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Abstract 10 

 11 

Objectives: 12 

This paper aims to apply median filters for reducing interpolation error and improving the quality 13 

of 3D images in a freehand 3D ultrasound (US) system. 14 

Background and Motivation:  15 

Freehand 3D US imaging has been playing an important role in obtaining the entire 3D 16 

impression of tissues and organs. Reconstructing a sequence of irregularly located 2D US images (B-17 

scans) into a 3D data set is one of the key procedures for visualization and data analysis. 18 

Methods:  19 

In this study, we investigated the feasibility of using median filters for the reconstruction of 3D 20 

images in a freehand 3D US system. The B-scans were collected using a 7.5 MHz ultrasound probe. Four 21 

algorithms including the standard median (SM), Gaussian weighted median (GWM) and two types of 22 

distance weighted median (DWM) filters were proposed to filter noises and compute voxel intensities. 23 

Qualitative and quantitative comparisons were made among the results of different methods based on the 24 

image set captured in freehand from the forearm of a healthy subject. A leave-one-out approach was used 25 

to demonstrate the performance of the median filters for predicting the removed B-scan pixels. 26 
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 2

Results:  1 

Compared with the voxel nearest neighbourhood (VNN) and distance-weighted (DW) 2 

interpolation methods, the four median filters reduced the interpolation error by 8.0%~24.0% and 3 

1.2%~21.8%, respectively, when 1/4 to 5 B-scans was removed from the  raw B-scan sequence.   4 

Conclusions: 5 

In summary, the median filters can improve the quality of volume reconstruction by reducing the 6 

interpolation errors and facilitate the following image analyses in clinical applications. 7 

 8 
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1. Introduction 18 

During the past decades, two-dimensional (2D) ultrasound (US) imaging has been widely used for 19 

many clinical applications in a rapid, inexpensive, non-ionizing, and non-invasive manner. However, it 20 

has some limitations for clinicians to visualize and analyze three-dimensional (3D) anatomies for 21 

diagnosis. 3D US imaging has proven to be able to overcome the limitations by constructing various 3D 22 

data sets of tissues or organs for visualization and analysis [1-3].   23 

Many types of systems that are capable of obtaining 3D US imaging have been developed for various 24 

clinical practices in recent years [1, 2]. One of the often-used systems is the freehand imaging with spatial 25 

tracking devices, where the US probe is moved by hand in an arbitrary manner. A sequence of irregularly 26 
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spaced 2D US images (B-scans) can be captured as the probe is moved over the region of interest, and 1 

resampled onto slices along any-plane [4], regular voxel arrays [5] or surfaces [6] based on the positional 2 

information recorded from the spatial sensing device during the scanning. In comparison with other 3D 3 

systems, such as 3D imaging with 2D transducer arrays and 3D mechanically driven imaging, the 4 

freehand protocol is the cheapest and most flexible approach [3], allowing the most freedom for the 5 

operator to acquire arbitrarily 3D anatomical structures with different sizes. Due to the arbitrary 6 

movement of the US probe in the freehand 3D US imaging, it is important to find a suitable interpolation 7 

method to reconstruct 3D image data to preserve the diagnostic information and meanwhile to avoid the 8 

introduction of noises and artefacts. 9 

The methods of reconstructing 3D images, producing various slices or approximating surfaces from a 10 

number of irregularly spaced 2D B-scans have been investigated by several researchers [4-10]. Rohling et 11 

al. [5] reviewed a number of often-used methods for resampling B-scan data into 3D image data in 12 

freehand systems, and grouped the previous interpolation methods into three categories: voxel nearest-13 

neighbour (VNN) interpolation, pixel nearest-neighbour (PNN) interpolation, and distance-weighted (DW) 14 

interpolation. For the VNN method, the intensity of the nearest pixel in a voxel neighbourhood is 15 

assigned to this voxel. Prager et al. [4] used the VNN method to obtain resliced images along any planes 16 

directly from the raw B-scan pixels in real-time in their sequential freehand system. Although the VNN is 17 

straightforward and fast, it tends to produce reconstruction errors on the image slices, particularly when 18 

the scanning has big gaps. The PNN method searches through each pixel in B-scans, and assigns the pixel 19 

intensity to its nearest voxel. Multiple contributions to the same voxel are usually averaged. Interpolation 20 

methods can be used to fill gaps in the voxel arrays. However, boundaries between the voxels directly 21 

assigned by pixels and those gaps filled using interpolation methods can be clearly observed. Unlike the 22 

VNN and PNN methods, the DW interpolation computes each voxel value by assigning the weighted 23 

average of a set of pixels falling into a predefined 3D region centred about that voxel. All pixels in the 24 

region are weighed by their inverse distances to the voxel centre [7]. As this procedure can be regarded as 25 

a mean filtering method that can reduce noises and artefacts, DW interpolation normally provides good 26 



 4

results with speckle and shadowing reduction. However, averaging operation can blur image details, 1 

especially the boundaries of tissue components with small dimensions. To provide more diagnostic details 2 

in 3D US images, Meairs et al. [9] reported a weighted ellipsoid Gaussian convolution kernel to assign 3 

the pixel weights. Huang et al. [10] used a square distance weighted (SDW) interpolation in their 3D 4 

imaging system. In comparison with the conventional DW method, these modified DW methods could 5 

provide improved results, but image blurring could still not be avoided.  6 

On the other hand, as a nonlinear processing technique, the median filter has been successfully used 7 

for speckle reduction and edge preservation in ultrasonic images because it has the advantages of 8 

removing noises and meanwhile well preserving image details [11, 12]. However, little attention was paid 9 

to employing this technique for interpolating voxels, surface contours or intensities on any planes resliced 10 

directly from raw B-scan pixels in 3D US systems. In this paper, we propose three weighted median (WM) 11 

filters and applied them for the volume reconstruction in our freehand system [10]. A standard median 12 

(SM) filter was also used for comparison purposes. A data structure was designed accordingly for storing 13 

pixel intensities and their distances to the voxel centre in a spherical region. The detailed methods are 14 

described in section 2. We compared the interpolation performances of the median filters with those of 15 

the VNN and DW methods. The reconstruction and comparison results are presented in section 3 and the 16 

discussion and conclusions in section 4, respectively. 17 

 18 

2. METHODS 19 

2.1. System description 20 

A freehand 3D US imaging system was previously developed and used for the imaging of 21 

musculoskeletal tissues [10]. This system was comprised of three parts including an electromagnetic 22 

spatial sensing device (miniBird, Ascension Technology Corporation, Burlington, VT, USA), a portable 23 

US scanner (SonoSite 180PLUS, SonoSite, Inc., Bothell, WA, USA), and a PC with custom-designed 24 

software, which was used for data collection, volume reconstruction, visualization and analysis. The 25 

receiver of the spatial sensing device was attached to the probe of the US scanner. During the data 26 
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acquisition, the video stream of the US scanner was digitized by a video capture card (NI-IMAQ 1 

PCI/PXI-1411, National Instruments Corporation, Austin, TX, USA) and then transferred to the PC. The 2 

spatial data, including the position and orientation of the receiver of the spatial sensing device, were 3 

simultaneously recorded by the system through RS232 serial port. The B-scans were collected at a rate of 4 

20 frames per second. The software was programmed in VC++ and run in a PC with a 2.8 GHz Pentium 5 

IV processor and 1 GB of RAM.  6 

 7 

2.2. Calibration methods  8 

Temporal and spatial calibration experiments were performed for the freehand system [10]. 9 

According to a previously reported method [13], we used a 3D translating device (Parker Hannifin 10 

Corporation, Irvine, CA, USA) to control the movement of the US probe during the temporal calibration. 11 

The US probe was immersed in a tank filled with water and moved up and down by the 3D translating 12 

device. The metal distortions that might be caused by the translating device were not observed and the 13 

movement error was insignificant in our experiments. The normalized positions of the lines denoting the 14 

bottom of the water tank in B-scan images were correlated with those measured by the spatial sensor. The 15 

optimum time delay between the captured images and sensed spatial data could be obtained by finding out 16 

the minimum difference between the two data streams. The spatial calibration was conducted using a 17 

cross-wire phantom [7]. Two cotton wires were crossed in a water tank. In each experiment, 18 

approximately 60 B-scans with corresponding spatial locations were recorded from various directions. 19 

The crossing point in each B-scan was manually marked and a Levenberg-Marquardt nonlinear algorithm 20 

was performed to determine the spatial relationship between the image plane and the spatial sensor [14].  21 

 22 

2.3. Volume reconstruction 23 

Most of the freehand systems employed similar methods for the transformation procedures, as 24 

described in [10]. As shown in Fig. 1, the pixels in a sequence of B-scans could be transformed into the 25 

3D coordinate system. The dimensions and grid points of a regular 3D data set should be established in 26 
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this coordinate system before the reconstruction. With respect to the conventional DW interpolation, a 1 

spherical region centred about each voxel grid point with a radius R should be defined, and all pixels 2 

transformed into this region should be weighed according to their inverse distances to the voxel centre, 3 

and then averaged to obtain the voxel intensity, as demonstrated in Fig. 2(a). If the radius of the spherical 4 

region is set to be large enough, the gaps between raw B-scans shown in Fig. 2(b) can be well filled as 5 

illustrated in Fig. 2(c).   6 

In this study, we adopted the same spherical region centred about each voxel for volume 7 

reconstruction. However, we applied median filters, which used the median intensity value of the pixels in 8 

the predefined region as the voxel value, instead of weighted mean filters used by the DW interpolation. It 9 

is well known in the fields of signal and image processing, median filters can provide smoothing function 10 

and meanwhile preserve the high frequency components. We designed a data structure to store all pixels 11 

falling into the spherical region of each voxel and their corresponding distances to the voxel centre, as 12 

shown in Fig. 3, to facilitate the implementation of the median filters. For each voxel, all pixels in its 13 

spherical neighbourhood would be stored in the pixel intensity array, and their corresponding distances to 14 

the centre would be computed and recorded in the distance array in the same order. Then, a median filter 15 

was applied to those stored pixel intensities. Finally, the voxel intensity was assigned to be the output of 16 

the median filter. If gaps occurred, the intensity of the empty voxel was assigned to be the output of the 17 

median filter applied to the value-assigned voxels in its spherical neighbourhood. Fig. 2(b) shows an 18 

typical example of reconstructed volume data with filled gaps.     19 

  20 

2.4. Median filters 21 

Four median filters were used for calculating voxel intensities in the 3D image reconstruction. The 22 

simplest approach was the SM filter which is defined as:  23 
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where ℜ  is the predefined spherical region containing Nc pixels, CV
r

 locates at the centre of ℜ, ( )k
PVI
r

 is 1 

the intensity of the kth pixel falling intoℜ , and ( )CVI
r

 is the intensity of the voxel at the centre of ℜ. The 2 

median value of the Nc pixels should be the value of ( )CVI
r

. If Nc is an even number, the pixel with the 3 

largest difference to the mean of the Nc pixels would be removed before the sorting in this study. 4 

According to Loupes et al. [11], the weighted median (WM) filter could be helpful in speckle 5 

reduction and signal preservation. Therefore, three WM filters with different mathematical expressions 6 

were also proposed in this study to improve the interpolation results. Appendix A provides the definition 7 

and an example for the WM filter [15]. In these WM filters, the pixels’ distances to the centre of each 8 

voxel were inversely related to their weights because smaller distance should indicate that the pixel had 9 

more probability to be the output value.  10 

The first WM filter is named as type-1 distance-weighted median (DWM-1) using the squared inverse 11 

distance to calculate the weights, expressed as follow: 12 
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where dk is the distance between the kth pixel and the current voxel centre, and ◊ denotes the duplication 14 

operation.  15 

The second WM filter is type-2 distance-weighted median (DWM-2), which is written as:  16 
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where R0 is the radius of the predefined spherical region, and dk is the distance between the kth pixel and 18 

the current voxel centre.  19 

The two DWM methods were similar but not the same. Let us consider a specific pixel very close to 20 

the centre of the spherical region. For the DWM-1, the weight assigned to the pixel at the voxel centre 21 

would be extremely large, indicating that final output would be dominantly impacted by this pixel. For 22 

the DWM-2, the weight of the pixel was limited and not larger than R2. Thus the point at the center might 23 
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not be able to mainly affect the final output value. This difference would cause the two types of DWM 1 

filters to have different interpolation results. 2 

The 3rd WM filter is named as Gaussian weighted median (GWM) filter. A Gaussian function is 3 

applied to calculate the weights. The computation is described by 4 
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where σ is a parameter that could be adjusted by the operator, and dk is the distance between the kth pixel 6 

and the current voxel centre. The weight for the kth pixel is obtained by the Gaussian function, where the 7 

output (Wk) is related to the inverse exponent of the squared distance between the voxel centre and the kth 8 

pixel in the spherical region. For the three WM filters, the pixels with smaller distances to the voxel 9 

centre would have relatively larger weights. However, the changing rates of weight as a function of the 10 

distance from the center were different among the three WM filters. Higher changing rates could better 11 

preserve edges and lower rates could provide better smoothing effects. While these typical weight 12 

functions allowed us to demonstrate the capabilities of WM filters, it is understandable that there should 13 

be other functions for weight assignment.  14 

 15 

2.5. Evaluation tests and comparisons 16 

The evaluation approach introduced by Rohling et al. [5] was used in this study. The idea of the 17 

approach was to evaluate the ability of a reconstruction technique in preserving true intensity values at the 18 

locations where a part of original data was removed. A good reconstruction method should interpolate the 19 

removed grid points with values very near to the original data. Following this evaluation method, we 20 

scanned the right forearm of a healthy male subject using the 3D US system. The subject gave his 21 

informed consent to the investigation which was approved by the Hong Kong Polytechnic University 22 

Human Subjects Ethics Committee. A B-scan near the middle of the scanned region was selected for pixel 23 

removing. Different percentages of pixels were removed randomly from this selected B-scan. The rest 24 
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data was used to reconstruct a voxel array with a voxel size equivalent to the pixel size. The average 1 

absolute differences between the interpolated grid points and the missing original pixel values was 2 

calculated for evaluating the reconstruction performance using the following equation: 3 

∑
=

−=
N

i
ii rp

N
V

1

1       (5) 4 

where pi is the removed original pixel intensity, ri is the interpolated intensity at the location of pi, and N 5 

is the number of removed pixels. A smaller V indicates a better performance of interpolation.  6 

Eight different data removing ratios were used in the current evaluation tests, i.e. 0%, 25%, 50%, 7 

75%, 100%, 300%, 500% and 700%. For the 0% test, V was calculated using all pixels of the selected B-8 

scan. The tests with the data removing ratios of 25%, 50%, 75% and 100% were performed using the 9 

correspondingly selected B-scan n.  It cannot happen that only a number of pixels instead of a whole 10 

B-scan plane are missing in a real-world environment. The evaluation tests using 25%, 50% and 11 

75% removal percentage aimed to obtain the interpolation performance of different methods 12 

when the gaps between B-scans were very small. For the 300% test, the data from B-scan n-1, B-scan 13 

n and B-scan n+1 were totally removed. The 500% test further removed all data from B-scan n-2 and B-14 

scan n+2, and the 700% test further removed all data from B-scan n-3 and B-scan n+3. The 100%, 300%, 15 

500% and 700% tests aimed to mimic the gaps existing in the B-scan sequence. 16 

In our experiments, the distance between any two adjacent B-scans ranged from 0.11mm to 0.56 mm, 17 

with a mean of 0.29 mm. Therefore, we used 0.40 mm as the radius R of the spherical neighbourhood for 18 

the 0%, 25%, 50%, 75% and 100% tests. To cover the larger gaps for the 300%, 500% and 700% tests, 19 

the radius R was increased to 0.69 mm, 0.98 mm and 1.27 mm, respectively. The VNN interpolation 20 

method and the DW method were implemented and compared with the four median based interpolation 21 

methods. In order to investigate the effects of the parameter σ in the GWM, it was empirically set to be 22 

0.01, 0.025, 0.05, 0.075, and 1.0, respectively, for the evaluation tests. Since the computation of median 23 
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filters is expensive, we recorded the computation times of above methods at the 100% test for comparison 1 

purpose. 2 

 3 

3. RESULTS 4 

Table 1 summarizes the averaged interpolation errors and the standard deviations of the evaluation 5 

tests using the VNN, DW and the four median filters. According to the values in bold type which indicate 6 

the best interpolation result for each test, the best result using the interpolation errors using four median 7 

filters were reduced by 8.0%~24.0% compared with the VNN method, and 1.2%~21.8% compared with 8 

the DW method. Table 2 gives the averaged computation time at the 100% test for each interpolation 9 

method used in this study. Fig. 4 shows the trends of the interpolation errors for the different 10 

reconstruction methods. A typical slice reconstructed using 50%, 100% and 300% data removing ratios is 11 

illustrated in Figs. 5, 6, and 7. A small window is marked on the figures to illustrate the image content 12 

more clearly. 13 

For the 0% data removing ratio, the VNN and DW methods presented no error as all pixels of the 14 

selected B-scan were assigned to their original locations on the slice reconstructed (Table 1). For the 15 

DWM-1, the interpolation error was also 0 because the weights were infinite for the original pixels 16 

overlapping with the voxels and the median outputs for these voxels were therefore the corresponding 17 

pixel values. The other median filters resulted in some errors because the median outputs were smoothed 18 

in comparison with the original data. The GWM with smaller σ (σ=0.01) produced relatively smaller 19 

interpolation error, because the output with very small σ approximated the nearest pixel, making the 20 

interpolation act like the VNN method. For the 25%, 50% and 75% tests, the median filters provided 21 

similar results to the VNN and DW methods.  22 

According to Table 1 and Fig. 4, the VNN method produced larger interpolation errors than the other 23 

methods for the tests with data removing ratios larger than 100%.  For the 100% test, the median filters 24 

showed performances similar to the DW method, except the GWM with σ=0.01. For the ratios of 300%, 25 
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500% and 700% , all the median filters offered smaller errors in comparison with the DW method, with 1 

the GWM with σ=0.1 showing the best interpolation results. 2 

For the qualitative comparisons, it is apparent that the slices reconstructed using the median filters 3 

could preserve relatively sharper edges and more texture patterns in comparison with the DW method, as 4 

demonstrated in Figs. 5, 6, and 7. Although the slices resampled using the VNN method looked sharp and 5 

presented the most texture patterns for the 100% and 300% tests, the anatomical information was actually 6 

distorted due to the misalignments of pixels, which had been addressed by Rohling et al. [5] and could be 7 

observed in some regions of the images shown in Figs. 6(g) and 7(g). This problem appeared more 8 

serious for the cases with 500% and 700% data removing ratios. It is an inherent problem of VNN when 9 

the image gap is relatively large. 10 

 11 

4. DISCUSSION AND CONCLUSION 12 

In this paper, four median filters were studied and implemented for 3D image reconstruction in the 13 

freehand 3D US imaging system. Besides the standard median filter, we also proposed three weighted 14 

median filters based on the distance between the neighbouring pixels and the voxel center. A leave-one-out 15 

approach [5] was used to study the performance of the median filters for predicting the removed B-scan 16 

pixels of a 3D image data set collected from the forearm of a healthy subject. The results showed that the 17 

median filters would generally produce smaller interpolation errors in comparison with the VNN and DW 18 

methods when pixels were removed from more than one B-scan images, especially with 300%, 500% and 19 

700% image removing ratios. In addition, qualitative visualization demonstrated that the median filters 20 

could better preserve the tissue boundary information in comparison with the DW method and meanwhile 21 

provide smoothing for the speckles.  22 

In general, all the median filters (SM, DWM-1, DWM-2 and GWM) worked better for the 300%, 500% 23 

and 700% tests in comparison with the VNN and DW methods, indicating their advantages in filling large 24 

gaps. For the 25%, 50% and 75% tests, the weighted median filters (DWM-1, DWM-2 and GWM) also 25 

demonstrated improved interpolation in comparison with the DW method. Among the four median filters, 26 
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the GWM with relatively larger sigma (such as σ = 0.075) offered the best reconstruction results at the 1 

300%, 500% and 700% tests, and the GWM with relatively smaller signal (such as σ = 0.01) presented the 2 

lowest interpolation error at the 0%, 25%, 50% and 75% tests. Theoretically, there is no limit for the 3 

assignment of σ. If σ gets much closer to 0, the pixel with the shortest distance to the voxel centre will have 4 

much larger weight and the filter tends to choose one of the nearest pixels as the output, acting like the 5 

VNN method. If σ is infinitely positive, the filter tends to be a standard median filter. Therefore, the 6 

parameter σ in the GWM should be carefully selected for different applications. How to select an optimized 7 

σ or adaptively set σ with respect to the gap size for the GWM method should be further investigated. 8 

According to the qualitative comparison results (Figs. 5, 6, and 7), it was obvious that the median filters 9 

could better preserve tissue edges in comparison with conventional DW methods. Although the VNN 10 

method appeared to provide most details in the reconstructed image, the images were actually distorted for 11 

the raw data set with large B-scan gaps. Therefore, quantitative analyses based on the VNN results would 12 

not be so reliable when the 3D scanned image slices were not dense enough. The proposed median filters 13 

appeared to be able to provide a sort of compensation between the VNN and DW methods. It is well-known 14 

that the correct edge preservation is very important for the image segmentation of anatomical structures, 15 

such as surface extraction [6], as the enlarged gradient at tissue edges can make the tracing of tissue 16 

boundaries easier and more accurate. The use of the proposed median filters in the 3D image reconstruction 17 

may potentially provide an approach for exploring automatic and robust segmentation techniques based on 18 

the images with better preserved edges. Consequently, more accurate 3D measurements, such as volume 19 

estimation, can be realized based on the accurate segmentation of 3D objects. In addition, the improvement 20 

of edge preservation will be useful for 3D compounding of multiple sweeps [16-18], as the correctly 21 

preserved edges can be considered as tissue landmarks and used for alignment of different sweeps.  22 

No artificial phantom with homogeneous material has been used in the evaluation tests in this study. 23 

The reason was that we would like to calculate the interpolation errors globally on the reconstructed slices. 24 

As shown in the Fig. 8(a), if the rectangles in the two images are not matched exactly, there would 25 



 13

be interpolation errors only in the edge regions but not in the internal regions because the internal 1 

intensities are constant. In contrast, Fig. 8(b) shows another example where the image content is 2 

more complicated and the interpolation errors can be computed from internal regions. Therefore, in 3 

order to completely evaluate the interpolation performance, more complicated structures of the 4 

scanned object will provide more reliable results. Because the phantoms with regular geometry or 5 

structures are usually made using homogeneous materials, they may not be so reliable to evaluate 6 

the interpolation performance in comparison with real human tissues. 7 

 To realize the proposed weighted median filters, a data structure was designed to store the array of 8 

pixels falling into the spherical neighbourhood centred about each voxel and the corresponding distances of 9 

these pixels to the voxel centre. In comparison with the DW interpolation, the two arrays associated with 10 

the voxels require more memory during the reconstruction. The larger spherical region or the more voxel 11 

grid points defined, the more memory was required. This problem can be solved by increasing the capability 12 

of RAM in the PC. Moreover, the proposed median filters required more computation time for sorting the 13 

intensities in the pixel array, as demonstrated in Table 2. In this study, Quicksort sorting algorithm [19] was 14 

used to improve the computation speed of image reconstruction. Nevertheless, the computation time for the 15 

median filters was still about 3-5 times longer than that for the DW interpolation for the data set used in our 16 

practical tests (with a dimension of 150x150x128 voxels). The time cost of median filters will further 17 

increase when the image data set is larger. Therefore, the implementation of the median filters requires a 18 

high-performanced PC with enough memory. With the recent advancement in multi-core and multi-19 

processor PCs, we believe that the computational time for realizing the proposed median filters can be 20 

greatly reduced in the near future. In addition, to develop sorting algorithms with higher efficiency will be 21 

another approach to reduce the computation time. 22 

In conclusion, we have reported to use median filters for the 3D image reconstruction in freehand 3D 23 

US system. Four median filters with different forms were employed for this purpose. In comparison with 24 

the VNN and DW methods, the reconstruction results of the median filters demonstrated their good 25 
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performances for reducing registration errors and preserving edges, particularly for raw image sets with 1 

large slice gaps. Future studies should be followed to improve the computation speed of the median filters 2 

using more efficient algorithms, and to investigate new techniques for the economical storage of the pixel 3 

intensity and distance arrays. The performances of the median filters should also be verified with more 4 

image sets with different conditions in the future.   5 
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Appendix A 11 

The weighted median (WM) filter was derived as a generation of the standard median (SM) filter, 12 

where a nonnegative weight is assigned to each position in the filter window [15]. We present here a 13 

definition and an example for the WM filters. 14 

Definition: The output of a WM filter is the value x* that minimizes the following equation 15 

   ( ) ∑
=

−=
n

i
ii xxwxL

1

**        (6) 16 

where x* is guaranteed to be one of the elements in an input vector X, because L(x*) is piecewise linear 17 

and convex if wi≥0, i=1, 2, …, n. The computation procedures can be summarized as follows: sort the 18 

elements in the filter window; then add up the corresponding weights from the upper end of the sorted 19 

sequence until the sum equals or just exceeds half of the total sum of the weights, i.e., the sum≥ ∑=

n

i iw
12

1 ; 20 

the element corresponding to the last added weight is the final output of the WM filter. 21 

Example: Given an input vector [0.5, -0.5, -1, 1, 0] and a real positive weight vector [0.1, 0.2, 0.3, 0.2, 22 

0.1], sort the elements in the input vector and then we get the new element sequence with corresponding 23 

weights: 24 



 15

0.2    0.1    0.1    0.2    0.3 1 
 1      0.5     0     -0.5    -1 2 

The total sum of weights is 0.9 so that we add the weights from the left until the sum equals or just 3 

exceeds 0.45. The sum is 0.4 after adding the weight (0.1) corresponding to the element 0, and 0.6 after 4 

adding the weight (0.2) corresponding to the element -0.5. Therefore, the output of the WM filter is -0.5, 5 

which is different from the output of an SM filter. 6 

 7 
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 23 

Figure captions 24 

Fig. 1. The B-scans transformed to the volume coordinate system in the volume reconstruction of 3D 25 
freehand US.  26 
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Fig. 2. The calculation of voxel intensity for the DW interpolation and the reconstructed volume data with 1 
filled gaps. (a) A spherical region centred about a voxel is predefined before 3D image 2 
reconstruction. Pixels falling into this region are weighed regarding to their inverse distances to 3 
the voxel centre and then averaged to obtain the voxel intensity. (b) A typical sequence of 4 
original B-scan images with certain gaps. (c) A voxel array (volume) was reconstructed using the 5 
B-scan images shown in (b). The gaps between raw B-scans can be filled if the radius of the 6 
spherical region is large enough. 7 

Fig. 3. The proposed data structure for storing the intensities of pixels falling into the spherical region and 8 
their corresponding distances to the voxel centre. Each voxel was associated with such a data 9 
structure. 10 

Fig. 4. Averaged interpolation error in grey level. (a) The SM, DWM-1 and DWM-2 were compared with 11 
the VNN and DW methods; and (b) the GWM methods with σ=0.01 and 0.1, respectively, were 12 
compared with the VNN and DW methods. 13 

Fig. 5. A typical interpolated slice using the VNN, DW and the median filters at the 50% test. Images (a)-14 
(f) were reconstructed using methods: (a) VNN,  (b) DW,  (c) SM, (d) DWM-1, (e) DWM-2, and 15 
(f) GWM (σ=0.01). Images (g)-(l) show the magnified views of the selected regions in images 16 
(a)-(f). 17 

Fig. 6. The same slice as shown in Fig. 5 using the VNN, DW and the median filters at the 100% test. 18 
Images (a)-(f) were reconstructed using methods: (a) VNN,  (b) DW,  (c) SM, (d) DWM-1, (e) 19 
DWM-2, and (f) GWM (σ=0.1). Images (g)-(l) show the magnified views of the selected regions 20 
in images (a)-(f). 21 

Fig. 7. The same slice as shown in Fig. 5 using the VNN, DW and the median filters at the 300% test. 22 
Images (a)-(f) were reconstructed using methods: (a) VNN,  (b) DW,  (c) SM, (d) DWM-1, (e) 23 
DWM-2, and (f) GWM (σ=0.1). Images (g)-(l) show the magnified views of the selected regions 24 
in images (a)-(f). 25 

Fig.8. Examples for interpreting why a homogeneous phantom with regular shape was not used in the 26 

evaluation tests. (a) A phantom example with homogeneous materials. An original slice 27 

and a reconstructed slice are not matched well. The interpolation error can only be 28 

calculated from mismatched edge regions, because the internal intensities are 29 

approximately the same. (b) A phantom with more complicated internal structures. When 30 

the original slice and the reconstructed slice are not matched well, the interpolation error 31 

can also be contributed by internal regions. 32 

 33 
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Table 1. Averaged interpolation error V using the VNN, DW, SM, DWM-1, DWM-2 and GWM methods. SD indicates standard 1 

deviation. The unit of the data is grey level (with a range of 0 to 255).  2 

 3 

 4 

Table 2. Averaged computation times for the VNN, DW, SM, DWM-1, DWM-2 and GWM methods at the 100% test. SD indicates 5 

standard deviation. The unit of the data is minute. The software was programmed in VC++ and run in a PC with a 2.8 GHz Pentium 6 

IV processor and 1 GB of RAM. 7 

VNN DW SM DWM-1 DWM-2 GWM 
Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

27.6 2.2 8.8 0.5 42.7 2.3 44.5 2.8 43.8 2.7 48.7 2.7 
 8 

 VNN DW SM DWM-1 DWM-2 
GWM 

(σ=0.01) 

GWM 

(σ=0.025)

GWM 

(σ=0.05) 

GWM 

(σ=0.075)

GWM 

(σ=0.1) 

 Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

0% 0.00 0.00 0.00 0.00 7.88 0.59 0.00 0.00 6.91 0.47 4.69 0.77 6.25 0.66 7.10 0.71 7.40 0.73 7.55 0.53

25% 7.56 0.80 8.08 0.46 8.23 0.58 7.19 0.50 7.54 0.52 6.32 0.81 7.16 0.78 7.69 0.81 7.89 0.83 7.99 0.54

50% 7.91 0.86 8.37 0.51 8.52 0.68 7.72 0.58 8.01 0.60 7.05 0.91 7.73 0.94 8.12 0.96 8.26 0.97 8.33 0.63

75% 8.93 0.94 8.88 0.65 8.95 0.88 8.50 0.76 8.69 0.81 8.22 1.04 8.56 1.10 8.75 1.10 8.81 1.11 8.85 0.83

100% 12.59 1.33 9.69 0.85 9.57 1.03 9.75 1.01 9.74 1.06 10.41 1.24 10.29 1.45 10.09 1.33 9.78 1.40 9.59 1.01

300% 12.66 1.37 10.76 0.90 10.57 0.70 9.94 0.84 10.24 0.71 10.68 1.34 10.64 1.32 10.14 1.44 10.10 1.36 10.14 0.74

500% 13.93 2.28 12.77 1.33 12.06 0.84 11.01 1.17 11.58 0.94 12.20 2.29 11.49 1.41 11.13 1.34 11.05 0.96 11.08 1.36

700% 14.51 2.06 13.80 0.92 13.70 0.74 12.48 1.03 12.54 0.70 12.81 2.11 12.07 1.81 11.73 1.55 11.67 1.16 11.75 1.17




