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An Empirical Study of Forecast 
Combination in Tourism 

 
 
Abstract 
 

The performance of forecast combination techniques is explored at different time 

horizons in the context of tourism demand forecasting. Statistical comparisons 

between the combination and single model forecasts show that the combined 

forecasts are significantly more accurate than the average single model forecasts 

across all forecasting horizons and for all combination methods. This provides a 

strong recommendation for forecast combination in tourism. In addition, the 

empirical results indicate that forecast accuracy does not improve as the number of 

models included in the combination forecasts increases. It also appears that 

combining forecasts may be more beneficial for longer-term forecasting.  

 

Key Words: Forecast combination; forecasting accuracy; tourism demand 
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1. Introduction 

 

With the fast growth of the tourism industry in many developed and developing 

economies, tourism forecasting has attracted much attention from marketers as well as 

researchers. Accurate forecasts of tourism demand are of great importance not only for 

the private sector, such as hotels, airlines and tour operators in terms of their business 

planning and investment, but also for destination governments in terms of tourism policy 

formulation and implementation. A number of quantitative techniques have been applied 

to tourism demand forecasting over the last three decades, and these methods include 

time series analysis, econometric models, and nonlinear modeling approaches (see Li et 

al. 2005). 

 

This study aims to examine whether forecasting performance could be improved by 

combining tourism forecasts generated by individual forecasting models. Witt and Song 

(2001) noted that the forecasting accuracy of individual forecasting methods varies across 

origin-destination pairs and over different forecasting horizons. Since tourism planners 

and business decision-makers attach high importance to the accuracy of forecasting, it is 

crucial for researchers to explore what are the best techniques for tourism demand 

forecasting. This study is a further attempt to look at forecasting accuracy by examining 

whether forecast combination could improve the overall forecasting accuracy of tourism 

demand models. The demand for Hong Kong tourism by ten major origin 

countries/regions is used as the base of the study. Combination forecasting techniques 

focus on combining the individual forecasts generated by different models through 

appropriate weighting schemes, which have been developed in the general forecasting 

literature. Published general forecasting studies show that the combination of individual 

forecasts can improve forecasting accuracy (Winkler & Makridakis, 1983), but this 

conclusion is not supported by some of the more recent studies, such as Hibon and 

Evgeniou (2005) and Koning et al. (2005). 

 

Although forecast combination has attracted wide attention in the general forecasting 

literature, very little research on this topic has appeared in the tourism forecasting 
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literature. This study aims to make a major contribution to the tourism forecasting 

literature by providing a more comprehensive empirical investigation of combination 

forecasting in tourism; than has previously been undertaken. 

 

 The empirical analysis of this paper follows five steps. Firstly, four modern 

forecasting methods are employed to generate single model forecasts at different time 

horizons: one, two, four and eight quarters(s) ahead. Secondly, three combination 

methods are utilized to obtain combination forecasts at different time horizons.  Thirdly, 

the differences in accuracy between combination forecasts and single forecasts are tested 

for statistical significance. Fourthly, forecasting accuracy differences are examined in 

terms of both the combination method used and the length of the forecasting horizon. 

Lastly, the expected improvement in forecasting accuracy resulting from including extra 

models in the forecast combination is investigated for different time horizons. This is the 

first time that the issues considered in steps three, four and five have been addressed in 

the tourism forecasting literature.  

 

The rest of the paper is organized as follows. Section 2 reviews the recent 

developments in the tourism forecasting and combination techniques literature. Section 3 

introduces the data, the forecasting models and the combination techniques. Section 4 

presents the empirical results and the conclusions are given in Section 5. 

 

2. Literature Review 

 

During the past two decades, econometric techniques have advanced significantly. 

These new developments have also played an important role in the understanding of 

tourists’ behavior and their demand for tourism products/services. Li et al. (2005) 

reviewed eighty-four studies on tourism demand analysis published since the 1990s and 

found that a majority of these studies used econometric methods. For example, the 

general-to-specific approach was used by Song and Witt (2003) to build an ADL 

(Autoregressive Distributed Lag) model to forecast inbound tourism to South Korea from 

four major tourism origin countries. A vector autoregressive (VAR) model was applied 
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by Song and Witt (2006) to forecast ex ante tourist flows to Macau from eight major 

origin countries/regions. Law and Au (1999) used the neural network model to forecast 

Japanese demand for travel to Hong Kong. Li et al. (2004) used the long-run static and 

the short-run error correction-almost ideal demand system (EC-LAIDS) models to 

examine the demand for tourism in five European destinations by UK residents. 

 

There are also a large number of studies focusing on tourism forecasting accuracy 

comparisons. Kulendran and King (1997) compared the forecasting performance of an 

error correction model (ECM), autoregressive (AR) model, autoregressive integrated 

moving average (ARIMA) model, a basic structural model and a regression based time 

series model. Their results demonstrated that the ECM performs poorly compared to the 

time series models. The reason why the ECM model performed badly may lie in the ways 

in which the non-stationary and seasonal data were used in the model specification. 

Kulendran and Witt (2003) examined seven forecasting models including an ARIMA 

model, ECM, and some structural time series models and found that the length of the 

forecasting horizon is highly related to a model’s relative forecasting performance. Oh 

and Morzuch (2005) explored the performance of eight models in forecasting inbound 

tourism demand in Singapore and concluded that the selection of the performance 

measure and the forecasting horizon are the two main factors affecting performance. 

Song et al. (2000) generated ex post forecasts of the outbound tourism demand of UK 

residents to twelve destinations over a period of six years using an ECM and compared 

the forecasting performance of the ECM with that of AR, ARIMA and VAR models. 

Their results suggest that the ECM outperforms all the competitors. Witt et al. (2003) 

evaluated the forecasting performance of six econometric models and two univariate time 

series models using data on international tourism to Denmark. The results show that the 

time varying parameter (TVP) model performs consistently well in one-year-ahead 

forecasting, but the best model varies at longer forecast horizons. Smeral and Wüger 

(2005) showed that complex data adjustment procedures and adequate model structures 

also affect forecasting accuracy based on Austrian tourism demand data. 
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Although tourism forecasting has achieved much progress in terms of the use of 

modern modeling methodologies, one area that has attracted very little attention is 

forecast combination. The seminal work in the general forecasting literature on 

combination forecasts is attributed to Bates and Granger (1969); they examined the 

performance of combing two sets of forecasts of airline passenger data in which the 

weights are calculated based on the historic performance of each individual model. Their 

major finding is that the combined forecasts yielded much lower mean-square errors than 

either of the original individual forecasts. Clemen (1989) reviewed the development and 

applications of combination techniques in the various areas of forecasting before 1989. 

His key conclusion is that forecasting accuracy could be substantially improved through 

the combination of individual forecasts. The simple average combination method that 

attaches the same weight to each of the individual forecasts has been widely applied in 

the forecasting literature (for example Makridakis and Winkler 1983; Fang 2003; Hibon 

and Evgeniou 2005). However, many published studies have also used more advanced 

combination methods to achieve the optimal weights for combining the individual 

forecasts. In these procedures the past performance of the single forecast models is the 

key criterion for deciding the optimal weights for each of the individual models. Winkler 

and Makridakis (1983) applied several versions of the variance-covariance weighting 

method to examine the performance of the combined forecasts. The results show that 

most of the combined forecasts perform better than the individual forecasts. Walz and 

Walz (1989) examined the performance of a Bayesian method in comparison with an 

unconstrained regression procedure to combine forecasts through a study of four 

macroeconomic variables and drew the conclusion that the Bayesian procedure generates 

more accurate combined forecasts. Diebold and Pauly (1990) applied the shrinkage 

technique to incorporate prior information into the estimation of the combination weights 

and the empirical research in their study based on US GNP data found that the estimated 

combination weights are largely shrunken toward equality. 

 

A number of studies suggest that combination techniques can outperform the best 

constituent single individual forecast based on empirical studies or simulation. However, 

Hibon and Evgeniou (2005) concluded that the best individual method and the 
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combination forecasts perform similarly based on an analysis of the 3003 series of the 

M3-competition. In their study only simple average combination is examined and the 

conclusion is that the advantage of combination is to decrease the forecasting risk but not 

significantly outperform the best single forecast. Koning et al. (2005) examined the 

performance of the combination of forecasts from three univariate forecasting models and 

concluded that the combined forecasts do not outperform the single forecasts. 

 

The only published empirical study on combination forecasting in tourism since the 

1980s is by Wong et al (2007). These authors examined the relative accuracy of 

combination and single model forecasts for one quarter ahead, but did not consider 

statistically significant differences. Wong et al (2007) concluded that combination 

forecasts are almost certain to outperform the worst single forecasts but only outperform 

the best single forecasts in less than 50 per cent of cases on average.  

 

3. Data and Methodology  

 

Data 

The data on the demand for Hong Kong tourism by the top ten tourism generating 

countries/regions are used to estimate the forecasting models and these top ten major 

origin countries/regions comprise: Mainland China, Taiwan, Japan, USA, Macau, South 

Korea, Singapore, UK, Australia and Philippines. The demand variable is measured by 

tourist arrivals in Hong Kong from these origin markets. The price of Hong Kong tourism, 

tourism prices in substitute destinations and the income level in the tourist origin 

countries/regions are considered to be the explanatory factors which influence the 

demand for Hong Kong tourism (see Song et al. 2003). 

 

The price of Hong Kong tourism can be represented by the relative consumer price 

index (CPI) between Hong Kong and the origin country/region. This variable is adjusted 

by the relevant exchange rate (EX). The specific variable is defined as follows: 
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where HK denotes Hong Kong and i denotes the ith origin country/region. 

 

In this study six countries/regions are considered as the substitute destinations of Hong 

Kong - Mainland China, Taiwan, Singapore, Thailand, Korea and Malaysia. The 

substitute price of Hong Kong tourism variable is calculated as the weighted average 

exchange rate adjusted CPI and is expressed as: 
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where j denotes the jth substitute destination and n=6. The weights assigned to these six 

destinations are calculated based on their own inbound tourist arrivals from the studied 

origin countries/regions, and it can be written as: 
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where ijTA  represents inbound tourist arrivals in substitute destination j  from 

country/region i. 

 

Tourists’ income is measured by the GDP index (2000=100) in constant prices in these 

ten origin countries/regions. Seasonal dummies and one-off event dummies are also 

included in the modeling process to capture seasonal impacts and effects of some one-off 

events such as the hand-over of Hong Kong to China in quarter 3  of 1997.  

 

In this research quarterly data are employed to generate ex post forecasts and the 

sample data starts from 1984q1. The SARS event which occurred in 2003q2 enormously 
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influenced Hong Kong inbound tourism. To avoid the effect of this outlier, the sample 

period ceases at 2003q1. The major data sources include Visitor Arrivals Statistics 

published monthly by the Hong Kong Tourism Board, Tourism Statistical Yearbook 

published by World Tourism Organization and the International Financial Statistics 

Online Service website of the International Monetary Fund.  

 

Modeling methods 

The seasonal ARIMA method can effectively handle the identification and modeling of 

seasonal time series. This method is developed from the standard Box-Jenkins model and 

incorporates both seasonal autoregressive and moving average factors into the modeling 

process. This method has been widely adopted in forecasting seasonal time series. Since 

quarterly data are analyzed, the seasonal ARIMA model is appropriate in this study. 

 

The Autoregressive Distributed Lag (ADL) model is also included in this study. The 

general-to-specific approach suggests that the final forecasting model can be obtained 

through the simplification of a general ADL model, which can be written as: 
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=
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=
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                                        (4) 

 
where ty  denotes the dependent variable (tourist arrivals) and tx  denotes a vector of 

exogenous independent variables. p and q are lag lengths while α , iφ  and iβ  are 

coefficient vectors to be estimated. 

 

The third model is the two-stage ECM. Engle and Granger (1987) suggested that a 

linear combination of two or more non-stationary series may generate a stationary series. 

If this is the case, a cointegration relationship exists. The first stage of the EC modeling is 

to set up a long-run cointegration model, whereas in the second stage a short-run 

equilibrium model is built. Since quarterly data are employed in this paper, the HEGY 

(Hylleberg, Engle, Granger & Yoo, 1990) test is applied for testing for seasonal unit roots 
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and seasonal filters are used to eliminate the seasonal unit roots before an EC model is 

established. 

 

The VAR model is a system estimation technique, and treats all variables as 

endogenous except the intercept, determinate time trend and dummies. The optimal lag 

length for the model is determined according to the Aikake Information Criterion (AIC). 

An excessive lag length will reduce the degrees of freedom for model estimation while a 

shorter than optimal lag length could lead to the misrepresentation of the data generating 

process.   

 

Combination forecasting methods 

In this study three combination methods are adopted to generate combined forecasts 

and they are the simple average combination, variance-covariance combination and 

discounted Mean Square Forecast Error (MSFE) combination. The simple average 

combination is a widely used method in practice because it is easy to comprehend and 

operate. The variance-covariance method takes the variance and covariance of single 

model forecast observations into account in order to generate the weights. The discounted 

MSFE method assigns heavier weights to more recent observations through a discount 

factor. Whereas the simple average combination method assigns equal weights to each of 

the individual forecasts, the latter two combination methods assign different weights to 

the individual forecasts.  

 

The simple average combination: let f  and w  be the single forecast vector and 

weights vector respectively. The combined forecast cf  is: 

 

wffc =                                                                (5) 

 

with ),...,,( 21 nffff = , and ),...,,( 21 ′= nwwww . In the simple average combination 

method, w  is a )1( ×n  vector with every element equal to 
n
1 . Consequently cf can be 



 11

expressed as

n

i
i 1

c

f
f

n
==
∑

. The simple average combination is the most commonly used 

combination forecasting technique in the existing literature due to its ease of 

implementation. 

 

The variance-covariance combination: this assigns unequal weights to each single 

model forecast and the weights are determined by the historic performance of the single 

model forecasts. The specific weight vector is expressed as: 

 

uuuw 11 / −− Σ′Σ′=′                                                        (6) 

 

where Σ  is the covariance matrix of the single forecasts, u is an )1( ×n  vector of ones 

with constraints. 
n
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=∑ . Under the assumption that single model forecast errors are 

normally distributed with zero means, the estimate of Σ  can be denoted as ( ) i jij
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where ite  is the difference between the actual and forecast series of the ith model, 

it t ite y f= −  . A detailed description of this method can be found in Clemen and Winkler 

(1986), Diebold and Pauly (1987), Granger and Newbold (1986), and Wong, et al. (2007). 

 

The discounted MSFE combination: this method uses the mean square error to 

calculate the optimal weights and a discounting factor is used give more weight to the 

more recent forecasts (Diebold and Pauly, 1987, Bates and Granger, 1969, and Stock and 

Watson, 2004). The weighting scheme can be written as: 
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where β  is the discounting factor with 10 ≤< β , and ite  is the difference between the 

actual series and forecast series of the ith model. In this method, the off-diagonal 

elements of Σ are set to zero, which means that the effect of the covariance on the 

weights is ignored. The weight assigned to the ith single forecast can be represented as: 

1 1T n T
T t 1 2 T t 1 2

i it it
t 1 i 1 t 1

w e eβ β
− −

− + − +

= = =

⎛ ⎞ ⎛ ⎞
= ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
∑ ∑ ∑  

Measures of forecasting accuracy and statistical test of relative accuracy 

Li et al. (2005) summarized the accuracy measures used in the tourism forecasting 

literature and they include MAPE (Mean Absolute Percentage Error), RMSE (Root Mean 

Square Error), MAE (Mean Absolute Error), RMSPE (Root Mean Square Percentage 

Error) and Theil’s U statistic. Among these measures, MAPE is the most commonly used 

in tourism forecasting. The current study therefore also uses MAPE as the measure of 

forecast performance, which is denoted as: 

 

n
y

yy

MAPE

n
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×100                                                         (8) 

 

where ty  and tŷ  are the actual and forecast values of tourist arrivals, respectively, and n 

is the length of the forecasting horizon. As expressed in Equation (8), MAPE removes the 

influence of the magnitudes of the variables; hence it can be used to compare the 

accuracy among different time series. 

 

This study tests the hypothesis that combination forecasts and single model forecasts 

have the same accuracy. However, the traditional t test is not appropriate in some cases, 

as the normality test shows that some of the MAPE series are not normally distributed. 

Under this circumstance, a nonparametric technique would be more appropriate. In this 

study, the Wilcoxon signed rank test is used to test for forecasting accuracy differences 

between the single model forecasts and the combination forecasts in cases of non-
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normality. The advantage of this method is that it can not only determine the direction of 

any difference in forecasting accuracy, but also can take account of the magnitude of any 

difference between the single model and combination forecasts.  

 

For the variance-covariance combination and discounted MSFE combination, the 

historic performance of each single model forecast decides the weights assigned to the 

single model forecasts in order to calculate the combination forecasts. As mentioned 

above, the periods for estimation and forecasting are 1984q1-1994q4 and 1995q1-2003q1, 

respectively. As a result, 33 one-step-ahead forecasts, 32 two-step-ahead forecasts, 30 

four-step-ahead forecasts and 26 eight-step-ahead forecasts are obtained. At every 

forecasting time horizon, the latest 15 observations are used for accuracy comparison 

while the rest are used for estimating the weights. Specifically, two methods are 

employed to assign the optimal weights, which are demonstrated using one-step-ahead 

forecasting as an example. As far as the first method is concerned (combination (a)), the 

33 observations are separated into two parts. The weights are calculated based on the first 

18 observations, and then these weights are assigned to the latter 15 observations to 

obtain the combination forecasts (see, for example, Granger and Ramanathan 1984; 

Diebold and Pauly 1990). The second method (combination (b)) calculates the weights 

recursively. Namely, the weights calculated from the first 18 observations are assigned to 

the 19th observations. Then the weights generated from the first 19 observations are 

assigned to the 20th observations. This process continues until all combined forecasts are 

obtained (see Clemen, 1986). The two-, four- and eight-steps-ahead combined forecasts 

can be obtained in a similar manner. 

 

4. Empirical results 

 

The calculated MAPEs of the individual forecasts and combined forecasts are shown in 

Table 1. The results show that no single forecast consistently outperforms all other 

forecasts across all horizons with the exception of the Philippines. This finding is 

consistent with past studies such as Witt et al. (2003). The asterisk symbol denotes the 
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situation in which the combined forecast is more accurate than the best constituent single 

forecast. It is demonstrated that from short-, medium- and long-run perspectives, the 

combined forecasts cannot always outperform the best single forecasts in all situations. 

    Furthermore, Table 2 shows the percentage of the combined forecasts which 

outperform the best individual forecasts. Forecast combination is superior to the best 

single model forecasts in only about 50% of all the cases. This result contradicts the 

findings of some previous studies that concluded that combination forecasts tend to 

outperform the best single model forecasts. It can also been seen that in the eight-step-

ahead case, a larger proportion of combination forecasts perform better than the best 

single model forecasts. An explanation for this could be that the combined forecasts are 

usually more efficient when the single models are misspecified and in the longer term the 

models are more likely to be misspecified. As the forecasting horizon becomes longer, 

the additional uncertainty also causes the forecasts to be less accurate. From this 

viewpoint, forecast combination tends to be more suitable for long-run tourism 

forecasting. An empirical study by Lobo (1992) supports the above findings as it 

indicates that the difference between the average MAPEs of the individual models and 

the combined models decreases when the forecasting horizon gets shorter, which implies 

that forecast combination tends to be more useful for longer forecasting horizons. 

However, Lawrence, et al (1986) conclude that the greatest improvement in forecasting 

accuracy is often obtained in the short run rather than in the long run. They attribute this 

to the unrealistic assumption that the combination model structure remains constant over 

longer forecasting horizons. Further studies are necessary to confirm the benefits of 

forecast combination over different forecasting horizons in the tourism context. 
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Although forecast combination does not always beat the best single model forecasts, 

our empirical results do show that almost all the MAPE values of the combined forecasts 

are smaller than those of the worst single model forecasts for all countries/regions and 

across all forecasting horizons (see Table 3).  This is to say that much worse ex ante 

forecasts could well be obtained if only one single forecasting method is used to generate 

tourism forecasts. Forecast combination can therefore reduce the risk of complete 

forecasting failure.  

 

This study now compares the performance of combination forecasts with single model 

forecasts from a statistical point of view. As mentioned above, MAPE is a measure which 

allows the comparison not only among different models but also across countries/regions. 

The following explains the procedure of testing the difference between the combination 

and single model forecasts  

  

Let }{ s
ij

s
i MM = (j=1, 2, …, n) represent the MAPEs of the  corresponding n single 

forecasts of c
iM . n is the number of single forecasts which are combined to generate c

iM . 

The minimum series, maximum series and mean series of the MAPEs of the single model 

forecasts are defined as follows: 
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The aim is to test the following three null hypotheses: cM  = minM ; cM = maxM and cM  

= meanM  . 
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The normality test shows that these series are not normally distributed and we have to 

employ the Wilcoxon matched-pairs signed ranks test, a nonparametric approach for 

which the tested series are not required to be normally distributed.  The test results for 

hypothesis 1 (Table 4) show that, among the 28 cases, there are 7 cases in which the 

means of cM  are significantly lower than the means of minM ; 6 cases in which the means 

of minM  are significantly lower than the means of cM  and 15 cases in which there is no 

significant difference between the means of cM  and minM  (significant level=0.05). This 

result demonstrates that, relative to the best individual model forecasts, the combined 

forecasts do not exhibit superior performance. However, the test results reject the null 

hypothesis that cM = maxM for all the cases considered, which means that the combined 

forecasts significantly outperform the worst single forecasts. This verifies the findings 

discussed earlier in the paper.  

 

The test results of the hypothesis cM  = meanM  are shown in Table 5. The p-values 

demonstrate that the null hypothesis is rejected for all forecasting horizons and 

combination methods. This means that accuracy of the forecasts obtained by combining 

the forecasts generated by individual models is significantly higher than the average 

accuracy of these single model forecasts in all cases.  

 

Another question one may ask is whether there is any difference in accuracy among the 

three combination methods. Statistical tests are carried out to determine whether there is 

any significant difference between the simple average method, variance-covariance (b) 

method and discounted MSFE ( β =0.6 (b)) method and the results are given in Table 6. 

In the one-step-ahead forecasting case, the performance of the three combination methods 

is significantly different. The discounted MSFE method turns out to be the best and the 

variance-covariance method the worst. In the four-step-ahead case, the same is true. For 

two-step-ahead forecasting, however, no significant difference was found between the 

discounted MSFE and simple average methods, whereas the variance-covariance method 

performed significantly worse than the other two combination methods. For eight-step-

ahead forecasting, the discounted MSFE method is more accurate than the other two 
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methods which are in turn not significantly different from each other. Overall, the 

accuracy of the variance-covariance method combination forecasts is the lowest and the 

accuracy of the discounted MSFE method combination forecasts is the highest.  

 

The forecasting performance of the two, three and four single model combinations is 

also compared (see Table 7). The “Mean difference” columns in Table 7 indicate the 

accuracy difference between two, three and four single model combinations. It is shown 

that all the MAPE differences between two and three model combinations are positive, 

which suggests that the three-model combinations are more accurate than the two model 

combinations. Similarly, it is found that the differences between the two model and four 

model combinations are positive in 96% of cases and between the three model and four 

model combinations are positive in 86% of cases. These results lead to the conclusion 

that the forecast accuracy of two, three and four model combinations increases gradually 

as the number of models rises. This finding is consistent with the empirical study by 

Makridakis and Winkler (1983), which indicates that average forecasting accuracy 

improves along with the number of models included in the combination set. 

 

This study also employs the t test to examine the hypothesis that the means of the 

combined forecasts of two, three and four single model forecasts are equal. The t test 

results in Table 7 indicate that this hypothesis cannot be rejected for virtually all 

combination methods and all forecasting horizons (99% of cases). This implies that, at 

least in this study, three and four model combinations are not statistically significantly 

more accurate than two model combinations and four model combinations are not 

statistically significantly more accurate than three model combinations. Due to the 

limitation of this study that only four single forecast models are included, this conclusion 

need to be treated with caution. Whether an “optimal” number of single forecasts to be 

included in the combinations exists or not is a matter for future research. 

 

5. Concluding Remarks 
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The empirical study in this paper demonstrates that forecasting combination does not 

always improve forecasting performance, as only around 50% of combined forecasts 

outperform the best single model. This result is in line with Hibon and Evgeniou (2005). 

However, this percentage is higher for long-term forecasts (eight quarters ahead), 

suggesting that forecast combination may be more beneficial for long-run tourism 

forecasting. It is also found that almost all the combination forecasts outperform the 

worst single forecasts over all forecasting horizons, which implies that forecast 

combination does decrease the risk of complete forecasting failure. 

 

A key contribution of this study is that the forecasting performance of the combination 

and single model forecasts based on the minimum, maximum and mean values of the 

MAPEs is compared statistically. The results show that not only are the combined 

forecasts significantly more accurate than the worst single model forecasts across all 

forecasting horizons and for all combination methods, but they are also significantly 

better than the average single model forecasts in all cases.  

 

The implication of the above results for tourism practitioners is to provide a strong 

recommendation for forecast combination in order to improve forecasting accuracy if the 

magnitude of the tourism demand forecasting errors is the main concern of the decision 

makers, especially when the demand forecasts are used to assess the feasibility of long-

term investment in tourism related infrastructures.   

 

This study also compares the forecasting performance among the three combination 

methods in terms of statistically significant differences in forecasting accuracy. The 

results show that the variance-covariance method exhibits the worst performance and the 

discounted MSFE method the best. However, although the simple average method is less 

accurate than the discounted MSFE method, it may still be worthwhile to use the simple 

average combination sometimes as this combination method is easy to implement and 

requires fewer observations.  
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It is also shown that forecast accuracy does appear to increase gradually as the number 

of models included in the forecast combination increases – for example, three model 

combinations have lower MAPEs than two model combinations. However, when 

statistically significant differences are examined combinations with higher numbers of 

models do not outperform combinations with lower numbers. The implications of these 

empirical results are that combining forecasts reduces average forecast error, but it is not 

clear how many models to include in the combination to achieve an optimal result. 

 

One possible area for further research is to include more forecasting models in the 

forecast combination evaluation. In this paper, only four models (three econometric and 

one time series) are considered when the accuracy of combination forecasts is examined. 

However, according to Granger and Newbold (1986, p. 273), forecast combination is 

expected to be most profitable when the individual forecasts are very dissimilar in nature. 

Attempts could therefore be made to combine the forecasts generated from, for example, 

artificial intelligence models and judgmental/expert predictions in addition to the 

extrapolation and causal models already considered. A second possible area for further 

research is to examine whether there exists an optimal number of single model forecasts 

to be included in forecast combinations. A third possible area for further research is to 

examine the effect of forecasting horizon on the improvement in accuracy resulting from 

combining forecasts.  

 

References 

 

Bates, J. M., & Granger, C. W. J. (1969). The combination of forecasts. Operational 
Research Quarterly, 20, 451-468. 

 
Clemen, R. T. (1989). Combining forecasts: A review and annotated bibliograghy. 

International Journal of Forecasting, 5, 559-583. 
 
Clemen, R. T., & Winkler, R. L. (1986). Combining economic forecasts. Journal of 

Business & Economic Statistics, 4, 39-46. 
 
Diebold, F. X., & Pauly, P. (1987). Structural change and the combination of forecasts. 

Journal of Forecasting, 6, 21-40. 
 



 20

Diebold, F. X., & Pauly, P. (1990). The use of prior information in forecast combination. 
International Journal of Forecasting, 6, 503-508. 

 
Engle, R. F., & Granger, W. J. C. (1987). Co-integration and error correction: 

Representation, estimation, and testing. Econometrica, 55, 251-276. 
 
Fang, Y. (2003). Forecasting combination and encompassing tests. International Journal 

of Forecasting, 19, 87-94. 
 
Granger, C.W. J. & Newbold, P. (1986). Forecasting Economic Time Series, 2nd Edition, 

p273, Academic Press. 
 
Hibon, M., & Evgeniou, T. (2005). To combine or not to combine: Selecting among 

forecasts and their combinations. International Journal of Forecasting, 21, 15-24. 
 
Hylleberg, S., Engle, R. F., Granger, C. W., J., & Yoo, B. S. (1990). Seasonal Integration 

and Cointegration. Journal of Econometrics, 44, 215-238. 
 
Kulendran, N., & Witt, S. F. (2003). Forecasting the Demand for International Business 

Tourism. Journal of Travel Research, 41, 265-271. 
 
Koning, A. J., Franses, P. H., Hibon, M., & Stekler, H. O. (2005). The M3 competition: 

Statistical tests of the results. International Journal of Forecasting, 21, 397-409. 
 
Kulendran, N., & King, M. L. (1997). Forecasting international quarterly tourist flows 

Using error-correction and time-series models. International Journal of 
Forecasting, 13, 319-327. 

 
Law, R., and Au, N. (1999). A neural network model to forecast Japanese demand for 

travel to Hong Kong. Tourism Management, 20, 89-97. 
 
Lawrence, M. J., Edmundson, R. H., & O’connor, M. J. (1986). The accuracy of 

combining judgmental and statistical forecasts. Management Science, 32, 1521-
1532. 

 
Li, G., Song, H., & Witt, S. F. (2004). Modeling tourism demand: A dynamic linear 

AIDS approach. Journal of Travel Research, 43, 141-150. 
 
Li, G., Song, H., & Witt, S. F. (2005). Recent developments in econometric modeling and 

forecasting. Journal of Travel Research, 44, 82-99. 
 
Lobo, G. J. (1992). Analysis and comparison of financial analysts’, time series, and 

combined forecasts of annual earnings. Journal of Business Research, 24, 269-
280. 

 



 21

Makridakis, S., & Winkler, R. L. (1983). Averages of forecasts: Some empirical results. 
Management Science, 29, 987-996. 

 
Martin, C. A., & Witt, S. F. (1989). Forecasting tourism demand: A comparison of the 

accuracy of several quantitative methods. International Journal of Forecasting, 5, 
7-19. 

 
Oh, C., & Morzuch, B. J. (2005). Evaluating time-series models to forecast the demand 

for tourism in Singapore: Comparing within-sample and postsample results. 
Journal of Travel Research, 43, 404-413. 

 
Smeral, E., & Wüger, M. (2005). Does complexity matter? Methods for improving 

forecasting accuracy in tourism: The case of Austria. Journal of Travel Research, 
44, 100-110. 

 
Song, H., & Witt, S. F. (2003). Tourism forecasting: The general-to-specific approach. 

Journal of Travel Research, 42, 65-74. 
 
Song, H., & Witt, S. F. (2006). Forecasting international tourist flows to Macau. Tourism 

Management, 27, 214-224. 
 
Song, H., Romilly, P., & Liu, X. (2000). An empirical study of outbound tourism demand 

in the UK. Applied Economics, 32, 611-624. 
 
Song, H., Wong, K. K. F., & Chon, K. K. S. (2003). Modelling and forecasting the 

demand for Hong Kong tourism. International Journal of Hospitality 
Management, 22, 435-451. 

 
Stock, J. H., & Watson, M. W. (2004). Combination forecasts of output growth in a 

seven-country data set. Journal of Forecasting, 23, 405-430. 
 
Walz, D. T., & Walz, D. B. (1989). Combining forecasts: Multiple regression versus a 

Bayesian approach. Decision sciences, 20, 77-89. 
 
Winkler, R. L., & Makridakis, S. (1983). The combination of forecasts. Journal of the 

Royal Statistical Society. Series A, 146, 150-157. 
 
Witt, S. F. & Song, H. (2001). Forecasting future tourism flows. In Lockwood, A. and 

Medlik, S. (eds.) Tourism and Hospitality in the 21st Century, Butterworth-
Heinemann, Oxford, 106-118. 

 
Witt, S. F., Song, H., & Louvieris, P. (2003). Statistical testing in forecasting model 

selection. Journal of Travel Research, 42, 151-158. 
 
Wong, K. K. F., Song, H., Witt, S. F. and Wu, D. C. (2007). Tourism forecasting: To 

combine or not to combine? Tourism Management, 28, 1068-1078. 



 22

Table 1:   MAPEs of Single and Combined Forecasts of Tourist Arrivals  
 

China Taiwan  
1 Step  2 Step  4 Step  8 Step  1 Step  2 Step  4 Step  8 Step  

 A1 6.55 9.29 14.45 22.90 4.37 6.73 8.21 12.28 
 A2 8.33 12.05 18.91 30.06 4.49 6.65 8.05 16.77 
 E 8.28 11.46 15.59 20.16 6.96 11.16 16.25 27.07 
 V 6.90 9.00 10.60 18.31 11.51 15.90 17.78 27.50 
 A1A2 5.80* 8.53* 9.61* 9.95* 3.77* 5.48* 6.94* 11.98* 
 A1E 6.04* 8.65* 10.18* 11.26* 5.38 8.44 10.57 16.68 
 A1V 6.61 8.97* 12.53 19.89 6.99 10.69 12.59 18.30 
 A2E 8.22* 11.59 17.25 25.11 5.10 7.01 8.81 13.48* 
Simple A2V 6.10* 8.94* 10.72 14.96* 6.79 9.44 12.51 21.24 
Average EV 6.57* 8.97* 10.17* 13.64* 8.37 12.64 15.78* 20.11* 
Combination A1A2E 6.05* 9.11* 10.43* 11.88* 4.61 6.81 8.32 12.09* 
 A1A2V 5.76* 8.30* 9.86* 11.68* 5.43 7.87 10.44 16.47 
 A1EV 6.08* 8.44* 10.31* 12.74* 6.62 10.38 12.65 16.54 
 A2EV 6.61* 9.70 12.10 15.58* 6.44 9.24 11.50 15.95* 
 A1A2EV 5.87* 8.57* 9.68* 11.35* 5.59 8.39 10.56 14.66 
 A1A2 6.55* 8.62* 14.45* 11.58* 3.93* 5.69* 7.13* 11.70* 
 A1E 6.55* 8.44* 13.94* 20.16* 5.34 7.74 8.81 12.64 
 A1V 6.55* 9.29 13.21 21.50 4.42 6.73* 8.21* 12.28* 
 A2E 8.33 11.59 15.59* 20.16* 4.84 6.39* 7.63* 11.73* 
Variance- A2V 8.33 12.05 9.93* 22.05 4.74 6.79 9.91 20.00 
covariance EV 7.53 10.71 14.59 20.16 7.17 11.82 15.78* 20.75* 
combination A1A2E 6.55* 8.44* 13.94* 20.16* 4.29* 7.40 7.41* 11.25* 
(a) A1A2V 6.55* 8.62* 13.21 12.72* 3.93* 5.69* 7.13* 11.70* 
 A1EV 6.55* 8.44* 14.07 20.16 5.34 7.74 8.81 13.95 
 A2EV 8.33 11.59 14.59 20.16 4.98 7.81 9.46 15.81* 
 A1A2EV 6.55* 8.44* 14.07 20.16 4.29* 7.40 7.41* 11.66* 
 A1A2 7.52 8.89* 13.19* 11.40* 3.92* 6.15* 7.62* 11.51* 
 A1E 7.80 8.33* 9.62* 12.98* 5.22 7.61 8.98 14.02 
 A1V 6.87 10.02** 13.33 21.10 4.43 6.73* 8.21* 12.28* 
 A2E 8.54** 11.45* 15.59* 20.16* 5.11 6.92 7.80* 14.40* 
Variance- A2V 7.90 8.93* 10.27* 17.44* 4.71 6.55* 9.71 18.83 
covariance EV 7.19 8.42* 11.05 13.96* 7.30 11.38 16.20* 21.93* 
combination A1A2E 7.55 8.62* 9.70* 12.85* 4.36* 7.30 7.96* 13.64 
(b) A1A2V 7.52 8.81* 12.97 11.49* 3.92* 6.15* 7.62* 11.51* 
 A1EV 7.81 8.24* 9.78* 12.94* 5.22 7.74 8.98 16.66 
 A2EV 7.94 8.59* 11.06 14.06* 5.30 7.30 9.08 16.16* 
 A1A2EV 7.55 8.46* 9.84* 12.76* 4.36* 7.38 7.96* 13.65 
 A1A2 5.74* 8.45* 9.98* 9.92* 3.83* 5.48* 6.97* 11.81* 
 A1E 5.95* 8.61* 10.81* 13.93* 5.45 8.39 9.90 12.84 
 A1V 6.59 8.96* 12.64 20.18 5.70 9.04 10.86 16.40 
 A2E 8.23* 11.59 16.38 21.77 5.04 6.75 8.02* 11.48* 
Discount  A2V 6.24* 9.32 10.31* 15.63* 5.42 7.18 10.61 20.02 
MSFE (a) EV 6.58* 9.16 12.08 16.00* 7.46 11.78 15.74* 20.65* 
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β =0.9 A1A2E 5.95* 8.95* 11.41* 16.00* 4.52 6.65 7.78* 11.26* 
 A1A2V 5.69* 8.30* 10.18* 11.38* 4.63 6.13* 8.76 14.61 
 A1EV 6.02* 8.46* 9.98* 12.43* 6.12 9.34 11.47 15.67 
 A2EV 6.85* 10.02 13.09 18.03* 5.42 7.79 9.88 16.04* 
 A1A2EV 5.78* 8.59* 10.47* 13.69* 4.90 7.34 9.12 13.92 
 A1A2 5.76* 8.02* 9.07* 9.83* 3.87* 5.64* 7.12* 11.74* 
 A1E 6.04* 8.17* 8.87* 12.14* 5.25 7.85 9.41 13.66 
 A1V 6.68 9.14 12.49 20.11 4.95 7.92 10.44 15.70 
 A2E 8.25* 11.60 16.47 21.87 5.03 6.34* 7.27* 12.40* 
Discount  A2V 6.20* 8.49* 9.42* 13.51* 5.13 6.59* 9.94 19.54 
MSFE (b) EV 6.60* 8.44* 10.10* 13.09* 7.47 11.69 16.31 21.60* 
β =0.9 A1A2E 5.94* 8.52* 10.28* 14.84* 4.46 6.26* 7.26* 11.66* 
 A1A2V 5.76* 7.78* 9.52* 10.12* 4.45 5.76* 8.57 13.71 
 A1EV 6.16* 7.99* 8.10* 9.42* 5.61 8.61 10.79 14.56 
 A2EV 6.83* 9.28 11.55 15.38* 5.41 6.81 8.83 13.61* 
 A1A2EV 5.83* 8.02* 8.97* 11.61* 4.78 6.64* 8.45 12.84 

Notes:  1)A1, A2, E and V denote ADL model, ARIMA model, ECM and VAR model, respectively. 
2) * denotes that the combined forecast is at least as good as the corresponding best single forecast. 
3) ** denotes that the combination forecast is inferior to the worst single forecast. 
4) The details of β =0.6 is not reported in Table 1 due to space limitations. 
5) Sample period for the calculation of MAPEs: 1999q3-2003q1 
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Table1    (continued) 
  Japan USA 
  1 Step  2 Step  4 Step  8 Step  1 Step  2 Step  4 Step 8 Step  
 A1 6.10 9.56 10.10 16.81 7.07 7.67 10.45 21.19 
 A2 8.60 8.23 10.12 12.99 7.99 8.74 10.47 13.31 
 E 6.64 7.07 8.31 15.25 6.64 6.89 9.55 27.78 
 V 5.37 6.63 8.68 14.97 6.39 7.11 8.11 10.40 
 A1A2 5.91* 6.40* 6.74* 7.87* 6.95* 6.46* 8.11* 9.31* 
 A1E 5.60* 6.13* 5.99* 10.92* 6.31* 6.39* 8.48* 22.88 
 A1V 5.43 7.38 8.36* 14.54* 6.32* 6.74* 8.52 12.52 
 A2E 5.85* 7.63 8.37 8.33* 6.58* 6.68* 6.42* 9.60* 
Simple A2V 6.25 6.84 8.40* 10.48* 6.15* 7.19 8.31 8.83* 
Average EV 5.73 6.48* 7.60* 11.31* 6.20* 6.76* 7.89* 15.57 
Combination A1A2E 5.25* 5.76* 5.80* 7.54* 6.26* 5.83* 6.60* 11.78* 
 A1A2V 5.53 5.95* 7.06* 9.82* 6.15* 6.36* 7.38* 9.10* 
 A1EV 5.47 5.90* 6.48* 11.15* 6.19* 6.36* 7.86* 16.38 
 A2EV 5.60 6.90 8.01* 8.95* 6.22* 6.56* 6.75* 8.82* 
 A1A2EV 5.16* 5.80* 6.32* 9.24* 6.10* 6.09* 6.82* 10.10* 
 A1A2 8.60 6.27* 10.12 12.99* 7.11 8.74 10.47 13.31* 
 A1E 6.27 7.07* 8.31* 15.25* 6.38* 7.01 10.45 21.19* 
 A1V 5.30* 8.30 8.23* 14.97* 6.35* 6.80* 7.87* 10.56 
 A2E 8.60 7.55 9.46 15.25 6.59* 8.01 9.77 13.31* 
Variance- A2V 8.60 8.23 10.12 12.99* 6.38* 8.31 9.41 13.31 
Covariance EV 6.00 7.07 8.31* 15.25 6.33* 6.71* 8.11* 9.89* 
Combination A1A2E 8.60 7.55 9.46 15.25 6.59* 8.01 9.77 13.31* 
(a) A1A2V 8.60 6.27* 10.12 12.99* 6.40 8.31 9.41 13.31 
 A1EV 6.00 7.07 8.31* 15.25 6.31* 6.77* 7.87* 9.89* 
 A2EV 8.60 7.55 9.46 15.25 6.50 8.04 9.41 13.31 
 A1A2EV 8.60 7.55 9.46 15.25 6.50 8.04 9.41 13.31 
 A1A2 7.80 6.92* 9.59* 14.45 7.06* 8.10 10.25* 13.06* 
 A1E 6.31 7.58 8.69 15.36 6.43* 6.73* 9.96 20.27* 
 A1V 5.34* 7.35 7.12* 14.99 6.52 6.74* 8.17 11.15 
 A2E 8.24 7.25 9.70 11.02* 6.65 7.69 9.07* 9.59* 
Variance- A2V 8.00 8.20 10.20** 14.28 6.14* 8.07 9.34 10.10* 
Covariance EV 5.91 7.11** 9.08** 14.98 6.83** 7.29** 8.09* 10.84 
Combination A1A2E 8.26 7.37 9.30 11.52* 6.65 7.88 9.28* 10.03* 
(b) A1A2V 8.04 6.85 9.59 14.45 6.38* 8.03 9.27 11.39 
 A1EV 5.70 7.58 8.80 15.69 6.83 6.85* 8.13 11.11 
 A2EV 8.43 7.30 9.65 11.03* 6.58 8.14 9.02 8.92* 
 A1A2EV 8.39 7.37 9.30 11.52* 6.60 8.17 9.03 9.83* 
 A1A2 6.19 6.27* 6.61* 10.10* 7.01* 7.43* 9.30* 12.33* 
 A1E 5.60* 6.05* 5.75* 13.11* 6.32* 6.44* 8.90* 22.28 
 A1V 5.43 7.44 8.35* 14.27* 6.31* 6.71* 8.31 10.46 
 A2E 6.09* 7.63 8.39 8.38* 6.59* 7.53 9.40* 12.23* 
Discount  A2V 6.53 6.91 8.59* 10.50* 6.19* 7.99 9.43 9.69* 
MSFE (a) EV 5.73 6.50* 7.64* 11.05* 6.20* 6.75* 7.82* 9.91* 
β =0.9 A1A2E 5.44* 5.78* 6.35* 7.73* 6.29* 6.71* 8.52* 11.31* 
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 A1A2V 5.75 5.93* 6.87* 9.67* 6.15* 7.02* 8.66 9.19* 
 A1EV 5.48 5.88* 6.27* 10.56* 6.19* 6.35* 8.00* 10.23* 
 A2EV 5.69 6.95 8.10* 8.41* 6.23* 7.20 8.69 9.03* 
 A1A2EV 5.31* 5.81* 6.55* 8.22* 6.11* 6.51* 8.07* 8.55* 
 A1A2 6.27 6.41* 6.62* 11.25* 7.05* 7.21* 9.33* 12.06* 
 A1E 5.65* 6.15* 5.82* 13.18* 6.30* 6.50* 8.39* 21.20 
 A1V 5.42 7.50 8.21* 14.25* 6.26* 6.75* 8.29 10.86 
 A2E 6.25* 7.57 8.50 8.55* 6.59* 7.27 8.82* 10.97* 
Discount  A2V 6.53 6.91 8.60* 10.97* 6.13* 7.79 9.27 8.99* 
MSFE (b) EV 5.74 6.48* 7.78* 11.59* 6.27* 6.83* 7.68* 9.66* 
β =0.9 A1A2E 5.70* 5.92* 6.49* 8.13* 6.30* 6.39* 7.92* 10.12* 
 A1A2V 5.83 6.04* 6.85* 10.58* 6.14* 6.87* 8.43 9.23* 
 A1EV 5.52 5.98* 6.35* 11.58* 6.19* 6.45* 7.82* 10.41 
 A2EV 5.94 6.92 8.21* 8.80* 6.22* 7.00 8.21 8.43* 
 A1A2EV 5.50 5.93* 6.67* 9.10* 6.10* 6.45* 7.53* 8.63* 
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Table1    (continued) 
  Macau Korea 
  1 Step  2 Step  4 Step  8 Step  1 Step  2 Step  4 Step  8 Step  
 A1 13.71 11.93 12.09 12.21 10.92 12.27 13.35 17.08 
 A2 7.86 11.03 11.43 16.54 7.41 8.65 16.48 31.91 
 E 13.44 8.45 14.82 21.16 9.80 11.77 15.76 14.53 
 V 8.85 7.44 8.80 20.90 9.66 10.28 15.80 35.71 
 A1A2 7.92 9.08* 9.35* 11.27* 8.62 9.35 12.13* 22.30 
 A1E 11.38* 8.66 11.76* 12.49 9.87 11.74* 14.12 13.56* 
 A1V 10.67 8.78 8.61* 13.59 9.79 8.73* 11.55* 23.82 
 A2E 7.81* 8.05* 10.99* 15.55* 7.06* 7.91* 13.36* 17.26 
Simple A2V 6.03* 6.46* 8.10* 17.18 7.91 7.74* 14.51* 29.75* 
Average EV 10.32 6.43* 9.25 18.33* 9.01* 8.40* 12.32* 20.72 
Combination A1A2E 8.08 7.83* 9.76* 11.81* 8.23 9.11 12.15* 16.98 
 A1A2V 7.52* 7.51 7.87* 13.23 8.55 7.55* 12.15* 23.52 
 A1EV 10.04 7.59 8.78* 14.22 9.23* 9.14* 12.05* 18.51 
 A2EV 6.96* 6.24* 8.79* 16.87 7.57 6.93* 12.41* 20.83 
 A1A2EV 7.59* 6.85* 8.63* 13.82 8.16 7.85* 11.56* 19.29 
 A1A2 6.95* 9.02* 11.43* 16.54 10.92 12.27 13.35* 17.08* 
 A1E 11.40* 8.20* 14.70 20.72 10.92 12.27 13.35* 17.08 
 A1V 12.73 11.93 12.09 12.21* 10.11 12.27 13.35* 17.08* 
 A2E 7.27* 8.88 13.70 19.04 7.00* 8.63* 14.38* 12.25* 
Variance- A2V 6.29* 9.74 11.43 16.54* 8.20 8.43* 16.48 31.91* 
Covariance EV 10.97 8.07 14.79 21.16 9.39* 8.41* 15.76* 13.60* 
Combination A1A2E 6.67* 9.02 13.70 19.04 10.92 12.27 13.35* 17.08 
(a) A1A2V 6.29* 9.42 11.43 16.54 10.11 12.27 13.35* 17.08* 
 A1EV 10.61 8.20 14.79 20.72 10.11 12.27 13.35* 17.08 
 A2EV 6.14* 9.74 14.72 19.04 8.20 7.39* 14.38* 12.25* 
 A1A2EV 6.14* 9.42 14.72 19.04 10.11 12.27 13.35* 17.08 
 A1A2 7.15* 9.60* 12.64** 13.06 10.23 11.20 12.94* 17.08* 
 A1E 12.48* 8.22* 13.76 14.04 11.04** 12.39** 13.35* 17.28** 
 A1V 9.67 9.21 9.83 12.46 9.97 11.16 12.89* 17.08* 
 A2E 7.69* 8.77 11.65 17.14 7.94 9.05 14.47* 12.12* 
Variance- A2V 6.09* 8.57 11.16 15.66* 8.51 8.77 16.38 31.62* 
Covariance EV 10.64 6.98* 10.70 17.98* 9.73 8.13* 14.07* 13.78* 
Combination A1A2E 7.27* 9.44 11.84 13.26 10.30 11.20 12.94* 16.78 
(b) A1A2V 6.28* 8.95 11.22 13.08 9.54 11.14 12.89* 17.08* 
 A1EV 9.99 6.38* 10.89 13.62 10.20 11.16 12.89* 17.77 
 A2EV 6.98* 8.66 10.36 16.86 9.25 7.78* 14.22* 12.10* 
 A1A2EV 7.13* 9.14 10.40 13.26 9.82 11.14 12.89* 16.76 
 A1A2 6.87* 9.00* 10.77* 14.56 9.70 11.10 11.58* 17.67 
 A1E 11.40* 8.45* 13.90 20.31 10.25 11.88 13.80 15.46 
 A1V 11.43 11.44 12.05 12.21* 9.91 10.80 12.33* 17.33 
 A2E 7.03* 8.57 11.25* 18.06 7.08* 8.21* 13.02* 13.14* 
Discount  A2V 6.73* 10.69 11.42 16.54* 8.19 8.13* 14.64* 29.13* 
MSFE (a) EV 10.96 8.09 14.81 21.16 9.19* 8.40* 12.93* 13.93* 
β =0.9 A1A2E 6.68* 8.11* 10.92* 17.49 9.34 10.86 12.27* 16.07 
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 A1A2V 6.41* 8.89 10.77 14.56 9.23 9.90 11.07* 17.83 
 A1EV 10.46 8.30 13.90 20.31 9.52* 10.66 12.99* 15.76 
 A2EV 6.36* 8.44 11.25 18.06 7.91 7.01* 12.13* 14.42* 
 A1A2EV 6.63* 8.03 10.91 17.49 8.98 9.91 11.72* 16.25 
 A1A2 6.83* 9.77* 11.33* 11.63* 9.10 10.10 10.71* 18.63 
 A1E 12.09* 8.51 13.07 13.83 10.21 12.17 13.98 14.88 
 A1V 10.29 9.18 9.55 11.41* 9.85 9.79* 11.53* 18.25 
 A2E 7.35* 8.77 10.45* 15.71* 7.21* 8.15* 11.98* 12.55* 
Discount  A2V 5.93* 9.01 10.51 15.29* 8.29 8.10* 14.77* 29.16* 
MSFE (b) EV 10.23 6.80* 10.78 15.81* 9.26* 8.02* 12.25* 13.41* 
β =0.9 A1A2E 7.32* 8.81 10.84* 12.84 8.86 9.85 11.80* 15.14 
 A1A2V 6.58* 9.01 10.33 11.49* 8.91 8.73 10.02* 19.20 
 A1EV 10.01 7.16* 10.27 12.73 9.50* 10.03* 12.56* 15.11 
 A2EV 6.66* 7.53 9.30 14.54* 7.96 7.13* 11.39* 13.56* 
 A1A2EV 7.07* 7.77 9.48 12.28 8.63 8.76 11.07* 15.71 
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Table1    (continued) 
  Singapore UK 
  1 Step  2 Step  4 Step  8 Step  1 Step  2 Step  4 Step  8 Step  
 A1 10.63 10.33 15.12 31.26 5.31 5.01 11.48 29.27 
 A2 9.00 10.84 14.55 22.36 5.23 6.31 6.14 11.49 
 E 8.99 9.61 13.59 22.82 5.69 5.19 8.13 19.57 
 V 11.68 11.26 10.92 31.89 4.55 4.37 6.41 9.59 
 A1A2 9.61 9.93* 14.23* 21.50* 4.93* 4.88* 6.94 12.25 
 A1E 9.52 9.91 14.35 22.77* 5.50 4.83* 9.81 24.42 
 A1V 9.74* 9.00* 9.86* 22.84* 4.62 4.05* 7.35 15.67 
 A2E 8.68* 9.51* 13.32* 20.71* 5.11* 4.53* 5.27* 8.87* 
Simple A2V 9.61 9.48* 10.69* 20.43* 4.54* 4.75 6.08* 8.17* 
Average EV 8.98* 8.86* 8.72* 22.92 4.81 4.23* 5.56* 10.91 
Combination A1A2E 9.21 9.64 13.79 20.17* 5.00* 4.39* 7.02 13.92 
 A1A2V 9.35 8.94* 11.41 17.99* 4.44* 4.20* 5.88* 8.98* 
 A1EV 9.30 8.61* 10.46* 19.88* 4.97 4.20* 7.44 16.97 
 A2EV 8.80* 8.73* 10.65* 19.85* 4.62 4.10* 5.04* 7.27* 
 A1A2EV 9.12 8.54* 11.46 17.62* 4.71 3.99* 6.19 10.94 
 A1A2 9.69 10.58 14.43* 22.36* 4.94* 4.82* 5.75* 11.49* 
 A1E 9.28 9.87 14.20 21.70* 5.31* 5.01* 11.39 29.27 
 A1V 10.35* 8.62* 9.42* 31.89 5.02 4.06* 6.41* 9.59* 
 A2E 8.99* 10.11 13.39* 20.47* 5.23* 4.84* 5.91* 11.49* 
Variance- A2V 8.75* 10.84* 12.71 19.50* 4.71 4.67 6.06* 9.59* 
Covariance EV 8.64* 8.55* 9.15* 23.18 4.51* 4.15* 6.41* 9.59* 
Combination A1A2E 9.28 9.71 14.20 21.70* 4.94* 4.82* 5.75* 11.49* 
(a) A1A2V 9.65 10.58 12.78 19.50* 4.75 3.97* 6.06* 9.59* 
 A1EV 9.23 9.87 11.86 23.10 5.02 4.00* 6.41* 9.59* 
 A2EV 8.64* 10.11 10.01* 23.18 4.71 4.06* 6.06* 9.59* 
 A1A2EV 9.23 9.71 11.86 23.10 4.75 3.97* 6.06* 9.59* 
 A1A2 9.61 10.40 14.72 22.81 4.77* 5.10 5.92* 9.45* 
 A1E 9.17 9.74 14.22 21.72* 5.31* 5.02 9.51 25.30 
 A1V 10.38* 8.70* 9.86* 33.95** 4.49* 4.09* 6.38* 9.84 
 A2E 8.81* 10.33 13.81 21.35* 5.26 5.27 5.66* 10.66* 
Variance- A2V 8.81* 10.75* 12.46 22.66 4.64 4.73 6.28 9.01* 
Covariance EV 8.78* 9.04* 9.45* 27.24 4.48* 4.25* 6.46 9.80 
Combination A1A2E 8.95* 9.98 13.57* 20.20* 4.77* 5.10 5.67* 9.35* 
(b) A1A2V 9.77 10.35 12.60 23.00 4.49* 4.31* 6.24 9.19* 
 A1EV 9.08 9.14* 10.60* 19.34* 4.49* 4.13* 6.40* 9.84 
 A2EV 8.78* 10.27 10.13* 25.41 4.67 4.48 6.07* 9.20* 
 A1A2EV 9.07 9.87 10.60* 18.72* 4.49* 4.34* 6.08* 9.25* 
 A1A2 9.65 10.01* 14.38* 20.43* 4.94* 4.92* 6.56 10.50* 
 A1E 9.37 9.85 14.07 21.14* 5.42 4.83* 9.78 25.11 
 A1V 10.35* 8.80* 9.62* 24.38* 4.67 4.01* 6.47 10.70 
 A2E 8.68* 9.54* 13.38* 20.54* 5.11* 4.68* 5.15* 7.40* 
Discount  A2V 8.78* 9.94* 11.91 19.70* 4.59 4.74 6.07* 8.23* 
MSFE (a) EV 8.58* 8.65* 9.71* 23.34 4.51* 4.15* 5.41* 8.72* 
β =0.9 A1A2E 9.14 9.59* 13.53* 19.77* 4.97* 4.49* 6.60 11.83 
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 A1A2V 9.58 9.43* 12.30 18.02* 4.49* 4.24* 5.44* 7.44* 
 A1EV 9.32 8.65* 10.76* 21.62* 4.86 4.08* 6.79 11.68 
 A2EV 8.60* 9.10* 11.81 19.03* 4.49* 4.10* 5.17* 7.39* 
 A1A2EV 9.12 8.90* 12.10 18.38* 4.59 4.01* 5.68* 8.16* 
 A1A2 9.58 10.14* 14.58 20.27* 4.93* 4.99* 6.48 9.14* 
 A1E 9.37 9.86 14.08 20.85* 5.42 4.84* 9.64 24.13 
 A1V 10.12* 8.83* 9.79* 28.81* 4.51* 4.03* 6.22* 9.98 
 A2E 8.75* 9.70 13.42* 21.17* 5.14* 4.81* 5.18* 7.86* 
Discount  A2V 8.74* 9.89* 11.36 22.85 4.56 4.73 6.16 8.52* 
MSFE (b) EV 8.51* 8.71* 9.44* 26.43 4.45* 4.21* 5.48* 8.79* 
β =0.9 A1A2E 9.15 9.77 13.85 20.74* 4.98* 4.59* 6.45 10.80* 
 A1A2V 9.41 9.35* 11.99 21.43* 4.42* 4.27* 5.65* 7.75* 
 A1EV 9.26 8.83* 10.54* 25.23 4.73 4.03* 6.59 10.93 
 A2EV 8.61* 9.00* 11.41 21.90* 4.46* 4.18* 5.25* 7.53* 
 A1A2EV 9.09 8.93* 11.88 21.50* 4.54* 4.08* 5.51* 7.74* 
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Table1    (continued) 
  Australia Philippines 
  1 Step  2 Step  4 Step  8 Step  1 Step  2 Step  4 Step  8 Step  
 A1 7.16 9.05 12.61 15.94 8.24 9.04 10.27 16.81 
 A2 6.52 8.56 11.06 11.53 6.68 7.60 10.18 13.85 
 E 7.56 9.41 9.92 10.15 9.59 9.76 12.81 19.87 
 V 7.71 9.41 9.36 8.96 8.79 10.74 19.85 36.10 
 A1A2 6.84 7.89* 11.27 12.73 7.21 8.10 9.04* 10.63* 
 A1E 6.95* 7.80* 10.15 9.37* 7.84* 8.93* 10.44 15.24* 
 A1V 7.09* 7.96* 10.75 12.03 8.28 9.80 14.00 25.24 
 A2E 6.85 8.11* 9.37* 10.01* 7.48 7.90 11.20 14.78 
Simple A2V 7.09 8.71 9.80 9.05 7.31 8.87 12.52 21.55 
Average EV 7.51* 8.95* 8.86* 7.86* 7.95* 10.10 15.39 27.26 
Combination A1A2E 6.68 7.63* 10.26 9.76* 7.13 8.15 10.17* 12.54* 
 A1A2V 6.90 7.97* 10.55 10.85 7.49 8.92 11.09 19.12 
 A1EV 6.96* 8.00* 9.80 9.10 7.80* 9.37 13.01 21.87 
 A2EV 7.03 8.39* 9.29* 8.08* 7.23 8.69 12.02 20.57 
 A1A2EV 6.76 7.79* 9.98 9.01 7.27 8.72 11.07 18.18 
 A1A2 6.61 8.29* 11.06* 11.53* 7.74 8.52 10.27 16.81 
 A1E 7.01* 7.73* 10.96 8.80* 7.76* 8.94* 10.36 16.81* 
 A1V 7.14* 7.80* 11.05 15.13 8.03* 9.49 10.27* 16.81* 
 A2E 6.51* 8.44* 11.06 11.53 7.62 9.49 12.81 19.87 
Variance- A2V 6.52* 8.56* 11.06 11.53 6.78 8.39 10.18* 13.85* 
covariance EV 7.48* 9.02* 8.83* 8.45* 8.42* 9.80 12.81* 19.87* 
combination A1A2E 6.61 8.29* 11.06 11.53 7.76 8.94 10.36 16.81 
(a) A1A2V 6.61 8.29* 11.06 11.53 7.82 9.49 10.27 16.81 
 A1EV 7.02* 7.83* 10.17 8.14* 7.76* 8.94* 10.36 16.81* 
 A2EV 6.51* 8.44* 11.06 11.53 7.63 9.67 12.81 19.87 
 A1A2EV 6.61 8.29* 11.06 11.53 7.76 8.94 10.36 16.81 
 A1A2 7.20** 8.50* 12.43 13.41 7.88 8.58* 10.49** 17.06** 
 A1E 6.98* 8.41* 10.70 9.59* 8.12* 8.87* 10.20* 17.95 
 A1V 7.32 8.15* 10.40 11.05 8.02* 9.58* 10.27* 16.81* 
 A2E 7.25 8.71 10.54 10.80 7.09 9.43 13.41** 20.36** 
Variance- A2V 6.61 8.51* 11.17** 11.93** 6.89 8.65* 10.57 14.09 
covariance EV 7.74** 9.26* 9.43 8.97 8.29* 9.87* 12.91 19.87* 
combination A1A2E 7.56 8.70 11.56 10.24 8.01 9.02 10.36 18.36 
(b) A1A2V 7.23 8.50* 11.43 11.81 7.95 9.36* 10.49 17.06 
 A1EV 7.10* 8.44* 10.16 9.09 8.10* 8.88* 10.20* 17.95 
 A2EV 7.30 8.71 10.72 9.74 7.18 9.45 13.37 20.50 
 A1A2EV 7.59 8.70 11.12 9.74 8.01 8.98 10.37 18.36 
 A1A2 6.80 7.95* 11.22 12.06 7.29 8.21 9.22* 12.79* 
 A1E 6.96* 7.82* 10.15 8.62* 7.80* 8.93* 10.41 14.77* 
 A1V 7.10* 7.82* 10.86 13.09 8.20* 9.70 11.83 19.62 
 A2E 6.77 8.06* 9.50* 10.06* 7.44 8.06 11.34 16.46 
Discount  A2V 6.89 8.62 9.93 10.06 7.24 8.83 11.95 20.14 
MSFE (a) EV 7.47* 9.01* 8.93* 8.24* 7.97* 10.05 14.53 23.34 
β =0.9 A1A2E 6.65 7.72* 10.28 9.60* 7.14 8.27 9.87* 13.59* 
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 A1A2V 6.85 7.95* 10.60 11.02 7.48 8.91 10.37 16.48 
 A1EV 6.96* 7.93* 9.83 8.55* 7.77* 9.30 11.57 17.40 
 A2EV 6.87 8.22* 9.39 8.90* 7.21 8.73 11.57 19.54 
 A1A2EV 6.71 7.79* 10.03 9.20 7.26 8.69 10.43 15.99 
 A1A2 6.94 8.03* 11.29 12.17 7.35 8.19 9.30* 12.61* 
 A1E 6.94* 8.02* 10.20 8.37* 8.04* 8.92* 10.37 15.23* 
 A1V 7.19 7.87* 10.57 11.23 8.21* 9.75 11.51 19.27 
 A2E 6.89 8.18* 9.49* 9.90* 7.32 7.96 11.43 16.57 
Discount  A2V 7.03 8.71 9.90 10.05 7.25 8.73 11.62 18.49 
MSFE (b) EV 7.50* 9.00* 9.04* 8.10* 8.16* 10.09 14.42 23.07 
β =0.9 A1A2E 6.77 7.85* 10.29 8.85* 7.14 8.17 9.93* 13.90 
 A1A2V 7.00 7.99* 10.45 10.97 7.40 8.85 10.29 16.17 
 A1EV 6.99* 8.11* 9.84 8.69* 7.97* 9.32 11.37 17.62 
 A2EV 7.01 8.36* 9.49 8.26* 7.18 8.63 11.47 19.12 
 A1A2EV 6.84 7.93* 10.03 8.92* 7.29 8.63 10.40 16.07 
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Table 2:   Percentage of combined forecasts that outperform the best 
individual forecasts 

 
 One step Two steps Four steps Eight steps 

Simple Average 47.27 66.36 59.09 54.55 
Variance-covariance (a) 45.45 43.64 45.45 52.73 
Variance-covariance (b) 33.64 38.18 41.82 46.36 
Discounted MSFEβ =0.9 (a) 50.91 56.36 51.82 60.00 
Discounted MSFEβ =0.6 (a) 53.64 55.45 47.27 56.36 
Discounted MSFEβ =0.9 (b) 50.91 60.91 50.00 62.73 
Discounted MSFEβ =0.6 (b) 43.64 66.36 66.36 74.55 
Average 46.49 55.32 51.69 58.18 
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Table 3:   Percentage of combined forecasts that outperform the worst 
individual forecasts 

 

 One step Two steps Three steps Four steps Eight steps 

Simple Average 0.00 0.00 0.00 0.00 0.00 
Variance-covariance(a) 0.00 0.00 0.00 0.00 0.00 
Variance-covariance(b) 4.55 3.64 5.45 5.45 4.55 
Discounted MSFEβ =0.9(a) 0.00 0.00 0.00 0.00 0.00 
Discounted MSFEβ =0.6 (a) 0.00 0.00 0.00 0.00 0.00 
Discounted MSFEβ =0.9 (b) 0.00 0.00 0.00 0.00 0.00 
Discounted MSFEβ =0.6 (b) 0.00 0.91 0.91 0.00 0.00 
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Table 4:   Results of Wilcoxon matched-pairs signed rank test:  difference between 
MAPEs of combined forecasts and minimum values of MAPEs of single forecasts 

 
 one step  two steps  four steps  eight steps  

Combination method D z p D z p D z p D z p 
Simple Average -0.14 -1.38 0.17 0.17 -3.00 0.00* 0.19 -1.51 0.13 0.04 -0.18 0.85 
Variance-covariance(a) -0.41 -3.38 0.00* -0.46 -3.34 0.00* -0.83 -4.99 0.00* -0.92 -3.86 0.00* 
Variance-covariance(b) -0.49 -5.04 0.00* -0.32 -3.55 0.00* -0.35 -3.39 0.00* 0.06 -0.48 0.63 
Discounted MSFEβ =0.9(a) -0.09 -0.62 0.54 -0.04 -0.39 0.70 -0.09 -0.44 0.66 0.53 -1.78 0.07 
Discounted MSFEβ =0.6 (a) -0.09 0.00 1.00 0.00 -1.23 0.22 -0.16 -0.69 0.49 0.19 -0.84 0.40 
Discounted MSFEβ =0.9 (b) -0.07 -0.94 0.35 0.15 -2.43 0.02* 0.32 -1.26 0.21 0.98 -3.24 0.00* 
Discounted MSFEβ =0.6 (b) -0.05 -1.19 0.24 0.26 -3.47 0.00* 0.74 -4.11 0.00* 1.98 -5.91 0.00* 

Notes: 1) D denotes the difference between the means of MAPEs from the combined and 
single forecasts. 
2) z denotes Wilcoxon signed rank statistics. 
3) p denotes the asymptotic significance level. 
4) * significant at 0.05 level. 
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Table 5:   Results of Wilcoxon matched-pairs signed rank test: difference between 
MAPEs of combined forecasts and mean values of MAPEs of single forecasts 

 
 One step Two steps Four steps Eight steps 

Combination method D z p D z p D z p D z p 
Simple Average 0.94 -9.02 0.00* 1.31 -9.10 0.00* 2.03 -9.05 0.00* 4.77 -9.02 0.00*
Variance-covariance(a) 0.66 -5.56 0.00* 0.68 -5.23 0.00* 1.00 -5.18 0.00* 3.81 -7.17 0.00*
Variance-covariance(b) 0.59 -5.07 0.00* 0.82 -7.17 0.00* 1.49 -7.28 0.00* 4.79 -8.48 0.00*
Discounted MSFEβ =0.9(a) 0.99 -8.94 0.00* 1.10 -8.49 0.00* 1.75 -8.28 0.00* 5.26 -8.82 0.00*
Discounted MSFEβ =0.6 (a) 0.99 -8.53 0.00* 1.14 -8.47 0.00* 1.67 -7.79 0.00* 4.93 -8.61 0.00*
Discounted MSFEβ =0.9 (b) 1.01 -9.09 0.00* 1.29 -9.08 0.00* 2.16 -9.07 0.00* 5.71 -9.10 0.00*
Discounted MSFEβ =0.6 (b) 1.02 -9.02 0.00* 1.40 -9.06 0.00* 2.58 -9.10 0.00* 6.71 -9.10 0.00*

Note: Same as Table 4.  
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Table 6   Accuracy comparison between three combination methods 

 

  1 
Step   2 

Step   4 
Step   8 Step  

 Mean 
Difference 

t 
value 

p-
value 

Mean 
Difference 

t 
value 

p-
value 

Mean 
Difference 

t 
value 

p-
value 

Mean 
Difference 

z 
statistic 

p-
value 

Simple Average- 
Variance-covariance(b) -0.35 -3.70 0.00* -0.49 -4.52 0.00* -0.54 -3.41 0.00* 0.02 -.73(a) 0.47 

Simple Average- 
Discounted MSFEβ =0.6(b) 0.09 2.07 0.04* 0.09 1.27 0.21 0.55 5.31 0.00* 1.93 -6.49(b) 0.00* 

Variance-covariance(b)- 
Discounted MSFEβ =0.6(b) 0.44 5.41 0.00* 0.57 8.19 0.00* 1.09 9.05 0.00* 1.92 -7.22(b) 0.00* 

Notes: 1) t test is used in 1-, 2- and 4- steps-ahead forecasts, whereas Wilcoxon Signed 
Rank Test is used in 8 steps-ahead forecasts because of nonnormality of the series. 
2)  p values in 1-, 2-, and 4- steps-ahead forecasts are based on 2-tailed t statistics. 
In the cases (a) and (b) of the 8-steps-ahead forecasts, the z statistics are Wilcoxon 
signed rank statistics. 
3) * denotes significant at 0.05 level. 
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Table 7   Forecasting performance among different numbers of individual forecasts  
 

 
 1 Step   2 Step   4 Step   8 Step  

 
  

Mean 
Difference t-value p-value Mean 

Difference t value p-value Mean 
Difference t value p-value Mean 

Difference t value p-value 

Simple A 0.32 0.99 0.33 0.45 1.26 0.21 0.61 1.18 0.24 1.46 1.36 0.18 
Average B 0.52 0.93 0.36 0.72 1.18 0.24 0.97 1.07 0.29 2.28 1.21 0.23 
Combination C 0.20 0.39 0.70 0.27 0.48 0.64 0.36 0.45 0.66 0.81 0.52 0.60 
Variance- A 0.19 0.49 0.62 0.09 0.21 0.83 0.21 0.38 0.70 0.97 0.98 0.33 
covariance B 0.31 0.48 0.64 0.01 0.01 0.99 0.23 0.24 0.81 0.57 0.32 0.75 
combination C 0.12 0.19 0.85 -0.08 -0.11 0.91 0.02 0.02 0.99 -0.40 -0.28 0.78 
Variance- A 0.09 0.24 0.81 0.12 0.32 0.75 0.52 1.06 0.29 1.64 1.63 0.11 
covariance B 0.08 0.13 0.90 -0.08 -0.13 0.89 0.94 1.10 0.28 2.37 1.33 0.19 
combination C -0.01 -0.01 0.99 -0.20 -0.32 0.75 0.42 0.57 0.57 0.72 0.51 0.61 
Discount  A 0.36 1.04 0.30 0.41 1.11 0.27 0.58 1.13 0.26 1.53 1.57 0.12 
MSFE (a) B 0.59 0.99 0.33 0.61 0.97 0.34 0.95 1.08 0.29 2.25 1.31 0.20 
β =0.9 C 0.23 0.41 0.69 0.20 0.33 0.75 0.37 0.47 0.64 0.71 0.49 0.63 
Discount  A 0.34 0.93 0.36 0.44 1.23 0.22 0.56 1.04 0.30 1.51 1.57 0.12 
MSFE (a) B 0.62 1.00 0.32 0.71 1.16 0.25 1.04 1.13 0.26 2.13 1.26 0.21 
β =0.6 C 0.28 0.46 0.65 0.27 0.43 0.67 0.48 0.55 0.59 0.61 0.40 0.69 
Discount  A 0.32 0.93 0.35 0.44 1.27 0.21 0.69 1.42 0.16 1.76 1.72 0.09 
MSFE (b) B 0.52 0.89 0.38 0.68 1.15 0.25 1.10 1.29 0.20 2.45 1.36 0.18 
β =0.9 C 0.20 0.37 0.71 0.24 0.42 0.67 0.41 0.58 0.57 0.69 0.45 0.66 
Discount  A 0.32 0.95 0.34 0.47 1.37 0.18 0.84 1.80 0.08 2.03 2.16 0.03* 
MSFE (b) B 0.49 0.84 0.41 0.71 1.19 0.24 1.22 1.45 0.15 2.88 1.74 0.09 
β =0.6 C 0.16 0.30 0.76 0.24 0.44 0.66 0.38 0.57 0.58 0.86 0.63 0.53 

Notes: 1)A: statistical test of combination forecasts generated from two single model and three  
single model forecasts. 
2) B: statistical test of combination forecasts generated from two single model forecasts 
and four single model forecasts. 
3) C: statistical test of combination forecasts generated from three single model and four 
single model forecasts. 
4) * denote significant at 0.05 level. 
 
 




