
Loading and Unloading Operations in Container Terminals

Chung-Lun Li∗ George L. Vairaktarakis†

July 2001

Revised May 2002

Revised January 2003

Revised April 2003

Abstract

We consider the problem of optimizing the time for loading and unloading containers to and

from a ship at a container terminal, where containers are required to be transported by trucks

between the ship and their designated locations in the container yard. An optimal algorithm

and some efficient heuristics are developed to solve the problem with a single quay crane. The

effectiveness of the heuristics is studied both analytically and computationally.
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1 Introduction

We consider the problem of optimizing the time for loading and unloading containers to and from

a ship at a container terminal, where containers are required to be transported by trucks between

the ship and their designated locations in the container yard. Generally speaking, a container

terminal consists of the quayside, where containers are unloaded from and loaded onto ships, and

the container storage yard, where containers are stored. External trucks are responsible for taking

containers in and out of a container terminal. Internal trucks are responsible for transporting

containers within the terminal, mainly between the container yard and the quayside. When a ship

arrives at the terminal, containers are first unloaded from the ship onto the internal trucks by

quay cranes. Next, the internal trucks transport the containers to their prespecified locations in

the container yard. Upon arrival at the container block, a container is unloaded from the truck

by a yard crane. After most of the containers have been unloaded from the ship, the outbound

containers are transported from the storage yard to the quayside by those internal trucks and are

loaded onto the ship by the quay cranes. Typically, several quay cranes can work in parallel to

serve a ship, where each crane is designated to handle one section of the ship. To maximize the

efficiency of this operation, it is important to have the turnaround time of the ship minimized.

The speed of this loading/unloading operation is limited by the availability of the quay cranes and

trucks. A quay crane can handle only one container at a time, and a truck can normally transport

one container at a time as well. The yard cranes, on the other hand, have more capacity, and they

usually spend their spare time shuffling the containers within a container block so as to reduce the

loading/unloading time of the future tasks.

Research related to the efficiency of container terminal operations has appeared in the literature.

This includes the use of queuing models to study the utilization of container terminal capacity, see

for example, Daganzo [9], Easa [11], and Gransberg and Basilotto [12]. It also includes the studies

of operational issues such as berth allocation (Brown et al. [6], Li et al. [16], and Lim [17]), crane

movements (Daganzo [8], Kim and Kim [13], and Peterkofsky and Daganzo [18]), storage allocation

(Bish [2], Bish et al. [4], de Castilho and Daganzo [10], and Kim et al. [14]), and vehicle dispatching
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(Bostel and Dejax [5] and Powell and Carvalho [19]).

Recently, Bish et al. [3] considered a vehicle dispatching problem in a container terminal. In their

model, containers are first unloaded from a ship by quay cranes following a prespecified sequence

(known as “crane job sequence”). The unloaded containers are transported to their destinations in

the container yard by a fleet of identical vehicles, each of which can carry one container at a time.

Another set of containers are then transported from the yard by the same set of vehicles and are

loaded onto the ship, also following a prespecified sequence. It is assumed that the travel times of

vehicles satisfy the triangle inequality. The time that a quay crane needs to load/unload a container

is assumed to be the same for all the jobs. The objective is to determine a vehicle schedule so as to

minimize the makespan, i.e., the time it takes to complete the entire loading/unloading operation

for the ship. They developed optimal and heuristic solution procedures for solving this problem.

They performed worst case analysis as well as computational analysis on their heuristic method for

the single quay crane case of the problem. Their computational analysis is further extended to the

multiple quay crane case.

In this paper, we build on the work of Bish et al. [3]. We relax the assumption that the loading

and unloading time of container is the same for all the jobs. In the presence of a single crane,

we present an optimal algorithm which is efficient for small problems. For large problems, we

provide a lower bound procedure as well as heuristics with favorable worst-case error bound and

fast asymptotic convergence. Our analyses for the single crane case are supported by extensive

computational experiments on randomly generated problems.

In the next section, some basic results of the single crane problem are presented. An optimal

algorithm is provided in Section 3, and a procedure for determining a lower bound of the optimal

solution value is developed in Section 4. Several heuristics are developed and analyzed in Sec-

tion 5, and computational results are reported in Section 6 followed by some concluding remarks

in Section 7.
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2 Notation and Basic Results

Throughout the analysis, each container is referred to as a “job”. The vehicle dispatching problem

with a single quay crane can be formally described as follows: We would like to minimize the time

required to execute a given set of unloading jobs in a predetermined sequence, followed by a given set

of loading jobs in a predetermined sequence. The execution time of every job is deterministically

known and consists of two components — the time required for the quay crane to pick/drop a

container from/onto a truck (during this time both the crane and the truck are occupied), plus

the time required to transport the container between the crane and the appropriate yard location.

Upon completing the last unloading job assigned to a truck, the truck transfers directly to the first

loading job assigned to it (if any) without passing through the crane. All trucks are assumed to be

located next to the quay crane at time 0 and are required to return to the quay crane at the end of

all operations. Since the loading and unloading sequences of the jobs are given, our only decision

is the assignment of the loading and unloading jobs to trucks so as to minimize the makespan of

the schedule.

The following notation will be used:

m = number of trucks;

n1 = number of unloading jobs;

n2 = number of loading jobs;

U = {JU
1 , JU

2 , . . . , JU
n1
} = set of unloading jobs, ordered in the required processing sequence;

L = {JL
1 , JL

2 , . . . , JL
n2
} = set of loading jobs, ordered in the required processing sequence;

s(J) = processing requirement of the quay crane for job J ∈ U ∪ L;

t0(J) = one-way travel time required by any truck to transport a job J ∈ U ∪L between the crane

and the appropriate yard location;

t(J, J ′) = time for any truck to travel between the yard locations associated with jobs J ∈ U and

J ′ ∈ L (note that the triangle inequality implies that t(J, J ′) ≤ t0(J) + t0(J
′)).
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Z(σ) = duration (i.e., makespan) of a feasible unloading/loading schedule σ;

We assume that all problem parameters (including s(J), t0(J), and t(J, J ′)) are nonnegative

integers. We first describe two job assignment rules. One rule is for the unloading jobs, and the

other is for the loading jobs.

Definition 1 First Available Truck (FAT) rule: Assign the first unscheduled job in U to the avail-

able truck which first completes the jobs previously assigned to it.

Definition 2 Last Busy Truck (LBT) rule: Select any value τ . Schedule jobs to trucks so that the

last job completes at time τ , and proceed backwards. Assign the last unscheduled job in L to the

last available truck that became busy with jobs previously assigned to it.

For example, if there are 2 trucks and 4 unloading jobs with s(JU
1 ) = s(JU

2 ) = s(JU
3 ) = s(JU

4 ) =

3, t0(J
U
1 ) = 5, t0(J

U
2 ) = 4, t0(J

U
3 ) = 2, and t0(J

U
4 ) = 3, then the schedule generated by the FAT

rule is depicted in Figure 1(a). Note that the round-trip travel time for each unloading job J is

2t0(J), and the makespan of this schedule is 25. Now, consider another example with 2 trucks,

4 loading jobs, s(JL
1 ) = s(JL

2 ) = s(JL
3 ) = s(JL

4 ) = 3, t0(J
L
1 ) = 5, t0(J

L
2 ) = 4, t0(J

L
3 ) = 2, and

t0(J
L
4 ) = 3, then the schedule generated by the LBT rule is shown in Figure 1(b). In this schedule,

if we set τ = 25, then the quay crane will start working at time 0 and the makespan of the schedule

is 25.

Note that the FAT rule is the same as the list scheduling rule in the machine scheduling lit-

erature (see, for example, Lawler et al. [15]). Note also that the FAT and LBT rules have ap-

peared in Bish et al. [3] as the “greedy algorithm” and “reversed greedy algorithm”, respectively.

Bish et al. have shown that if L = ∅ (i.e., there are only unloading jobs), then the FAT rule will

generate an optimal schedule. We denote this optimal schedule as σFAT . By symmetry, if U = ∅

(i.e., there are only loading jobs), then the LBT rule will generate an optimal schedule (see [3])

which we denote as σLBT .

Consider a subproblem in which we would like to schedule only the unloading jobs U , where

subset U0 = {JU
λ1

, JU
λ2

, . . . , JU
λm
} includes all unloading jobs that are served last by a truck. We let
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σU(U0) denote the optimal schedule for this subproblem. Another subproblem is to schedule only

the loading jobs L, where subset L0 = {JL
µ1

, JL
µ2

, . . . , JL
µm
} includes all loading jobs served first by

a truck. We let σL(L0) denote the optimal schedule for this subproblem. The schedules σU(U0)

and σL(L0) become “partial schedules” of the original problem.

Lemma 1 (Bish et al. [3]) Suppose that L = ∅. Then the FAT rule will generate a schedule that

minimizes the time required to execute all unloading jobs. Moreover, if JU
λi

is required to be served

last on a truck and λ1 < λ2 < · · · < λm, then for every i = 1, 2, . . . , m, the FAT rule will generate

a schedule that minimizes the time required to unload jobs JU
λ1

, JU
λ2

, . . . , JU
λi

given that each of these

jobs is served last on a truck.

Lemma 2 (Bish et al. [3]) Suppose that U = ∅. Then the LBT rule will generate a schedule that

minimizes the time required to execute all loading jobs. Moreover, if JL
µi

is required to be the first

job served by a truck and µ1 < µ2 < · · · < µm, then for every i = 1, 2, . . . , m, the LBT rule will

generate a schedule that minimizes the time that elapses between the start and finish times of trucks

that serve first one of the jobs JL
µ1

, JL
µ2

, . . . , JL
µi

.

Bish et al.’s lemmas assume that the processing requirement of the quay crane, s(J), is constant.

However, the proofs remain valid even when the quay crane processing times are job dependent.

3 An Optimal Algorithm

Bish et al. [3] have developed an optimal algorithm for solving the single crane vehicle dispatching

problem. Their algorithm has a running time of O(n2m−1 ·m!), where n = n1 + n2 + 2m − 2. In

this section, we develop an optimal algorithm with a lower computational complexity.

Given a set of final unloading jobs U0 and a set of leading loading jobs L0 for the m trucks,

Lemmas 1 and 2 state that the FAT and LBT rules provide optimal solutions to the unloading

and loading subproblems, respectively. Therefore, one can enumerate exhaustively all possible

pairs U0, L0 of final unloading and leading loading job subsets (see [3]). Two issues remain to
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be considered: calculating the number of possible U0, L0 pairs, and finding an optimal way to

concatenate the partial schedules σU(U0) and σL(L0).

Note that it may be optimal to assign to a truck only loading (unloading) jobs, for example,

when a container is located very far from the quay crane. In case a truck is assigned to process

loading (unloading) jobs only, then one could introduce in U (L) a dummy unloading (loading) job

with zero crane processing requirement and zero distance from the quay crane. Also, we observe

that JU
n1
∈ U0 and JL

1 ∈ L0 due to the precedence requirements for the jobs. Hence, if we introduce

m− 1 dummy jobs before JU
1 in U , and m− 1 dummy jobs following JL

n2
in L, then we only need

to consider solutions where at least one loading job and at least one unloading job are served by

each truck. Therefore, we may assume that U consists of n1 + m − 1 jobs and that L consists of

n2 + m − 1 jobs. With this assumption, the number of possible final unloading job subsets, U0,

is
(n1+m−2

m−1

)

≤ nm−1
1 ≤ O(nm−1), where n = n1 + n2 + 2m− 2. Similarly, the number of possible

leading loading job subsets, L0, is
(n2+m−2

m−1

)

≤ nm−1
2 ≤ O(nm−1). Thus, the number of possible

U0, L0 pairs is O(n2m−2).

For a given set U0 of final unloading jobs, Lemma 1 states that the FAT rule produces an

optimal partition of jobs in U into m parts. Similarly, for a given set L0 of leading loading jobs,

Lemma 2 states that the LBT rule produces an optimal partition of jobs in L into m parts. Then,

one has to match the m parts of U with the m parts of L, and then assign each pair of parts

to a truck so as to minimize the time required to complete all jobs. This can be done using the

following “bottleneck assignment model” (see Ahuja et al. [1], p. 505) for the final unloading jobs

U0 = {JU
λ1

, JU
λ2

, . . . , JU
λm
} and leading loading jobs L0 = {JL

µ1
, JL

µ2
, . . . , JL

µm
}. Let vi (i = 1, . . . , m)

denote the truck that gets assigned JU
λi

as the final unloading job when the FAT rule is applied to set

U0 and v′j (j = 1, . . . , m) denote the truck that gets assigned JL
µj

as the leading loading job when the

LBT rule is applied to set L0. Let Ti (i = 1, . . . , m) denote the total time it takes truck vi to finish

serving all its unloading jobs, including the time to transport the last job JU
λi

to its destination,

but excluding the time to travel back to the quay crane afterward. Let T ′
j (j = 1, . . . , m) denote

the total time it takes truck v′j to finish serving all its loading jobs, including the time to transport
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the first job JL
µj

from its location, but excluding the time to travel to that location beforehand.

Let cU denote the time that the crane finishes unloading job JU
n1

in schedule σU(U0). Let cL be the

elapsed time between the moment when the crane starts loading job JL
1 and the completion time

of all jobs in schedule σL(L0). Let cmin = cU + cL. Since we have to finish unloading all jobs before

we can perform the loading of jobs, cmin represents a minimum possible makespan of the schedule.

Let

cij = max{Ti + t(JU
λi

, JL
µj

) + T ′
j, cmin}.

Here, Ti+t(JU
λi

, JL
µj

)+T ′
j represents the time it takes a truck to serve all the unloading jobs assigned

to truck vi, travel to pick up JL
µj

directly, and serve all the loading jobs assigned to truck v′j . The

bottleneck assignment problem is to match the m parts of U with the m parts of L so as to minimize

maxi,j=1,...,m{cij}. This bottleneck value minimizes the maximum time that any truck or the quay

crane remains busy, and hence it equals the minimal makespan value for the pair U0, L0.

For each possible pair of U0, L0, solving the bottleneck assignment problem takes O(m2.5 logm)

time (see [1]), and determining the schedule corresponding to a bottleneck matching using the FAT

and LBT rules requires O(n) time. Hence, the computational time required to evaluate each pair

of U0, L0 is O(n + m2.5 log m). This implies that the overall complexity of this solution method is

O(n2m−2(n+m2.5 logm)). This complexity is an improvement of the one provided by Bish et al. [3],

which is O(n2m−1 ·m!).

The above analysis suggests that when m is small, our problem can be solved efficiently. How-

ever, it remains an open question of whether the problem is polynomial time solvable. Evidently,

for problems with many trucks and many jobs, efficient heuristics for the problem are desirable.

We develop such heuristics in Section 5. To evaluate these heuristics, we need a tight lower bound.

This is the focus of the next section.
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4 Lower Bounds

In the following analysis, we assume that U consists of n1 original unloading jobs plus m−1 dummy

unloading jobs. Thus, we redefine

U = {JU
1 , JU

2 , . . . , JU
n1+m−1}

as the set of unloading jobs, where the jobs are ordered in the required processing sequence and

JU
1 , JU

2 , . . . , JU
m−1 are dummy jobs. Similarly, L consists of n2 original loading jobs plus m − 1

dummy loading jobs. Thus, we redefine

L = {JL
1 , JL

2 , . . . , JL
n2+m−1}

as the set of loading jobs, where the jobs are ordered in the required processing sequence and

JL
n2+1, J

L
n2+2, . . . , J

L
n2+m−1 are dummy jobs. If J is a dummy unloading job and J ′ is a dummy

loading job, then let us define s(J) = s(J ′) = t0(J) = t0(J
′) = t(J, J ′) = 0. If J is a dummy

unloading job and J ′ is a non-dummy loading job, then we define t(J, J ′) = t0(J
′). Similarly, if J

is a non-dummy unloading job and J ′ is a dummy loading job, then t(J, J ′) = t0(J).

Given a set of final unloading jobs U0 = {JU
λ1

, JU
λ2

, . . . , JU
λm
} and a set of leading loading jobs

L0 = {JL
µ1

, JL
µ2

, . . . , JL
µm
} for the m trucks, the bottleneck assignment algorithm proposed in Sec-

tion 3 produces a schedule with minimal makespan. Consider any feasible solution to this bottleneck

assignment problem, and let JU
αi

and JL
βi

be the final unloading job and leading loading job, respec-

tively, assigned to truck i, for i = 1, . . . , m. Then, the job pairs (JU
α1

, JL
β1

), (JU
α2

, JL
β2

), . . . , (JU
αm

, JL
βm

)

yield a bipartite matching, say M , of cardinality m among the jobs in U0 and L0. Let U∗
0 , L∗

0 denote

the pair of final unloading and leading loading subsets of jobs in an optimal schedule σ∗, and let M∗

denote the corresponding optimal bipartite matching. In what follows, we will use M∗ to derive a

lower bound of Z(σ∗).

Lemma 3 Let

LB1(M) =
1

m

{ n1+m−1
∑

i=1

[

s(JU
i ) + 2t0(J

U
i )

]

+
n2+m−1

∑

i=1

[

s(JL
i ) + 2t0(J

L
i )

]

−
∑

(JU
i

,JL
j

)∈M

πij

}

,

where πij = t0(J
U
i ) + t0(J

L
j )− t(JU

i , JL
j ). Then Z(σ∗) ≥ LB1(M

∗).
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Proof: Observe that the quantity
∑n1+m−1

i=1

[

s(JU
i ) + 2t0(J

U
i )

]

+
∑n2+m−1

i=1

[

s(JL
i ) + 2t0(J

L
i )

]

−

∑

(JU
i ,JL

j )∈M∗ πij is the total time spent by the m trucks in the optimal schedule σ∗ to unload the

jobs in U∗
0 , move from the jobs in U∗

0 to the jobs in L∗
0, and then load the jobs in L∗

0, excluding any

idle time between jobs. If this total time was equally divided amongst m trucks, then each truck

would require 1
m of the total. This implies that the makespan of any schedule must be at least

LB1(M
∗).

Lemma 4 Let T̂i be the completion time of JU
i in schedule σFAT , including the time to travel back

to the quay crane afterward. Let T̂ ′
j be the elapsed time to complete all loading jobs in σLBT starting

from JL
j , including the time to travel from the quay crane to the yard location of JL

j . Let

LB2(M) = max
(JU

i
,JL

j
)∈M
{T̂i + T̂ ′

j − πij},

where πij = t0(J
U
i ) + t0(J

L
j )− t(JU

i , JL
j ). Then Z(σ∗) ≥ LB2(M

∗).

Proof: We consider any pair (JU
i , JL

j ) of final unloading and leading loading jobs in an optimal

schedule σ∗. We know that T̂i is the shortest possible completion time for JU
i among all feasible

schedules (by Lemma 1). Similarly, T̂j is the shortest elapsed time to complete all loading jobs

when starting with JL
j (by Lemma 2). Recall that in σFAT and σLBT , a two-way travel is included

for every job. Hence, T̂i and T̂ ′
j account for round trips for all jobs. The value −πij adjusts the

travel time consumed by a truck to move between the locations of JU
i and JL

j without visiting the

quay crane in-between. Therefore, the quantity T̂i + T̂ ′
j − πij is a lower bound between the start

time of JU
1 and the completion of JL

n2
, and this is true for every pair (JU

i , JL
j ) ∈ M∗. Hence, the

maximum of these quantities, max(JU
i

,JL
j

)∈M∗ {T̂i + T̂ ′
j − πij}, is a lower bound of Z(σ∗).

Let

M =
{

M
∣

∣

∣ M is a bipartite matching of cardinality m among the jobs in U0 and L0,

where JU
n1+m−1 ∈ U0, JL

1 ∈ L0, U0 ⊆ U , L0 ⊆ L, and |U0| = |L0| = m
}

.

The setM represents a collection of all possible bipartite matchings of all feasible combinations of

final unloading job subset U0 and leading loading job subset L0.

9



Theorem 5 Let ZLB = minM∈M

{

max{LB1(M), LB2(M)}
}

. Then Z(σ∗) ≥ ZLB.

Proof: By Lemmas 3 and 4,

Z(σ∗) ≥ max{LB1(M
∗), LB2(M

∗)}. (1)

Since M∗ ∈M, we have

min
M∈M

{

max{LB1(M), LB2(M)}
}

≤ max{LB1(M
∗), LB2(M

∗)}. (2)

Combining (1) and (2) yields the desired result.

Theorem 5 provides us with a lower bound ZLB of Z(σ∗). However, to calculate this lower

bound, we need to evaluate LB1(M) and LB2(M) for all possible M ∈ M, where the size of set

M is quite large. In what follows, we develop an efficient method to compute this lower bound.

Note that ZLB is equal to the optimal solution value of the following mathematical program:

Minimize Z

subject to Z ≥
1

m

(

D −
∑

(JU
i

,JL
j

)∈M

πij

)

Z ≥ T̂i + T̂ ′
j − πij, ∀ (JU

i , JL
j ) ∈M

M ∈M,

where D =
∑n1+m−1

i=1

[

s(JU
i ) + 2t0(J

U
i )

]

+
∑n2+m−1

i=1

[

s(JL
i )+ 2t0(J

L
i )

]

. To solve this mathematical

program, we may use bisection search on all possible values of Z. For a given value of Z, we need to

determine whether the above mathematical program is feasible. In other words, for a given value

of Z, we would like to determine whether there exists bipartite matching M ∈M such that

πij ≥ T̂i + T̂ ′
j − Z

for every (JU
i , JL

j ) ∈M and

∑

(JU
i

,JL
j

)∈M

(−πij) ≤ mZ −D.

This can be solved as a minimum cost network flow problem described as follows. We construct a

network with a source s and a sink t. The underlying directed graph is G = (V, A) with vertex set

V = {s, t} ∪ {JU
1 , . . . , JU

n1+m−1} ∪ {J
L
1 , . . . , JL

n2+m−1}
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and arc set

A = {s→ JU
i | i = 1, . . . , n1 + m− 2}

∪ {JU
i → JL

j | i = 1, . . . , n1 + m− 1; j = 1, . . . , n2 + m− 1}

∪ {JL
j → t | j = 2, . . . , n2 + m− 1}.

The outgoing flow requirement at s and the incoming flow requirement at t are both equal to

m− 1. Also, the incoming flow requirement at JU
n1+m−1 and the outgoing flow requirement at JL

1

are both equal to 1, thus forcing JU
n1+m−1 and JL

1 to be included in U0 and L0, respectively. Arcs

s→ JU
i and JL

j → t have cost 0, while arc JU
i → JL

j has unit cost −πij (i = 1, . . . , n1 + m− 1; j =

1, . . . , n2 + m− 1). Arc capacities are:

u(s→ JU
i ) = 1;

u(JU
i → JL

j ) =











1, if πij ≥ T̂i + T̂ ′
j − Z;

0, otherwise;

u(JL
j → t) = 1.

Let N (Z) denote this minimum cost flow problem. For any given value of Z, a desired bipartite

matching M exists if and only if the optimal total cost of N (Z) is at most mZ − D. We let

Z1 < Z2 < · · · < Zr be the distinct values of T̂i + T̂ ′
j − πij for JU

i ∈ U and JL
j ∈ L and define

Zr+1 ≡ +∞. Note that the network is the same for every Z ∈ [Zk, Zk+1). Hence, ZLB can be

determined by using bisection search on Z1, Z2, . . . , Zr+1 as described in the following procedure.

Algorithm LB:

Step 1. Set `← 1 and u← r + 1. Set k ← b(u + `)/2c.

Step 2. Solve the minimum cost network flow problem N (Zk). If the optimal total cost of the

solution is less than mZk+1 −D, then set u← k, otherwise set `← k + 1.

Step 3. If u = `, then set ZLB equal to the optimal total cost of N (Zk) and stop. Otherwise, set

k← b(u + `)/2c and go to Step 2.
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Note that in Step 2, if the optimal total cost ofN (Zk) is less than mZk+1−D, then ZLB < Zk+1

and we set u← k. Otherwise, the optimal total cost ofN (Z) is at least mZk+1−D for all Z < Zk+1,

which implies ZLB ≥ Zk+1, and therefore, we set ` ← k + 1. The number of distinct values of

T̂i + T̂ ′
j − πij is no greater than n2. Hence, the bisection search requires O(log r) ≤ O(logn2) =

O(logn) iterations. Each iteration requires to solve a minimum cost network flow problem, which

is solvable in O((|A| logW ) · (|A| + |V | log |V |)) time using a capacity scaling algorithm, where

W is the largest supply/demand parameter or arc capacity (see Ahuja et al. [1], p. 395). In our

application, |V | = O(n), |A| ≤ O(n2), and W = m− 1. Thus, the complexity of each iteration of

Algorithm LB is O(n4 log m). Therefore, the complexity of Algorithm LB is O(n4 logn log m).

This completes the description of our lower bound, and it is used in Section 6 to evaluate the

heuristics presented in the next section.

5 Heuristic Algorithms and Analysis

We now develop a few efficient heuristics for solving our vehicle dispatching problem.

Heuristic H1:

Step 1. Apply the FAT rule to the set U of unloading jobs and let the resulting schedule be σFAT .

Step 2. Apply the LBT rule to the set L of loading jobs and let the resulting schedule be σLBT .

Step 3. Concatenate the partial schedules σFAT , σLBT by arbitrarily matching the final unloading

jobs with the leading loading jobs.

This heuristic has been presented in Bish et al. [3] who showed that it has a worst case error

bound of 200% (i.e., Z(σH1)/Z(σ∗) ≤ 3) and a running time of O(n). The next theorem provides an

improved worst case performance guarantee. We let σH1 be the schedule obtained by Heuristic H1

and σ∗ be an optimal schedule.
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Theorem 6 Z(σH1)/Z(σ∗) ≤ 2 and this bound is tight.

Proof: See Appendix.

We now analyze the expected performance of Heuristic H1. Assuming that the travel times

between the quay crane and the yard locations of the containers are independent and identically

distributed with a uniform distribution, the following theorem provides some interesting properties

of Heuristic H1.

Theorem 7 Suppose that job travel times t0(J) (J ∈ U ∪ L) are independent and uniformly dis-

tributed in the interval [0, b], where b > 0. Then for n > 2, the following hold:

(i) E
[

Z(σH1)
Z(σ∗)

]

≤ 1 + 8m
n−2 ;

(ii) Pr
(

Z(σH1)−Z(σ∗)
Z(σ∗) > 8m

(n−1)η

)

≤ (ηe1−η)n−1 for all 0 < η < 1.

Proof: See Appendix.

Inequality (i) provides us with an upper bound on the expected performance ratio of Heuris-

tic H1. It also shows that, as n approaches infinity, the expected performance of the heuristic is

asymptotically optimal if the number of trucks, m, is held constant. This is consistent with the

asymptotic analysis result of Bish et al. [3]. Inequality (ii), on the other hand, implies that the

probability of the relative error being more than any constant ε > 0 approaches 0 exponentially fast

as n approaches infinity. Note that the validity of these inequalities is based on the assumption that

the job travel times t0(J) are independent and uniformly distributed in the interval [0, b]. In fact,

the proof of Theorem 7 can be generalized to the case in which the job travel times are uniformly

distributed in an interval [a, b], where 0 ≤ a < b.

Note that in Step 3 of Heuristic H1, we concatenate the partial schedules without considering

the matching of final unloading jobs with the leading loading jobs as in the optimal algorithm

described in Section 3. Hence, we can improve the heuristic by replacing the straightforward

concatenation with an optimal matching. This results in the following heuristic.
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Heuristic H2:

Step 1. Apply the FAT rule to the set U of unloading jobs and let the resulting schedule be σFAT .

Step 2. Apply the LBT rule to the set L of loading jobs and let the resulting schedule be σLBT .

Step 3. Concatenate the partial schedules σFAT , σLBT optimally by matching the final unload-

ing jobs with the leading loading jobs through solving a bottleneck assignment problem as

described in Section 3.

Solving the bottleneck assignment problem requires O(m2.5 logm) time (see Section 3). Hence,

the running time of Heuristic H2 is O(max{n, m2.5 logm}). Note that Theorems 6 and 7 also hold

for Heuristic H2. By Theorem 6, the relative error of the solution generated by Heuristic H2 is no

more than 100%. Using the same worst case example as in the proof of Theorem 6, we can show

that this error bound remains tight for Heuristic H2. In other words, improving upon Heuristic H1

using step 3 does not change the worst case performance of the heuristic.

Note that Heuristics H1 and H2 use the same sets of final unloading and leading loading jobs

and that these jobs are induced by σFAT and σLBT . The next heuristic departs from those and

uses the sets identified in our lower bound procedure LB.

Heuristic H3:

For every iteration of Algorithm LB, do the following:

Step (i). For i = 1, . . . , n1 + m− 2, put JU
i in U0 if and only if there is a flow in arc s→ JU

i in the

minimum cost flow solution of the current iteration of Algorithm LB. For i = 2, . . . , n2+m−1,

put JL
i in L0 if and only if there is a flow in arc JU

i → t in the minimum cost flow solution

of the current iteration of Algorithm LB. Also, let JU
n1+m−1 ∈ U0 and JL

1 ∈ L0.

Step (ii). Given the set U0 of final unloading jobs, obtain a partial schedule using the FAT rule and

let the resulting schedule be σFAT . Given the set L0 of leading loading jobs, obtain a partial

schedule using the LBT rule and let the resulting schedule be σLBT .
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Step (iii). Concatenate the partial schedules σFAT , σLBT optimally by matching the final unload-

ing jobs with the leading loading jobs through solving a bottleneck assignment problem as

described in Section 3.

Select the best solution among those generated by the above iterations.

The computational complexity of each iteration of Heuristic H3 is the same as that of Algorithm

LB, which is O(n4 log m). The number of iterations is O(logn), and hence, the complexity of H3

is O(n4 logn logm).

6 Computational Experiments

A computational study is performed to test the effectiveness of the proposed heuristics. The test

data are generated randomly, while the parameter settings are selected in such a way that the

actual operating conditions are reflected.

The average container throughput per vessel in Hong Kong, one of the world’s busiest ports,

during the period of January 1999 – March 2000 was 944.4 twenty-foot equivalent units (TEUs)

(see Shabayek and Yeung [20]), where the majority of the containers had capacity of 2 TEUs, while

the others were mostly 1 TEU in capacity. Typically, each vessel is served by 3 to 4 quay cranes.

Therefore, we estimate that the maximum number of jobs (i.e., containers) per vessel handled by

each quay crane is around 160. In our computational experiments, the number of jobs, n1 + n2, is

set to 20, 40, 80, and 160, where half of the jobs are unloading jobs and half of them are loading

jobs, i.e., n1 = n2. The average number of internal trucks per quay crane operating in such a

terminal is between 4 and 6. Hence, in our computational experiments, m is set to 2, 4, and 8. The

travel times of the internal trucks depend on the size and shape of the terminal. To ensure that

our experiments cover a wide range of data settings, these travel times are randomly generated.

For each problem instance, the one-way travel times, t0(J), are integers uniformly generated from

the range [1, 50] or [1, 100]. Thus, there are 24 combinations of m, n1 + n2, and travel time ranges.

For each of these combinations, we generate 10 random problems. After drawing a value t0(J), we

15



randomly generate an integer x(J) ∈ [1, t0(J) − 1] and assume that the location associated with

job J has coordinates (x(J), t0(J)− x(J)). The crane is located at position (0, 0), and hence t0(J)

is the rectilinear distance between the crane and job J ∈ U ∪ L. Accordingly,

t(J, J ′) =
∣

∣

∣x(J)− x(J ′)
∣

∣

∣ +
∣

∣

∣(t0(J) − x(J))− (t0(J
′)− x(J ′))

∣

∣

∣.

Our algorithms are applicable to any distance metric. Rectilinear distances are used to more

closely capture the motivating application. The crane processing times, s(J), are integers uniformly

generated from the range [1, 5] to reflect the fact that they are generally shorter than the travel

times of jobs.

We programmed the optimal algorithm presented in Section 3, the Heuristics H1, H2, H3,

as well as the lower bound procedure presented in Section 4. We conducted our experiemnts

on a Pentium IV processor running at 2.0 GHz. For problem instances with n1 + n2 ≤ 40, we

use R = [Z(σH) − Z(σ∗)]/Z(σ∗) to evaluate the effectiveness of Heuristic H (H = H1, H2,H3),

where Z(σH) represents the makespan of the schedule generated by the heuristic. The Z(σ∗)

values are obtained by running the optimal algorithm. This takes less than 1 hour for a 40-job

instance and less than 10 minutes for a 20-job instance. For instances with n1 + n2 ≥ 80, we use

R = [Z(σH)− ZLB]/ZLB to evaluate our heuristics. We let avg(R) denote the average value of R

over the 10 randomly generated problems. In Table 1, we report the avg(R) value and the average

CPU time for each combination of m, n1 + n2, tmax and for each heuristic.

Our results indicate that Heuristic H2 provides significant improvement over the solution pro-

vided by H1. Both heuristics’ solutions, however, are significantly inferior to those of H3, which

are near optimal for n1 + n2 ≥ 80. Moreover, the performance of our heuristics is underestimated

when n1 + n2 ≥ 80 because the lower bound ZLB rather than Z(σ∗) is used to compute R. By

construction, Heuristic H2 dominates H1. It is rare but not impossible for H2 to provide a better

solution than H3. The figures in Table 1 demonstrate that the performance of all heuristics gets

better as the number of jobs gets larger. This is consistent with Theorem 7. From Table 1, it

is clear that the better performance of H3 is achieved at the expense of increased computational

time. However, the CPU times of H3 are no more than a few seconds among all the test problems.
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We conclude that H3 is a great tool to obtain near optimal solutions for large problems.

7 Conclusions

We have developed optimal and heuristic algorithms for the single quay crane vehicle dispatching

problem. Our optimal algorithm is efficient when the number of trucks is small (e.g., 2 or 3 trucks).

We have also suggested Heuristics H2 and H3 for solving problems with more trucks. Heuristics

H1 and H2 have a worst case error bound of 100%, and their expected relative errors approach

zero exponentially fast as then number of jobs increases. Computational experiments indicate that

all three heuristics are effective, with the performance of H3 dominating those of H1 and H2.

Note that in our model, the number of trucks is assumed to be a given parameter. In practice,

the number of trucks is quite flexible (it is possible to introduce additional trucks to the existing

operation). Furthermore, in our model we consider only the container loading/unloading operation

of a single quay crane and a single ship. In reality, trucks can be shared among different quay

cranes and different ships. Therefore, an interesting future research direction is to consider the

more general setting of scheduling trucks for multiple cranes and multiple ships, as well as the issue

of determining the optimal number of trucks for the entire container terminal so as to minimize

the average turnaround time of the ships.
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Appendix

Proof of Theorem 6: Observe that Z(σ∗) ≥ Z(σFAT ). This is because σ∗ is the optimal sched-

ule for the jobs U ∪ L while σFAT is the optimal schedule for the subset of jobs U , and there-

fore, the makespan of the former must be no less than the makespan of the latter. Similarly,

Z(σ∗) ≥ Z(σLBT ). These imply that Z(σH1) ≤ Z(σFAT ) + Z(σLBT ) ≤ 2Z(σ∗), or equivalently,

Z(σH1)/Z(σ∗) ≤ 2.

To see that the bound of 2 is tight, consider an instance with m+1 unloading jobs and 1 loading

job. The one-way travel times and quay crane processing requirements of the unloading jobs are

t0(J
U
1 ) = N , t0(J

U
i ) = N + 1 (i = 2, 3, . . . , m), t0(J

U
m+1) = 1, and s(JU

i ) = 0 (i = 1, 2, . . . , m+1).

The one-way travel time and crane processing requirement of the loading job are t0(J
L
1 ) = N and

s(JL
1 ) = 0. Yard locations of JU

1 and JL
1 are on one side of the quay crane, while yard locations

of JU
2 , JU

3 , . . . , JU
m+1 are on the other side of the crane (see Figure 2(a)). Hence, the travel times

between yard locations of loading and unloading jobs are: t(JU
1 , JL

1 ) = 0, t(JU
i , JL

1 ) = 2N + 1

(i = 2, . . . , m), and t(JU
m+1, J

L
1 ) = N + 1. Heuristic H1 will generate a schedule with makespan of

4N + 2 as shown in Figure 2(b). An optimal schedule is to assign JU
m+1 to a truck different from

that of JU
1 (see Figure 2(c)). This allows a truck to serve JL

1 immediately after processing JU
1 ,

where these two jobs are of zero distance apart. The makespan of the optimal schedule is 2N + 4.

Thus, in this example, Z(σH1)/Z(σ∗) = (4N + 2)/(2N + 4) → 2, as N → ∞. This completes the

proof of the theorem.

Proof of Theorem 7: To prove the theorem, we first show that Z(σH1) ≤ Z(σ∗)+4tmax, where tmax =

maxJ∈U∪L{t0(J)}. Recall that Ti is the completion time of JU
λi

in schedule σFAT , excluding the

time to travel back to the quay crane afterward (i = 1, . . . , n1 + m− 1), and T ′
j is the elapsed time

to complete all loading jobs in σLBT starting from JL
µj

, excluding the time to travel from the quay

crane to the yard location of JL
µj

(j = 1, . . . , n2 +m−1). Clearly, there exists a pair of jobs JU
λi

, JL
µj
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assigned to the same truck in the heuristic solution such that

Z(σH1) = Ti + t(JU
λi, J

L
µj

) + T ′
j. (3)

Since all unloading jobs are scheduled using the FAT rule, the finish time of loading JU
λi

onto the

truck at the quay crane is Ti − t0(J
U
λi

) and this is the earliest possible time for completing the

unloading of JU
λi

at the quay crane. Similarly, the shortest possible elapsed time to complete all

loading jobs in σLBT starting from unloading of JL
µj

from the truck at the quay crane is T ′
j−t0(J

L
µj

).

Note that in every feasible schedule, JU
λi

is processed at the quay crane prior to JL
µj

. Thus,

[Ti − t0(J
U
λi

)] + [T ′
j − t0(J

L
µj

)] ≤ Z(σ∗),

and therefore, (3) becomes

Z(σH1) ≤ Z(σ∗) + t0(J
U
λi

) + t0(J
L
µj

) + t(JU
λi

, JL
µj

)

≤ Z(σ∗) + 2t0(J
U
λi

) + 2t0(J
L
µj

) (triangle inequality)

≤ Z(σ∗) + 4tmax. (4)

We can now proceed with (i). Inequality (4) yields

Z(σH1)

Z(σ∗)
≤ 1 +

4tmax

Z(σ∗)
. (5)

Observe that Z(σ∗) ≥ Z(σFAT ) ≥ 1
m

∑

J∈U 2t0(J) and Z(σ∗) ≥ Z(σLBT ) ≥ 1
m

∑

J∈L 2t0(J). Hence,

Z(σ∗) ≥
1

2
·
[ 1

m

∑

J∈U

2t0(J) +
1

m

∑

J∈L

2t0(J)
]

=
1

m
·tsum, (6)

where tsum =
∑

J∈U∪L t0(J). From inequalities (5) and (6), we have

Z(σH1)

Z(σ∗)
≤ 1 + 4m·

tmax

tsum
, (7)

which implies that

E
[Z(σH1)

Z(σ∗)

]

≤ 1 + 4m·E
[tmax

tsum

]

. (8)

Let X(n) be the n-th order statistic of n random variables Xj uniformly distribution in [0, b] (j =

1, 2, . . . , n), and let Y1, . . . , Yn−1 be the other n−1 random variables in the set {X1, . . . , Xn}. Then,

20



it is easy to check that Y1
X(n)

, Y2
X(n)

, . . . , Yn−1

X(n)
are independent uniform random variables distributed

in [0, 1]. We make use of the following inequality in Coffman and Gilbert ([7], eq. (10)):

E
[ 1

1 + zn−1

]

≤
2

n − 2

for n > 2, where zn−1 denotes the sum of n− 1 independent uniform random variables distributed

in [0, 1]. Hence,

E
[ X(n)
∑n

j=1 Xj

]

= E
[ 1

1 +
∑n−1

j=1 Yj/X(n)

]

≤
2

n − 2
,

for n > 2. This implies that E[tmax/tsum] ≤ 2
n−2 when n > 2. Combining this with inequality (8)

yields (i).

To prove (ii), we note that inequality (7) implies

Pr
(Z(σH1)

Z(σ∗)
> 1 +

8m

(n− 1)η

)

≤ Pr
(

1 + 4m·
tmax

tsum
> 1 +

8m

(n− 1)η

)

,

which in turn implies that

Pr
(Z(σH1)− Z(σ∗)

Z(σ∗)
>

8m

(n− 1)η

)

≤ Pr
( tmax

tsum
>

2

(n− 1)η

)

≤ Pr
( tsum − tmax

tmax
<

(n− 1)η

2

)

. (9)

Coffman and Gilbert ([7], eq. (20)) have shown that

Pr
(

zn−1 ≤
η(n− 1)

2

)

≤ (ηe1−η)n−1,

which implies

Pr
(

∑n
j=1 Xj −X(n)

X(n)
≤

η(n− 1)

2

)

= Pr
(

n−1
∑

j=1

Yj

X(n)
≤

η(n− 1)

2

)

≤ (ηe1−η)n−1.

Hence,

Pr
( tsum − tmax

tmax
≤

η(n− 1)

2

)

≤ (ηe1−η)n−1.

Combining this with inequality (9) yields (ii).
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Table 1: Relative errors of heuristics

avg(r)× 100% average CPU time (sec.)

m n1 + n2 travel times H1 H2 H3 H1 H2 H3

2 20 [1, 50] 7.0% 5.4% 3.1% 0.0 0.0 0.0

[1, 100] 6.1% 4.8% 2.8% 0.0 0.0 0.0

40 [1, 50] 5.7% 4.4% 2.7% 0.1 0.1 0.8

[1, 100] 5.0% 3.9% 2.5% 0.1 0.1 0.9

80 [1, 50] 6.5% 5.3% 3.0% 0.1 0.2 2.9

[1, 100] 6.1% 4.8% 3.0% 0.2 0.2 3.1

160 [1, 50] 5.6% 4.6% 2.5% 0.3 0.3 5.1

[1, 100] 5.2% 4.0% 2.1% 0.2 0.3 4.9

4 20 [1, 50] 6.1% 4.8% 3.5% 0.0 0.0 0.0

[1, 100] 5.7% 4.5% 3.1% 0.0 0.0 0.0

40 [1, 50] 5.1% 3.8% 2.9% 0.1 0.1 1.1

[1, 10] 4.6% 3.5% 2.5% 0.2 0.2 0.9

80 [1, 50] 5.2% 4.1% 2.4% 0.2 0.3 2.9

[1, 100] 5.1% 3.8% 2.2% 0.2 0.2 3.0

160 [1, 50] 4.6% 3.3% 1.8% 0.2 0.3 5.0

[1, 10] 4.2% 2.9% 1.5% 0.3 0.4 5.2

8 20 [1, 50] 4.5% 3.3% 1.3% 0.0 0.0 0.0

[1, 100] 4.1% 2.9% 1.2% 0.0 0.0 0.0

40 [1, 50] 4.0% 2.7% 1.0% 0.1 0.1 1.2

[1, 100] 4.0% 2.5% 1.0% 0.2 0.2 1.3

80 [1, 50] 4.0% 3.0% 0.9% 0.2 0.2 3.1

[1, 100] 4.2% 3.1% 1.1% 0.3 0.3 3.5

160 [1, 50] 4.2% 3.1% 0.9% 0.4 0.4 5.3

[1, 100] 3.9% 2.6% 1.0% 0.4 0.4 6.1
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(a) Schedule of unloading jobs obtained by the FAT rule 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Schedule of loading jobs obtained by the LBT rule 
 
 
 

Figure 1. Examples of FAT and LBT rules
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(a) Yard locations of jobs 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Heuristic solution 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(c) Optimal solution 
 

Figure 2. Example in the proof of Theorem 6 
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