

with mean λ/µ, where λ is the arrival rate and 1/µ is the average service time. In our system, the

arrival rate is simply λij, which is the demand rate for part i at depot j. The service time is the

lead-time Lij, which is the sum of the transportation time from the warehouse to the depot and the

delay at the warehouse due to stockouts. Let Qij be the outstanding orders for a part at depot j.

Once the distribution for Qij is obtained, it is straightforward to determine backorders at the depot:

If Sij is the base stock level, then the backorder level in the steady state is

E[(Qij − Sij)
+] =

∞
∑

k=Sij+1

(k − Sij)Prob(Qij = k),

where Qij is Poisson with mean λijE[Lij].

METRIC, however, is only an approximation because it ignores the dependence between suc-

cessive lead-times from the warehouse to a depot. These lead-times are not independent since they

depend on the inventory situation at the warehouse. Axsäter [2] pointed out that “the METRIC

approximation will, in general, work well as long as the demand at each [depot] is low relative to the

total demand, for example in a case with many small [depots].” The approximation works well in

such a case essentially because the dependence between successive lead-times to a depot is reduced

due to many

orders being placed at the warehouse by other depots in the system. This observation suggests

that the METRIC approximation may actually work well for the system we are considering, since

none of the depots in our system face more than 5% of the total demand, which implies that there are

more than 20 orders, on average, between two successive orders from a depot. Thus, the dependence

between successive lead-times would be small and METRIC should be a very good approximation.

In fact, numerical experiments have been conducted to show that the METRIC approximation works

very well in our model (see Caglar [3]).
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2.3 METRIC-Like Model

To use the METRIC approximation, we first identify steady state expressions for the backorder and

inventory on hand levels for the warehouse using Palm’s theorem. This requires that we identify the

mean demand rate and the mean lead-time to the warehouse. The demand faced by the warehouse

for part i is the superposition of the Poisson demands faced by the depots, with rate λi0 ≡
∑

j∈J λij.

The lead-time for part i to the warehouse, Li0, is the sum of the transportation time from a depot

to the warehouse and the repair time at the

warehouse. The repair time is independent of which depot that part i is originating from and has

a mean Ri. However, the transportation time, which has a mean Tj, does depend on the particular

depot. Then

E[Li0] =
∑

j∈J

Tj · Prob(demand originates from depot j) + Ri =
∑

j∈J

Tj ·
λij

∑

`∈J λi`

+ Ri.

By Palm’s theorem, the outstanding orders at the warehouse for part i, Qi0, is Poisson with mean

θi0 = λi0E[Li0]. Now, we can obtain the expected backorder level at the warehouse as follows:

B̄i(Si0) =
∞
∑

k=Si0+1

(k − Si0)Prob(Qi0 = k)

=
∞
∑

k=0

k Prob(Qi0 = k)−
Si0
∑

k=0

k Prob(Qi0 = k)− Si0

[

1−
Si0
∑

k=0

Prob(Qi0 = k)

]

= E[Qi0]− Si0 +
Si0
∑

k=0

(Si0 − k)Prob(Qi0 = k)

= E[Qi0]− Si0 +
Si0−1
∑

k=0

Fi0(k)

= θi0 −
Si0−1
∑

k=0

[

1− Fi0(k)
]

, (1)

where

Fi0(k) =
k

∑

`=0

Prob(Qi0 = `) =
k

∑

`=0

e−θi0θ`
i0

`!
.

The expected inventory on hand at the warehouse can also be obtained:

Īi(Si0) =
Si0
∑

k=0

(Si0 − k)Prob(Qi0 = k)

=
Si0−1
∑

k=0

Fi0(k)

= Si0 − θi0 + B̄i(Si0) (by (1)). (2)
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Because the successive lead-times to the warehouse are independent, the above expected backorder

and inventory expressions for the warehouse are exact. Note that θi0 is independent of the stocking

decisions at the warehouse.

Next, we use the METRIC approximation to compute the backorder quantities for the depots.

That is, we ignore the dependence of successive lead-times from the warehouse to a depot to satisfy

the demand and use Palm’s theorem to find the backorders at a depot. The backorders at a depot

depend not only on the demand and the inventory policy at that depot, but also on the inventory

policy at the warehouse as the stockouts at the warehouse affect the lead-time to a depot. Specifically,

the lead-time from the warehouse to depot j is the sum of the transportation time and the delay at

the warehouse due to stockouts. The expected delay at the warehouse, according to Little’s law, is

the expected backorder level divided by the demand rate at the warehouse. Thus,

E[Lij] = Tj +
B̄i(Si0)

λi0
.

Hence, for j ∈ J,

θij(Si0) = E[Qij] = λij

(

Tj +
B̄i(Si0)

λi0

)

.

Using Palm’s theorem and following the derivation of the warehouse backorder and inventory levels,

we obtain

B̄ij(Sij, Si0) = θij(Si0)−

Sij−1
∑

k=0

[

1− Fij(k)
]

(3)

and

Īij(Sij, Si0) = Sij − θij(Si0) + B̄ij(Sij, Si0), (4)

where Fij(k) is the probability that the outstanding orders of part i at depot j is at most k. Clearly,

Fij(k) =
k

∑

`=0

e−θij (Si0)θ`
ij(Si0)

`!
.

By (4), the objective function of our problem can be rewritten as
∑

i∈I hi[Īi(Si0)−
∑

j∈J θij(Si0)] +

∑

i∈I

∑

j∈J hi[Sij + B̄ij(Sij, Si0)]. It is easy to check that Īi(Si0) −
∑

j∈J θij(Si0) = Si0 − θi0 −

∑

j∈J λijTj. Thus, our problem can be rewritten as:
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Problem P : Minimize
∑

i∈I

hi

[

Si0 − θi0 −
∑

j∈J

λijTj

]

+
∑

i∈I

∑

j∈J

hi

[

Sij + B̄ij(Sij, Si0)
]

subject to
∑

i∈I

B̄ij(Sij, Si0) ≤ αj (j ∈ J)

0 ≤ Sij ≤ Ŝij, Sij integer (i ∈ I ; j ∈ J)

0 ≤ Si0 ≤ Ŝi0, Si0 integer (i ∈ I).

3 The Single Depot Subproblem

In this section, we consider the special case in which the base stock levels at the warehouse, Si0

(i ∈ I), are known. The heuristic developed for this case will be extended to solve problem P

later. In this special case, problem P can be decomposed into n single-depot subproblems. The j-th

subproblem is:

Problem Pj: Minimize
∑

i∈I

hi

[

Sij + B̄ij(Sij, Si0)
]

subject to
∑

i∈I

B̄ij(Sij, Si0) ≤ αj

0 ≤ Sij ≤ Ŝij, Sij integer (i ∈ I).

From equation (3), it is easy to see that B̄ij(Sij, Si0) decreases but Sij + B̄ij(Sij, Si0) increases

as Sij increases. This implies that the objective function value of Pj is increasing in Sij. In the

following analysis, we assume that
∑

i∈I B̄ij(Ŝij, Si0) ≤ αj. Otherwise, the problem is infeasible. We

also assume that
∑

i∈I B̄ij(0, Si0) > αj. Otherwise, S1j = · · · = Snj = 0 is the optimal solution and

the problem is trivial.

We now present a heuristic algorithm for solving problem Pj using Lagrangian relaxation. For a

given real number πj > 0, consider the following nonlinear integer program:

Problem PL
j (πj): Minimize

∑

i∈I

hi

[

Sij + B̄ij(Sij, Si0)
]

+ πj

[

∑

i∈I

B̄ij(Sij, Si0)− αj

]

subject to 0 ≤ Sij ≤ Ŝij, Sij integer (i ∈ I).

Clearly, the optimal solution value of problem PL
j (πj) is a lower bound on that of problem Pj. The
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objective function of problem PL
j (πj) can be rewritten as

∑

i∈I

hi

[

Sij + B̄ij(Sij, Si0)
]

+ πj

[

∑

i∈I

B̄ij(Sij, Si0)− αj

]

=
∑

i∈I

{

(πj + hi)
[

Sij + B̄ij(Sij, Si0)
]

− πjSij

}

− πjαj

=
∑

i∈I

{

(πj + hi)

[

θij(Si0) +

Sij−1
∑

k=0

Fij(k)

]

− πjSij

}

− πjαj (by (3))

=
∑

i∈I

{ Sij−1
∑

k=0

[

(πj + hi)Fij(k)− πj

]

+ (πj + hi)θij(Si0)

}

− πjαj.

Thus, minimizing this objective function is equivalent to minimizing
∑Sij−1

k=0 [(πj +hi)Fij(k)−πj] for

each i ∈ I . Such a minimum can be attained by the following procedure:

Solution procedure SP for problem PL
j (πj):

For i = 1, . . . , n,

if Fij(Ŝij − 1) ≤ πj/(πj + hi), set Sij to Ŝij;

if Fij(Ŝij − 1) > πj/(πj + hi), select Sij as the smallest integer such that Fij(Sij) > πj/(πj + hi).

The solution generated by procedure SP is optimal to problem PL
j (πj). This is because Fij is an

increasing function, and therefore, (πj +hi)Fij(k)−πj becomes positive when Fij(k) > πj/(πj +hi).

In case Fij(k) = πj/(πj + hi) for some integer j < Ŝij , we may select Sij such that Fij(Sij − 1) =

πj/(πj+hi) or select Sij such that Fij(Sij) = πj/(πj+hi) and the objective function will be minimized

either way.

The main idea of our heuristic is to identify a value of πj as well as an optimal solution to PL
j (πj).

We use this optimal solution to PL
j (πj) as the heuristic solution to problem Pj , if it is feasible for Pj.

Clearly, if πj is sufficiently large, then
∑

i∈I B̄ij(Sij, Si0) ≤ αj and the heuristic solution is feasible

for problem P . However, the heuristic solution value,
∑

i∈I hi[Sij + B̄ij(Sij, Si0)], is nondecreasing

as πj increases. Therefore, we search for the smallest value of πj such that
∑

i∈I B̄ij(Sij, Si0) ≤ αj

in the optimal solution of PL
j (πj). Let π∗

j be such a value of πj. We have the following lemma.

Lemma 1 Fij(k) = π∗
j /(π∗

j + hi) for some i ∈ I and some k ∈ {0, 1, . . . , Ŝij−1}.

The validity of Lemma 1 is obvious. It is because the distributions Fij(k) (i ∈ I and k ∈

13



{0, 1, . . . , Ŝij−1}) have discrete values and the “newsboy ratio” π∗
j /(π∗

j + hi) is continuous in π∗
j .

Hence, any changes in π∗
j , such that the newsboy ratio remains between the same two consecutive

points, do not change the solution of problem Pj .

For i = 1, . . . , n and k = 0, 1, . . . , Ŝij−1, we define

πj(i, k) = hiFij(k)/[1− Fij(k)]

and

Π = {πj(i, k) | i = 1, . . . , n; k = 0, 1, . . . , Ŝij−1}.

Lemma 1 implies that π∗
j should be equal to one of the πj(i, k) ∈ Π. In fact, π∗

j should be the smallest

πj(i, k) that gives
∑

i∈I B̄ij(Sij, Si0) ≤ αj when the solution procedure SP is used. Therefore, we

propose the following heuristic for solving problem Pj:

Heuristic H1:

Step 1: Initialize Π′ ← Π and Sij ← 0 for i ∈ I .

Step 2: Let πj(r, s) be the smallest element in Π′ (in case of a tie, precedence is given to part i

with the lower subscript). Set Srj ← Srj + 1.

Step 3: If
∑

i∈I B̄ij(Sij, Si0) ≤ αj , then stop; otherwise, let Π′ ← Π′ \ {πj(r, s)} and go to Step 2.

Let πj(r, s) be the element of Π selected in the last iteration of heuristic H1. It is easy to check

that after Step 2 of this heuristic, Srj is the smallest integer such that Frj(Srj) > πj(r, s)/[πj(r, s)+

hr]. For other parts i ∈ I \ {r}, if Sij < Ŝij then Sij is either the smallest integer that satisfies

Fij(Sij) > πj(r, s)/[πj(r, s) + hi], or in case a tie occurs in Step 2, Fij(Sij) = πj(r, s)/[πj(r, s) +

hi]. Thus, heuristic H1 produces the same solution as the solution procedure SP would pro-

duce for PL
j (πj) with πj = πj(r, s). Hence, πj(r, s) is the smallest element of set Π that produces

∑

i∈I B̄ij(Sij, Si0) ≤ αj when we use the solution procedure SP . Therefore, we have the following

result:

Theorem 2 π∗
j is equal to the final value of πj(r, s) obtained in Step 2 of heuristic H1.
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Heuristic H1 enables us to search efficiently for an approximate solution to problem Pj . It only

requires a linear search for the optimal value of πj , whereas a complete enumeration approach would

require a simultaneous search of n different Sij values. In fact, it is easy to see that the optimal

value of πj can also be obtained via a binary search and that the efficiency of this heuristic can be

improved.

4 Solution to the General Problem

In this section, we provide a solution method for problem P and study its effectiveness via compu-

tational experiments. We also provide a procedure for determining a lower bound on the optimal

solution value of problem P .

4.1 A lower bound procedure

For any given vector π = (π1, . . . , πM) such that πj > 0 (j = 1, . . . , M), consider the following

Lagrangian relaxation of problem P :

Problem PL(π): Minimize
∑

i∈I

hi

[

Si0 − θi0 −
∑

j∈J

λijTj

]

+
∑

i∈I

∑

j∈J

hi

[

Sij + B̄ij(Sij, Si0)
]

+
∑

j∈J

πj

[

∑

i∈I

B̄ij(Sij, Si0)− αj

]

subject to 0 ≤ Sij ≤ Ŝij, Sij integer (i ∈ I ; j ∈ J)

0 ≤ Si0 ≤ Ŝi0, Si0 integer (i ∈ I).

Note that the constant term −
∑

i∈I hi[θi0 +
∑

j∈J λijTj] −
∑

j∈J πjαj can be removed from the

objective function, and the resulting problem can be decomposed into n independent subproblems,

one for each part i. The i-th subproblem is:

Problem PL
i (π): Minimize hiSi0 +

∑

j∈J

[

hiSij + (hi + πj)B̄ij(Sij, Si0)
]

subject to 0 ≤ Sij ≤ Ŝij, Sij integer (j ∈ J)

0 ≤ Si0 ≤ Ŝi0, Si0 integer.

A lower bound on the optimal objective function value of problem P can be obtained by solving

each of these n subproblems. To solve subproblem PL
i (π), we search over all possible values of Si0,
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where 0 ≤ Si0 ≤ Ŝi0. For each value of Si0, the optimal values of Si1, . . . , Sin can be obtained by

using procedure SP . Caglar [3] has proven that, in the i-th subproblem, the optimal value of Si0

must be no greater than

S̃i0 = min
{

Si0

∣

∣

∣ C∗
i (Si0) < C∗

i (Ŝi0) + hi

}

,

where

C∗
i (Si0) = min

{

∑

j∈J

[

hiSij + (hi + πj)B̄ij(Sij, Si0)
]

∣

∣

∣

∣

0 ≤ Sij ≤ Ŝij for j = 1, . . . , M

}

.

Hence, the computational time of the lower bound procedure can be reduced through limiting the

search of Si0 over the interval [0, S̃i0].

4.2 The heuristic

We now propose a heuristic algorithm for solving problem P . This heuristic has two main steps. We

first fix the warehouse base stock levels Si0 (i ∈ I) and solve for each depot individually to obtain Sij

(i ∈ I ; j ∈ J) and πj (j ∈ J) using heuristic H1. Next, using the πj values obtained, we apply the

lower bound procedure to determine an updated set of warehouse base stock levels Si0. We repeat

these two steps until the values of πj (j ∈ J) are identical to those in the previous iteration (that is,

the algorithm converges) or until a certain number of iterations have been carried out. Throughout

the computational process, we keep track of the best solution and the best lower bound that we have

obtained. Here is a formal description of the heuristic:

Heuristic H2:

Step 1: Set S∗
i0 ← Ŝi0 for i ∈ I . Set ZLB ← 0 and ZH2 ← +∞. Set π′

j ← 0 for j ∈ J.

Step 2: Using S∗
i0 (i ∈ I), apply heuristic H1 to determine S∗

ij (i ∈ I) and π∗
j , for every j = 1, . . . , M .

If this new solution has an objective value less than ZH2, then replace

ZH2 by the objective value of this solution and record this solution as the incumbent solution.

If
∑

j∈J

∣

∣

∣π∗
j − π′

j

∣

∣

∣ = 0 or the maximum iteration limit is reached, then stop. Otherwise, set

π′
j ← π∗

j (j ∈ J) and go to Step 3.

Step 3: Using π∗
j (j ∈ J), apply the lower bound procedure developed in subsection 4.1 to determine

S∗
i0 (i ∈ I) and a lower bound value. If this new lower bound is larger than ZLB , then replace

ZLB by the new lower bound. Go to Step 2.
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4.3 Computational Experiments

In this subsection, we test the effectiveness of heuristic H2 via various sets of test data. We also

compare the performance of heuristic H2 with that of Hopp et al.’s [9] heuristic when applied to our

model.

For each set of test data, we obtain the heuristic solution value ZH2 and the lower bound ZLB

from heuristic H2. Meanwhile, we compute the solution value of Hopp et al.’s heuristic and denote

it as ZHZS. For small-size problems, we also determine the optimal solution value Z∗. The relative

errors of the two above-mentioned heuristics are given by ZH2−Z∗

Z∗ × 100% and ZHZS−Z∗

Z∗ × 100%.

Because the optimal solution values of large-size problems are unavailable, lower bounds are used

to estimate the performance of the heuristics, and the estimates of the relative errors of the two

heuristics are denoted as eH2 = ZH2−ZLB

ZLB × 100% and eHZS = ZHZS−ZLB

ZLB × 100%. To simplify

the analysis, for each set of test data, we set Ŝij and Ŝi0 to be sufficiently large such that the

constraints “Sij ≤ Ŝij” and “Si0 ≤ Ŝi0” are not binding in the heuristic solutions. Some initial runs

showed that when heuristic H2 was applied, the solution converged within three iterations in most

cases. Therefore, throughout our computational study, we set the maximum number of iterations of

heuristic H2 to three.

We first consider the four small examples with two parts and two depots given by Hopp et

al. (i.e., Case 8 – Case 11 in [9]). The data for these four examples are shown in Table 1. These

examples are small enough that the optimal solutions could be obtained via complete enumeration.

The computational results are reported in Table 2. We observe that, for these four sets of data, the

performance of heuristic H2 is very close to that of Hopp et al.’s heuristic. We also observe that the

lower bound ZLB is not tight, and therefore, eH2 and eHZS are only conservative estimates of the

relative errors. Note that the performance of Hopp et al.’s heuristic reported in Table 2 is different

from that in their paper. This is because in our model, we use a base stock policy throughout the

system, while in their paper, a (Q, r) policy is used and an additional constraint is imposed on the

average order frequency at the central warehouse.

Next, we consider the situation that our client faced. There were about 40 depots, each serving

approximately 40 customers. There were around 200 parts and a 4-hour average response time was

considered as desirable. The average transportation lead-time was about a week, and the average
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repair time was within a day. The mean time to failure (MTTF) of each part is estimated to be

about 500 weeks on the average. Hence, on the average, a depot has a demand rate of around

40
500×7×24 = 0.00048 units/hour and a one-way travel time to the warehouse of 7 × 24 = 168 hours.

On average, a part has an expected lead-time of about (7 + 1)× 24 = 196 hours.

To evaluate the effectiveness of the heuristic under such an environment, we created 24 test cases

as follows. We set the response time threshold τj to 4 for all j ∈ J. We set the average demand

rate λ̄ to 0.0005, the average lead-time at the central warehouse L̄ to 200, the average transportation

time between the warehouse and the depot T̄ to 160, and the average holding cost h̄ to 500. Note

that the relative error of a heuristic is independent of the value of h̄.

For one-third of the test cases, we set all λij equal to λ̄. These cases cover the scenario with

homogeneous demand rates across all depots and all parts. For another one-third of the cases, we set

λij = 2i−1
n
· λ̄ for i = 1, . . . , n and j = 1, . . . , M . These cases cover the scenario with balanced demand

rates among depots but unbalanced demand among different parts. For the remaining one-third of

the cases, we set λij = 2j−1
M
· λ̄ for i = 1, . . . , n and

j = 1, . . . , M . These cases cover the scenario with balanced demand among different parts but

unbalanced demand among depots. We set E[Li0] = L̄ (i = 1, . . . , n) for half of the test cases. They

represent the scenarios of having homogeneous lead-times at the warehouse across all parts. We set

E[Li0] = 2i−1
n · L̄ (i = 1, . . . , n) for the other half of the cases. They represent the scenarios of having

unbalanced lead-times at the warehouse. Similarly, we set hi = h̄ (i = 1, . . . , n) for half of the test

cases and set hi = 2i−1
n
· h̄ (i = 1, . . . , n) for the other cases. We set Tj = T̄ (j = 1, . . . , M) for half

of the test cases and set Tj = 2j−1
M
· T̄ (j = 1, . . . , M) for the other cases. The parameter settings of

these 24 cases are shown in Table 3.

We tested the performance of the heuristics for these 24 cases and for three different sets of

values of n and M , with the results reported in the table. We have several observations. First,

the performance of heuristic H2 (with respect to the lower bound that it generates) grows worse

as the problem size gets smaller. Second, it performs worse in Cases 1, 2, 5, 6, 17, 18, 21, and

22 than in the other 16 cases. These 8 cases have one characteristic in common: all parts have

identical parameters. This suggests that the performance of heuristic H2 improves as the variety of

customers increases. Next, we observe that the average value of eH2 is 3.2% while the average value
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of eHZS is 7.5%. Since eH2 and eHZS are estimates of relative errors obtained from a conservative

lower bound, the above percentages suggest that heuristic H2 outperforms Hopp et al.’s heuristic

substantially when applied to our setting, i.e., when a base stock policy is used at the warehouse

and when the problem size is large. This is because heuristic H2 searches for the optimal values of

the set of Lagrangian multipliers (π1, . . . , πM) in order to determine the warehouse base stock levels

(S10, . . . , Sn0). However, Hopp et al.’s heuristic uses a single Lagrangian multiplier to determine the

warehouse reorder points. Thus, our heuristic allows us to have a larger degree of freedom to select

the base stock levels at the central warehouse. Note that in some of the test instances, Hopp et al.’s

heuristic performed better than heuristic H2, but in those instances the difference in performance

between the two heuristics is relatively small.

Furthermore, heuristic H2 is highly efficient. It takes less than 2 minutes to solve each of problem

instances with a 2GHz processor.

To investigate further the performance of our heuristic on different problem sizes, we repeated

the 24 test cases for various values of n and M . For each combination of n and M , we report the

average value of eH2 in Table 4. The results indicate that the performance of heuristic H2 improves

monotonically as the number of parts increases. Also, the performance of H2 tends to improve as

the number of depots increases. This further confirms the effectiveness of our heuristics for large-size

problems.

5 Conclusions

In this paper, we analyzed a continuous review spare parts inventory system in which the parts are

highly reliable and very expensive. We considered a multi-echelon system that includes a warehouse,

many field depots, and many customers supported by the field depots. We developed a model to

minimize the system-wide inventory holding costs while meeting a service constraint at each of the

field depots. The service constraint we considered was based on the average response time, defined

as the average time it takes a customer to receive a spare part after a failure is reported.

We first developed a heuristic to solve the single-depot problem and then extended it to solve the

general problem. Extensive computational experiments were performed to evaluate the performance
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of the heuristic. The analysis demonstrated that the heuristic works very well on large-size problems.

In the future, we would like to extend our analysis here to a model that allows emergency lateral

shipments among the field depots in case of stockouts.

This paper was motivated by the research the authors have conducted for an electronic machine

manufacturer. The problem the manufacturer faced was further complicated by the ability to transfer

inventory between field depots depending on inventory levels and response time requirements. Thus,

the results in this paper are important building blocks and a benchmark that will be used when we

analyze the problem with lateral shipments.

Note that, in our model, the service constraint provides a threshold on the average response time

of a depot. An alternative formulation is to provide an upper limit on the percentage of demand that

violates a given due date requirement. Such a formulation is applicable to the case when a due date

requirement is specified in the customer service contract. Developing efficient and effective solution

methods for such a model is another interesting future research direction.

In the current model, we assumed that the technician is always available. However, in some

applications, the cost of maintaining excess repair capacity is significant. Therefore, another possible

future research direction is to incorporate the technician availability into the analysis.
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Figure 1. The two-echelon spare parts system 
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Table 1. Data of cases 8 – 11 in Hopp et al. (1999) 

 HZS case 8 HZS case 9 HZS case 10 HZS case 11 
n  2 2 2 2 
M  2 2 2 2 

1T  (hours) 10 5 10 24 

2T  (hours) 10 24 10 48 

 i = 1 i = 2 i = 1 i = 2 i = 1 i = 2 i = 1 i = 2 

ih  ($) 10 20 10 20 10 20 10 20 

][ 0iLE  (days) 50 100 50 100 50 100 50 100 

1iλ  (units/year) 10 5 10 5 15 2 15 2 

2iλ  (units/year) 10 5 10 5 5 8 5 8 

Note: 1 day = 24 hours; 1 year = 365 days 
Note: 1τ  = 2τ  = 1 hour in all four cases 

 
 
 

Table 2. Heuristic and optimal solutions to cases 8 – 11 in Hopp et al. (1999) 

 HZS case 8 HZS case 9 HZS case 10 HZS case 11 
2HZ  137.411 157.166 157.369 166.150 

HZSZ  137.412 157.170 157.367 166.154 
*Z  137.411 157.166 147.400 156.164 
LBZ  136.638 137.995 131.135 142.441 

**2 )( ZZZ H −  0.0% 0.0% 6.8% 6.4% 

** )( ZZZ HZS −  0.0% 0.0% 6.8% 6.4% 

LBLBHH ZZZe )( 22 −=  0.6% 13.9% 20.0% 16.6% 

LBLBHZSHZS ZZZe )( −=  0.6% 13.9% 20.0% 16.6% 

 



Table 3. Computational results 

 ijλ  ][ 0iLE  ih  jT  n = 50; M = 10 n = 100; M = 20 n = 200; M = 40 
eH2 eHZS eH2 eHZS eH2 eHZS 

Case 1 λ  L  h  T  12.0% 32.3% 5.4% 32.2% 4.4% 35.6% 

Case 2 λ  L  h  TM
j ⋅−12  11.7% 29.2% 5.5% 23.0% 4.3% 23.4% 

Case 3 λ  L  hn
i ⋅−12  T  0.2% 2.5% 0.0% 1.7% 0.3% 1.1% 

Case 4 λ  L  hn
i ⋅−12  TM

j ⋅−12  2.4% 4.5% 1.2% 2.2% 0.4% 1.3% 

Case 5 λ  Ln
i ⋅−12  h  T  6.3% 5.0% 5.3% 4.2% 3.7% 3.4% 

Case 6 λ  Ln
i ⋅−12  h  TM

j ⋅−12  7.8% 5.0% 6.2% 3.9% 4.6% 3.3% 

Case 7 λ  Ln
i ⋅−12  hn

i ⋅−12  T  0.2% 2.8% 0.5% 1.5% 0.3% 1.0% 

Case 8 λ  Ln
i ⋅−12  hn

i ⋅−12  TM
j ⋅−12  3.2% 5.4% 1.4% 3.1% 0.5% 1.7% 

Case 9 λ⋅−
n
i 12  L  h  T  1.4% 5.0% 1.0% 3.9% 0.3% 3.3% 

Case 10 λ⋅−
n
i 12  L  h  TM

j ⋅−12  0.9% 4.7% 0.5% 4.2% 0.2% 3.3% 

Case 11 λ⋅−
n
i 12  L  hn

i ⋅−12  T  3.3% 3.2% 1.5% 2.7% 1.7% 2.2% 

Case 12 λ⋅−
n
i 12  L  hn

i ⋅−12  TM
j ⋅−12  2.9% 2.7% 3.4% 3.1% 2.5% 2.4% 

Case 13 λ⋅−
n
i 12  Ln

i ⋅−12  h  T  1.3% 5.1% 0.9% 4.0% 0.5% 3.5% 

Case 14 λ⋅−
n
i 12  Ln

i ⋅−12  h  TM
j ⋅−12  0.8% 2.9% 0.4% 2.7% 0.2% 2.2% 

Case 15 λ⋅−
n
i 12  Ln

i ⋅−12  hn
i ⋅−12  T  1.9% 3.8% 2.8% 3.1% 1.7% 2.3% 

Case 16 λ⋅−
n
i 12  Ln

i ⋅−12  hn
i ⋅−12  TM

j ⋅−12  3.3% 3.1% 2.2% 2.3% 1.6% 2.2% 

Case 17 λ⋅−
M
j 12  L  h  T  12.2% 38.4% 5.8% 31.5% 4.6% 32.2% 

Case 18 λ⋅−
M
j 12  L  h  TM

j ⋅−12  12.3% 26.6% 5.7% 19.8% 4.7% 22.4% 

Case 19 λ⋅−
M
j 12  L  hn

i ⋅−12  T  1.3% 3.3% 0.5% 1.7% 0.3% 1.1% 

Case 20 λ⋅−
M
j 12  L  hn

i ⋅−12  TM
j ⋅−12  6.0% 5.5% 2.0% 2.9% 0.6% 1.7% 

Case 21 λ⋅−
M
j 12  Ln

i ⋅−12  h  T  6.7% 4.9% 5.2% 4.0% 4.0% 3.2% 

Case 22 λ⋅−
M
j 12  Ln

i ⋅−12  h  TM
j ⋅−12  8.6% 5.3% 6.2% 3.8% 4.6% 3.3% 

Case 23 λ⋅−
M
j 12  Ln

i ⋅−12  hn
i ⋅−12  T  1.8% 4.1% 0.6% 2.0% 0.2% 1.1% 

Case 24 λ⋅−
M
j 12  Ln

i ⋅−12  hn
i ⋅−12  TM

j ⋅−12  5.6% 6.8% 2.6% 3.9% 1.0% 2.1% 

 
 

Table 4. Average eH2 values for various problem sizes 

 M = 2 M = 5 M = 10 M = 20 M = 40 
n = 10 8.6% 6.7% 7.3% 5.7% 5.8% 
n = 25 6.9% 5.0% 5.7% 3.9% 3.6% 
n = 50 6.5% 4.3% 4.7% 3.2% 2.6% 
n = 100 5.9% 3.9% 4.4% 2.8% 2.2% 
n = 200 5.7% 3.8% 4.2% 2.5% 2.0% 

 




